

Firearm Deactivation Guide

Licensing Services
Version 1.0 12/2025

CONTENTS

1. Firearm Deactivation	3
1.1 Sectioning	3
1.2 Rendering Innocuous.....	3
1.3 Relic Status	3
2. Sectioning Innocuous Process.....	3
3. Sectioning Minimum Requirements	4
3.1 The Bolt / Breech Face	4
3.2 The Barrel	4
3.3 The Gas System	4
3.4 The Receiver, Slide and Locking Lugs	4
3.5 The Hammer.....	4
4. Rendering Innocuous Process	5
5. Rendering Innocuous Minimum Requirements.....	5
5.1 Bolt Action Rifle.....	5
5.2 Self-Loading Rifle	6
5.3 Pump and Lever Action Rifle.....	6
5.4 Air Rifle / Pistol	6
5.5 Muzzle Loading Rifle / Pistol.....	7
5.6 Single or Double Barrel Shotgun	7
5.7 Pump Action Shotgun.....	7
5.8 Self-Loading Shotgun	8
5.9 Revolver.....	8
5.10 Self-Loading Pistol	8
5.11 Paintball Firearm	9
6. Related Documentation	9

Version Control

VERSION	DATE	REVISED BY	PD	COMMENTS	APPROVED BY
1/2025	12/25	P. UTLEY	07238	1st Draft Version	J. BANKS

1. Firearm Deactivation

A deactivated firearm is a firearm that has been rendered permanently incapable of operation, whilst at the same time preserving the appearance of the firearm.

There are three classifications of deactivated firearms:

- Sectioning;
- Rendering Innocuous;
- Relic status.

1.1 Sectioning

This procedure involves the machining (milling) of all the major parts of the firearm to expose the internal mechanism.

This shows the working parts of the firearm for display and instructional purposes whilst also deactivating the firearm such that it is incapable of being returned to its original firing condition.

1.2 Rendering Innocuous

This procedure includes welding all major parts of the firearm plus welding a steel rod into the barrel and removing or destroying the functionality of specific parts.

The firearm generally retains its pre-rendered functional appearance but is incapable of being returned to its original firing condition.

1.3 Relic Status

In special circumstances alternative methods may be approved to deactivate a firearm, when in the opinion of the licensed Repairer or Manufacturer, the approved guidelines are not appropriate.

Prior to deactivating a firearm using an alternative method, approval from the Officer in Charge of Police Licensing (Firearms), must be obtained.

Further advice can be obtained by contacting:

Licensing Services (Firearms)

Western Australia Police Force

303 Sevenoaks Street

CANNINGTON WA 6107

Phone: 1300 171 011

Email: LicensingServices@police.wa.gov.au

2. Sectioning Innocuous Process

All major parts of the firearm are to be substantially weakened by machining (milling).

3. Sectioning Minimum Requirements

3.1 The Bolt / Breech Face

Machine away one side of the bolt/breech face with a 45 degree backward facing cut to allow enough material remains to hold the firing pin, extractor and ejector. The cut must break through the side of the bolt. Remove 50% of the locking surface to a depth of 4mm. Shorten the firing pin so that it does not protrude beyond the bolt face.

3.2 The Barrel

Remove eighty percent of the chamber length to a depth removing one third of the chamber diameter or $\frac{1}{4}$ section, and at two points further along its length for a distance of 15mm and in the same style as the chamber, one point must be within 10 mm of the muzzle. The remaining 20% of the chamber is to have a close-fitting steel rod inserted and welded.

3.3 The Gas System

The Gas System (if fitted): Must be machined the length of the piston head removing 1/3 of the diameter. A cut must be made in the cylinder which is equal in width to half the cylinder inside diameter for the distance of the piston travel or 10mm whichever is less, and a slot must be machined to remove half the diameter of the gas port for a distance of half its length.

3.4 The Receiver, Slide and Locking Lugs

Must have a cut in the ring to match the chamber cut and another cut, which removes 50% of the locking surface to a depth of 4mm (in the case of a removable locking shoulder, through the locking shoulder and 4mm into the supporting material). A cut which removes 50% of the receiver side or slide (left or right) or a minimum distance of 35mm must be made. This cut does not have to be exposed but must be in the area of the locking surface or between the locking surface and the breech face. If the firearm has an upper and lower receiver both areas must be sectioned. The hinge point on the lower receiver must be sectioned by removing a quarter section across it. The rear locking pin must be weakened by machining away 50% of its cross section.

3.5 The Hammer

The Hammer is to have a slot 2mm deep machined across the face so that it cannot contact the firing pin.

If the firearm is of a belt fed type the feed pawls and actuating arm/s are to be weakened by a cut with a minimum width of 5mm through 50% of its thickness or width.

4. Rendering Innocuous Process

The following types of welding are to be used.

