WEM Procedure – Developing Limit Advice

WEM Reform Implementation Group (WRIG) 1 October 2020

Contents

- WEM Procedure Developing Limit Advice
- Overview of Limit Advice
- Developing Thermal Network Limit Advice
- Developing Non-Thermal Network Limit Advice
- Maintaining, Updating, Publishing and Reviews of Limit Advice
- WEM Procedure Consultation

WEM Procedure – Developing Limit Advice

Structure of the WEM Procedure – Developing Limit Advice is as follows:

- Overview
 - Relationship with the WEM Rules
 - Definitions and interpretation
 - Related documents
- Overview of Limit Advice
 - Thermal Network limit advice
 - Non-thermal Network limit advice
- Developing Thermal Network Limit Advice
- Developing Non-Thermal Network Limit Advice
- Maintaining and Updating Limit Advice
- Supporting Information and Data

Overview of Limit Advice

- WEM Procedure: Development of Limit Advice is made in accordance with clauses 1.33.1(b) and 2.27A.11(a) of the WEM rules
- Purpose of the procedure is to document the processes to be followed by Western Power and the matters it must consider in developing and updating limit advice, including the approach taken by Western Power in applying a Limit Margin, Wholesale Market Objectives and good electricity industry practice
- Applies to Western Power as a Network Operator
- Related AEMO WEM Procedures
 - Limit Advice Provision, Constraint Formulation, Congestion information resource, IMS interface, Network modelling data, Power system security

Overview of Limit Advice

What is a network limit?

- Mathematical expression, either a number or equation, defining the power transfer capability across network elements. Western Power must develop two forms of limit advice – thermal network limits and non-thermal network limits
- Note Procedure expected to be modified to include a third form of limit advice which is related to RCM limit advice.

Thermal network limit

• Network Limits that describe the maximum capacity for electrical throughput of a particular network element due to temperature or related effects

For example: Transmission line EP-ST current rating (summer) = 1063 amps

Non-thermal network limit

- Limits that are not thermal limits Network limit equations that describe the maximum power that can be transmitted to prevent network voltage or stability problems during network normal or following contingencies
- For example, an equation to maintain network voltage within acceptable limits following a contingency might be of the form:

WKT MW Import \leq constant + A1.X1 + A2.X2 + A3.X3 + ... + An.Xn - limit margin

Where An is a coefficient and Xn is variable which could include items like active power flow, reactive power flow, output from a generator, number of generators in service, etc.

westernpower 5

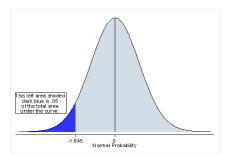
Developing Thermal Network Limits

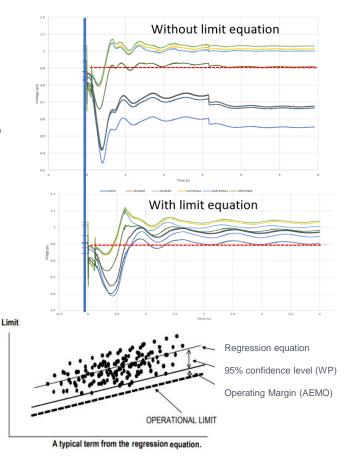
- When electricity is transferred along a path, such as between two zone substations, it passes through various equipment such as cables, conductors, switchgear, busbars, transformers, etc.
- All equipment that electricity flows through has a rating which is the amount of power that can safely be transferred through that equipment to prevent equipment damage, or in the case of a transmission line, prevent violation of minimum conductor clearances.
- Equipment ratings are based on various factors such Australian/International standards, guidelines for the installed equipment and good industry practice.
- The thermal limit is established through identifying the equipment with the lowest rating in the electricity path.
- Thermal limits are provided to AEMO for approximately 256 transmission lines and 408 transformers and applicable busbars.
- Thermal limits for a network element may be different depending on which direction the power flows and for different seasons

