

E-waste Grant Project

Finding a solution to the e-waste problem

Why Waste It!

16 February 2022

Epichem Pty Ltd

Australia's premier provider of synthetic and organic chemistry services

Who are we

- Australian-based Commercial Chemistry Organisation
- Based in Perth
- Top Australian SME employer of PhD graduates
- 18 years success helping clients worldwide
- NATA Certified ISO 9001, Accredited 17025 & 17034
- National and State Export Award Winner

Experts in

- Medicinal, Synthetic & Organic Chemistry
- Reference Standards
- Custom Synthesis
- Analytical chemistry
- Materials science
- IP generation & protection

- **Our Formula. Your Success.**
- We are wasting finite resources by burying them as landfill
- As the population grows, so does the waste problem
- Current solutions to waste recycling are costly & labour-intensive
- In fact, only 12% of our waste in Australia is recycled
- We have a smart solution that supports the <u>ideal</u> of a circular waste economy – so not only waste management, but reuse, recycling and responsible manufacture

The Situation

Oxidative Hydrothermal Dissolution (OHD)

A novel continuous, hydrothermal process to convert macromolecular organic solids into low molecular weight organic chemicals using <u>only</u>

- Elevated temperature [+/- 270 °C]
- High pressure [+/- 2500 psi]
- Liquid water
- Molecular oxygen

OHD Process Advantages

- Technically straightforward & operates at industrially feasible conditions & rates
- Uses only water & oxygen, requires no exotic solvents or catalysts
- Readily achieves high to complete conversion of the starting solid with high recovery (typically 70-90+% C) of the products
- Environmentally friendly
- Produces little to no CO₂
- Minor gaseous product is mainly CO
- Relatively quick conversion rate
- No NO_x or SO_x or other problematic emissions

The Approach

Build the reactor

- Partner with specialists in building the reactor
- Source parts for the reactor

Validate the reactor

- Test known materials in the OHD reactor such as coal, agricultural plant matter
- Test e-waste fractions
- Adapt reactor conditions to optimise target outcomes

Analyse products obtained from the reactor

 Collate and interpret data retrieved to advise on next steps

Source e-waste

Obtained through total green recycling

Processing of e-waste

 Establish method to process e-waste to obtain specific particle sized solids

Analyse e-waste fractions

 Assess potential IP to assist on the direction of the study

The Build of OHD Reactor

E-Waste Samples Used

- ABS plastic (used in plastic appliance housing material)
- PC Circuit Boards
- Mobile Phones
- PVC/Copper Cables
- Screen 1 Fines (Fines that are collected from physical separation)
- Trommel Fines of e-waste (Fines collected after mechanical treatment)

Initial Findings

OHD Processing

ABS Plastic

Acrylonitrile 1, 3-Butadiene

CH₂

Styrene

OHD Liquor

What we confirmed

- OHD technology successfully processes e-waste samples
- Removes plastics through oxidative dissolution, concentrating the major metals such as gold, tin, copper, iron and zinc
- Minor metals also identified were silver, barium, nickel, chromium, magnesium and manganese
- Converted plastics in the e-waste into small organic molecules which can potentially be used as feedstocks
- Potential Monomers and additives for further plastic and chemical manufacturing
- Conversion of the plastics into small organic molecules gives potential for biodegradability

Next steps...

- Optimise e-waste, scale up & partnering
- Trial more different types of waste from diverse sectors, ie eg:
 - ❖ Coal
 - Solar Panels
 - Batteries
 - Textiles
 - Anti-corrosive film
- Optimise the OHD process specific to different waste materials
- Determine OHD processed solids biodegradability via respirometry tests

A final note... Revenue Generating End User Products

Polyethylene Terephthalate (PET)

- $T_g = 67 \, ^{\circ}C$
- $T_m = 265 \, {}^{\circ}\text{C}$
- NOT readily biodegradable

Polyethylene Vanillate

Biodegradable!

- $T_g = 55 \, ^{\circ}\text{C} \, (84 \, ^{\circ}\text{C})$
- T_m = 254 °C (276 °C)

Source: Mialon et al., 2011 Lang and Kordsachia, 1981 Hirakawa 2011

Oxidative Hydrothermal Mineral Extraction

Can OHD be used for innovation in minerals processing?

OHD-related mineral extraction concepts to be explored:

- Direct leaching & extraction of mineral ores
- Pre-treatment of refractory ores
- Other recovery or refining processes

Related to high pressure oxidation (HiPOX) & pressure leaching

How does the absence of a gas phase affect oxidative process of minerals?

Oxygen Solubility in Water vs Temperature

Acknowledgements

Government of Western Australia
Department of Jobs, Tourism, Science and Innovation

Contact Us

Colin La Galia, CEO

colin.lagalia@epichem.com.au

+61 (8) 6167 5200

www.epichem.com.au

Additional Slides

Feedstock Processing by OHD

Policy Alignment & Government Incentives

2020 federal budget

\$250m injection over 4 years into waste & recycling initiatives

2019 national waste policy

- 10% reduction in waste generation per capita by 2030
- 80% average resource recovery rate from all waste streams
- Phase out problematic, unnecessary plastics by 2025

West Australia's waste avoidance & resource recovery strategy for 2030

- Avoid, recover, protect
- 10% reduction in waste generation per capita by 2025
- 70% recovery of material by 2025

Australia's biofuel production 30-year growth target

- Currently lagging biofuel production relative to global average, working to achieve 30-year target
- Launched new bioenergy road map for greener future

Australian Government incentives for renewable energy

Carbon credits, grants, financial assistance (ARENA¹) (CEFC²)

Corporate social responsibility goals

Australia's big 4 banks have joined RE100 & announced commitment to 100% clean energy by 2025

OHD Flow Reactor Conversion Potential

- Plastics into renewable fuels
- Coal into diesel or agricultural biostimulants
- Rubber tyres into liquid fuels/valuable chemical products
- Trees into cellulosic ethanol &/or fine chemicals
- Leftover stock or crops into liquid fuel,
 cellulosic ethanol & agricultural
 biostimulants

Scaled up OHD flow reactor designed by Australian scientist Ken Anderson, currently operating in Illinois State University USA

OHD Highlights

Capitalising on policies at national, state & local government levels towards zero organic waste to landfill

Our Formula, Your Success.

Proof of Concept

- Coal
- Lignocellulosic biomass (ie plant matter)
- E-waste

External Outcomes

- Removal of organic waste
- Conversion of organic waste to valuable end-user products, fine chemicals & critical metals
- Reduce landfill
- Convert liabilities into assets

Internal Outcomes

- Validation of inorganic processing
- E-waste conversion
- IP generation/patent protection
- Very broad Biomass/Feedstock License Field
- Territory includes Australia, New Zealand, Singapore, Hong Kong, South Korea & Taiwan

Chemistry expertise in collaboration & partnership with energy, agriculture, mining, oil & gas & waste sectors