Manual Metal Arc Welding (MMAW): A process that uses an electric arc in which the joining of the metals is accomplished by melting the parent metal and the tip of a flux coated electrode.

Gas Metal Arc Welding (GMAW): A process in which an electric arc is struck between a continuously fed consumable wire and the work piece. The process is shrouded by an inert gas to prevent contamination.

Gas Tungsten Arc Welding (GTAW): A process that employs a heat source in the form of an electric arc between a non-consumable tungsten electrode and the work piece. A manually used filler rod is used to complete the fusion. This process is shrouded by an inert gas to prevent contamination.

Alternative to Welding – (Non-Metal Firearm Parts)

Firearm components made of polymer or similar material, that are not conducive to welding, can be rendered using suitable epoxy compounds. If this alternative rendering process is used, a detailed explanation of why and how it was applied, must be made on the Firearm Deactivation Certificate.

5. Rendering Innocuous Minimum Requirements

5.1 Bolt Action Rifle

1. All internal parts not seen from the outside to be removed.
2. A calibre size hole is to be bored through the chamber wall.
3. A close-fitting steel rod is to be inserted into the barrel and welded at the muzzle and breech.
4. The firing pin must be removed or broken off and the firing pin hole welded closed.
5. The bolt is to be welded to the receiver on both sides from the breech face for 60% of its length.
6. The barrel is to be welded to prevent its removal from the receiver.
7. Weld the trigger to the receiver of trigger guard.
8. In the case of a firearm having an aluminium receiver, the receiver is to be milled to allow the bolt to be welded to the barrel and internal rod.
9. Magazine lips/follower/spring are to be removed and the magazine is to be welded into the magazine well.

5.2 Self-Loading Rifle

1. All internal parts not seen from the outside to be removed.
2. A calibre size hole is to be bored through the chamber wall.
3. A close-fitting steel rod is to be inserted into the barrel and welded at the muzzle and breech.
4. The firing pin must be removed or broken off and the firing pin hole welded closed.
5. The bolt is to be welded to the receiver from the breech face on both sides for 60% of its length. Rifles with bolt carriers will have the bolt welded to the carrier and the carrier welded to the receiver.
6. The barrel is to be welded to prevent its removal from the receiver.
7. Weld the trigger and hammer to the receiver.
8. The gas piston and spring are to be removed and the gas port filled with weld.
9. In the case of a firearm having an aluminium receiver, the receiver is to be milled to allow the bolt to be welded to the barrel and internal rod.
10. In the case of the firearm having an aluminium receiver, the barrel extension is to be milled through or locking lugs machined off.
11. Magazine lips/follower/spring are to be removed and the magazine is to be welded into the magazine well.

5.3 Pump and Lever Action Rifle

1. All internal parts not seen from the outside to be removed.
2. A calibre size hole is to be bored through the chamber wall.
3. A close-fitting steel rod is to be inserted into the barrel and welded at the muzzle and breech.
4. The firing pin must be removed or broken off and the firing pin hole welded closed.
5. The bolt is to be welded to the receiver from the breech face on both sides for 60% of its length.
6. The barrel is to be welded to prevent its removal from the receiver.
7. Weld the trigger and the hammer to the receiver.
8. The action arm/lever or link is to be welded to the receiver or barrel.
9. The magazine follower/spring/plunger lips removed.

5.4 Air Rifle / Pistol

1. All internal parts not seen from the outside to be removed.
2. A calibre size hole is to be bored through the chamber wall.
3. A close-fitting steel rod is to be inserted into the barrel and welded at the muzzle and breech.
4. Where applicable, the spring piston and spring are to be removed and the gas port filled with weld.
5. Weld the trigger to the receiver or trigger guard.

6. A cut must be made along the full length of the compression chamber/internal reservoir/pressure reservoir/gas cylinder such that it can hold no pressure. Where the pressure reservoir/gas cylinder is removable, it is to be welded to prevent its removal from the firearm.
7. The barrel is to be welded to prevent its removal from the receiver/compression chamber/internal reservoir (or from being broken-open/pumped).

5.5 Muzzle Loading Rifle / Pistol

1. All internal parts not seen from the outside to be removed.
2. A hole 60% the size of the bore is to be bored through the chamber wall.
3. Close fitting steel rods of minimum 50 mm length are to be fitted and welded at the chamber and muzzle ends of the barrel. Where required a hole is to be drilled to enable the welding of the rod at the chamber.
4. The barrel plug is to be welded in place.
5. Weld the trigger to the receiver or trigger guard.
6. The hammer or lock is to be welded to the receiver or side plate.
7. The flash hole is to be welded over.