408 transformers

Site ID	Equipment ID	ALTUMIT Time	Equip. Type	1 pu KV	Rating Unit	NORM P
Α.	A504T1 UV	SUM	TRANS	22	AMP	886
A	AS04T1 LV	WH	TRANS	22	AMP	1012
A	A50872 LV	SUM	TRANS	22	AMP	784
A	A50672 LV	WIN	TRANS	22	AMP	544
A	A51273 LV	SUM	TRANS	22	AMP	790
A	A51273 LV	WN	TRANS	22	AMP	895
ALB	ALBS19T3 LV	WN	TRANS	22	AMP	900
ALB	ALB503T1 LV	SUM	TRANS	22	AMP	789
ALB	ALB503T1 LV	WN	TRANS	22	AMP	927
ALB	ALB510F2 LV	SUM	TRANS	22	AMP	999
ALB	AL851072 LV	WIN	TRANS	22	AMP	1012
ALB	ALB519T3 LV	SUM	TRANS	22	AMP	787
AMT	AMT516T2 LV	WN	TRANS	22	AMP	1195
AMI	AMISOSTI LV	SUM	TRANS	22	AMP	1012
AMT	AMT505T1 LV	WN	TRANS	22	AMP	1125
AMT	AM151612 LV	SUM	TRANS	22	AMP	1080
AMI	AMI524T3 LV	SUM	TRANS	22	AMP	1021
AMT	AM1524T3 LV	WIN	TRANS 2	22	AMP	1173
APM	APM50613 LV	SUM	TRANS	22	AMP	805
APM	APM506T3 LV	WIN	TRANS	22	AMP	844
APM	APM512T1 LV	SUM	TRANS	22	AMP	805
APM	APM51211 LV	WIN	TRANS	22	AMP	844
8CH	BCH504TI LV	SUM	TRANS	22	AMP	1000
8CH	BCH504T1 LV	WN	TRANS	22	AMP	1000
8CH	BCH51272 LV	SUM	TRANS	22	AMP	1019
				22	AMP	1128

256 transmission lines


Equipment ID 🔫	Site ID -		# Connections -	ALTUMIT Time v	Equip. Type -	1 pv KV ···	Rating Unit -	NORM IN .
A-OP81	A.	A 509 OP51 CURRENT	2	SUM	Line	132	AMP	623
A-OP81	A	A 804 OP61 CURRENT	2	1994	Line	132	AMP	737
145-A51	A.	A 501 M/S1 CURRENT	2	SUM	Lirie	132	AMP	1160
NT-A31	A	A 601 MIB1 CURRENT	2	WPi	Line	132	AMP	1380
78LO19-8LA	ALE	ALB 810 KOUS1 CURRENT	2	SUAL	Line	182	AME	310
AL5-FICU81	ALE	ALS \$10 K/O(\$1 CURRENT	2	1971	Line	132	AUF	310
AL6-MER81	ALE	ALE 504 MER51 CURRENT	2	5UM	Line	132	AMP	230
ALB-MIRES1	ALS.	ALS 504 MBRS1 CURRENT	2	WPI	Line	132	AMP	290
AM1-C1E51	AAC	AMT 801 CTES1 CURRENT	2	50.65	Line	182	ALLE	920
AMT-CITER1	AME	AMT 601 CTES1 CURRENT	2	WP4	Line	132	AMP.	1093
SF-AMITEI	AAT	AMT 808 SF81 CURRENT	2	WP4	Line	132	ALLE	1180
SF-AMISI	AMT	AMT 808 SF81 CURRENT	2	3UM	Line	132	AMP .	1080
AFJ-OLY91	APJ.	APJ OLYFY CURRENT	2	SUM	Line	330	AMP	380
APJ-OLY91	APS	APJ OL191 CURRENT	2	WPI.	Line	330	AUF	380
P113-APJ51	APJ	APJ 810 FHU81 CURRENT	2	SUM	Line	132	AMF	622
PHU-APJ61	AP3	APJ 810 PHU81 CURRENT	2	WPi	Line	132	AUF	737
INR-WOP-APJBI	APS	APJ 804 SNR/WOP81 CURRENT	2	SUM	Ter	132	AMP	807
DNR-WCP-AP.81	AP1	APJ 804 SHR/WOREL CURRENT	2	10/04	Te	132.	AMF	555
AFM-M/R71	APM	APM 708 MYE71 CURRENT	2	WPI	Line	44	AMP	780
AP55-MHR71	APM	APM 708 MIR71 CURRENT	2	SUNT	Line	44	AMP	629
SF-APM71	APAS	APM 701 SF71 CURRENT	1	SUM	Line	44	AMP	904
SF-APW/1	.APM	APM 701 SF71 CURRENT	1	WP4	Line	. 46 .	AMP.	1078
8CHH81	8CH	BCH 505 HS1 CURRENT	2	SUM	Line	132	AMP	920
8CHH81	8CH	BCH 805 H81 CURRENT	2	WPi	Line	132	AME	1093
NT-6CH51	BCH	BCH 802 N151 CURRENT	2	SUM	Line	132	AMP	920
NT4CH81	9CH	BCH 602 NTS1 CURPENT	2	WPI	Line	132	AMP	1093
8011881	BCT.	ECT 608 N661 CURRENT	2	SUM	Line	192	AMP	817
\$C11651	BCT .	BCT 808 N881 CURRENT	2	WPi	Line	132	AMP	924
BCT-NT81	BCT .	BCT 601 HITS1 CURRENT	2	SUM .	Line	132	AMP	617
BCTerts)	BCT .	Tressuo rativ ropitoe	2	WP4	Line	132	AMP	924
KEM-8DP61	8DP	6DP ED1 KEM81 CURRENT	2	3044	Line	132	AMP	561
KENHEDPEI	8DP	BOP DOI KEMBI CURRENT	2	WP4	Line	132	AMP	648
40 JT141	80	Tudger O 18 KD KIN GR		f1188	1 ina	155	4110	47.8