5.6 Single or Double Barrel Shotgun

1. All internal parts not seen from the outside to be removed.
2. A hole is to be bored just forward of each chamber of 60% of the bore size.
3. Close fitting steel rods of minimum 50 mm in length are to be fitted and welded at the chamber and muzzle ends of the barrel.
4. The firing pin(s) is to be removed, broken off or welded to the receiver and the firing pin hole(s) welded closed.
5. The breech lever is to be welded to the receiver.
6. The barrel is to be welded with a substantial weld to the receiver to prevent its opening. This may be completed by welding the barrel lug or barrel to the receiver.
7. Where the shotgun has exposed hammers they are to be welded to either the side plates or receiver.

5.7 Pump Action Shotgun

1. All internal parts not seen from the outside to be removed.
2. A hole is to be bored just forward of the chamber of 60% of the bore size.
3. Close fitting steel rods of minimum 50 mm in length are to be fitted and welded at the chamber and muzzle ends of the barrel.
4. The firing pin must be removed or broken off and the firing pin hole welded closed.
5. The bolt is to be welded to prevent its removal from the receiver.
6. Weld the trigger mechanism parts together to prevent movement.
7. Weld the action arms to the receiver.

8. The barrel is to be welded to prevent its removal from the receiver.
9. The magazine follower/spring/plunger lips removed.

5.8 Self-Loading Shotgun

1. All internal parts not seen from the outside to be removed.
2. A hole is to be bored just forward of the chamber of 60% of the bore size.
3. Close fitting steel rods of minimum 50 mm in length are to be fitted and welded at the chamber and muzzle ends of the barrel.
4. The firing pin must be removed or broken off and the firing pin hole welded closed.
5. The gas piston and spring are to be removed and the gas port filled with weld.
6. Weld the trigger mechanism parts together to prevent movement.
7. The bolt is to be welded to prevent its removal from the receiver.
8. The barrel is to be welded to prevent its removal from the receiver.

5.9 Revolver

1. All internal parts not seen from the outside to be removed.
2. A calibre size hole is to be bored into the barrel as close to the forcing cone as possible.
3. Remove internal walls between chambers of each cylinder for at least 60% of their length.
4. A close-fitting steel rod is to be inserted through the barrel and cylinder that butts up to the breech face and is welded at the muzzle and forcing cone.
5. The cylinder is welded to the frame.
6. The hammer nose/firing pin must be removed or broken off and the firing pin hole welded closed.
7. Weld the trigger and hammer to the frame.
8. If the revolver is a break-open type, welding must be used to prevent the revolver from being opened.

5.10 Self-Loading Pistol

1. All internal parts not seen from the outside to be removed.
2. A calibre size hole is to be bored through the chamber wall.
3. A close-fitting steel rod is to be inserted into the barrel and welded at the muzzle and breech.
4. 60% of the slide rails to be machined from both sides of frame.
5. Feed ramp to be removed from the barrel or frame as applicable.
6. The barrel is to be welded to prevent its removal from the slide.
7. The slide is to be welded to prevent its removal from the frame.
8. The firing pin must be removed or broken off and the firing pin hole welded closed.
9. Magazine lips/follower/spring are to be removed and the magazine is to be welded into the magazine well.

5.11 Paintball Firearm

1. Weld the barrel to the front of the receiver and through the feed port.
2. Insert a close-fitting rod through the barrel to the hopper feed port and secure with epoxy.
3. Weld the bolt and valve to the receiver
4. Remove the air inlet plug and fill the threaded hole with weld
5. Bore a hole of no less than 10mm into the valve chamber.
6. Remove the sear and retaining pin from the firing mechanism. Machine away sufficient material from the sear housing to remove the supporting surfaces of the sear pin.
7. Hopper feed hole filled with epoxy and epoxy used to fix hopper to receiver.
8. Removable magazine glued into place with epoxy.

6. Related Documentation

LICENSED FIREARM, MANUFACTURER OR REPAIRER

Form 20 / Form 21

- The firearm is brought into stock via a Form 20 under the listing of 'To Be Deactivated'
- Once the firearm has been rendered innocuous and returned to the owner, the firearm is removed from stock via a Form 21 under the listing of 'Deactivated'

LICENSED FIREARM MANUFACTURER OR REPAIRER

Firearm Deactivation Certificate

- Once the firearm has been deactivated, the licensed Firearm Manufacturer or Repairer must complete a Firearm Deactivation Certificate detailing the firearm particulars and how the firearm was deactivated – Sectioned, Rendered Innocuous or certified as a Relic.
- The Firearm Deactivation Certificate is to be sent via mail or email to Licensing Services (Firearms) at the address listed on page 3 above. Photographs of the firearm and/or process used can be included.
- On receipt of the Firearm Deactivation Certificate and any associated paperwork, Licensing Services (Firearms) will review and update the status of the firearm to show it has been deactivated.
- A copy of the Firearm Deactivation Certificate will be sent to the owner of the deactivated firearm.