Developing Non-thermal network limits

- The power transfer into or out of regions of the network may have limits to prevent network voltage or stability problems. Limit equations are developed and provided to AEMO to ensure stability is maintained for various load and generation scenarios and network voltages for system normal and following contingencies.
- Load flow simulation under various conditions (1000s of simulations) to identify power transfer limit to maintain stability
- Develop limit equation to ensure stability maintained at a 95% confidence interval (limit margin) standard industry practice.
- Limit equation provided to AEMO to formulate constraint equation
- Limit advice is published in the AEMO constraint library

Each equation solves a specific network voltage or stability technical requirement – such as:

- Post contingency voltage > 0.9pu
- Post contingency voltage < 1.1pu
- Post contingency voltage step change < +6%
- Post contingency voltage step change > -10%
- Transient rotor angle criterion
- Oscillatory rotor angle stability
- Short term voltage stability
- Temporary overvoltage criterion
 - Long term voltage criterion (QV analysis)

Maintaining, Updating, Publishing and Reviews of Limit Advice

- Western Power must use its reasonable endeavours to ensure that all necessary limit advice is complete, current and accurate at the time it is provided to AEMO and updated as soon as practicable where it identifies significant changes that may affect any limit advice
 - Types of changes that could impact include new generators, new loads, changes to generator models, network augmentations, revised forecasts, revised generator performance, decommissioned plant, modified network protection schemes
- Western Power must advise AEMO if limit advice is inaccurate or incomplete

- Publication Limit Advice, including Limit Equations and Limit Advice Inputs are provided to AEMO which are then published in the Constraints Library
- Western Power is required to provide AEMO or ERA in a reasonable timeframe information required for their functions or reviews.
- The ERA reviews the effectiveness of Limit Advice provided by Western Power including the appropriateness of any Limit Margins and the appropriateness of the Market Procedure

WEM Procedure Consultation

- The WEM Procedure Limit Advice Development will be circulated shortly
- Please provide feedback or any direct any queries to Western Power
 - <u>RegulatoryReforms@westernpower.com.au</u>
 - Attention Mark McKinnon (Market & Operations Stream Lead)

Perth office 363 Wellington Street Perth, WA 6000 westernpower.com.au