

April 2022

Risk assessment process for public drinking water source areas

Scope

This note describes how to assess risks to water quality in public drinking water source areas (PDWSAs)¹, and can be applied to other drinking water sources². It applies at the offtake point³ in the supply system; that is, assessing the risk of a contaminant reaching that point.

The risk assessment process in this note is based on the preventive approach advocated by the <u>Australian drinking water guidelines</u>⁴. Read WQPN 11: <u>Assessing and managing risks in</u> <u>PDWSAs</u> to learn more about how this approach differs from traditional risk management.

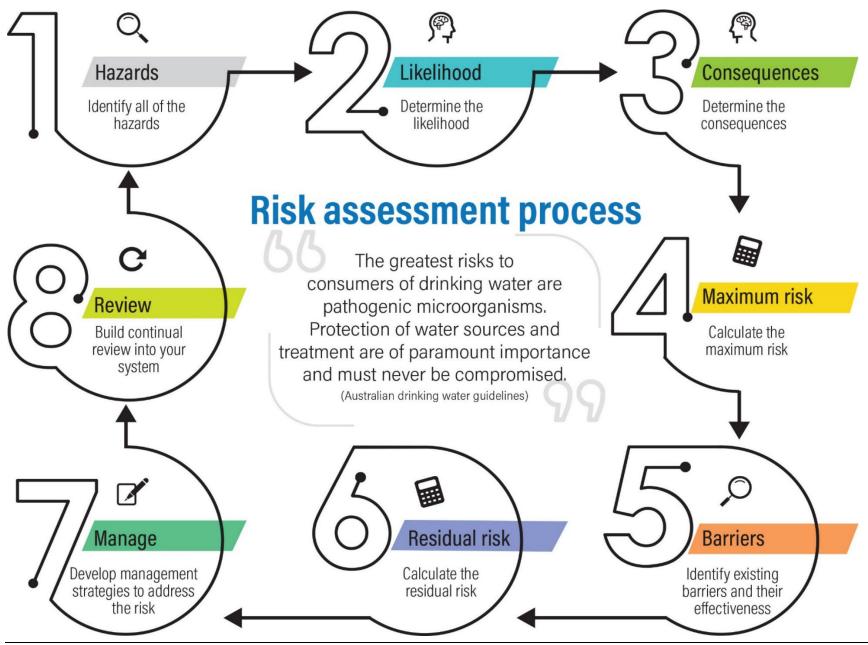
Why is a risk assessment needed?

A rigorous and consistent risk assessment process, based on prevention, is an essential step in drinking water management. Surface water and groundwater sources used for drinking water are vulnerable to contamination from surrounding land uses. To achieve safe, affordable drinking water supplies, we need to understand these risks so we can manage them to protect the health of those consuming the water.

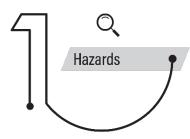
The department uses this process on a catchment scale for drinking water source protection reports⁵, and on a local scale as required, such as to assess the risk of land use changes.

Others that may need to use this risk assessment process are:

- water service providers (licensed or exempt under the *Water Services Act 2012*) or their consultants
- proponents or their consultants preparing a development-scale risk assessment, such as for a water management report for proposed development in a PDWSA
- proponents preparing a local-scale risk assessment as a condition of approval for their proposal within a PDWSA.


³ The point at which water is abstracted for use for drinking water supply, e.g. the bore or the dam wall.

⁴ In May 2019, the WA Minister for Health endorsed that the <u>Australian drinking water guidelines</u> be followed for drinking water management in WA. The guidelines are based on international best practice.


¹ Surface water catchments and groundwater aquifers that supply drinking water are called 'public drinking water source areas' (PDWSAs). They are constituted under the *Metropolitan Water Supply Sewerage and Drainage Act 1909* or the *Country Areas Water Supply Act 1947*.

² Such as Aboriginal community and mine site drinking water sources.

⁵ A <u>drinking water source protection report</u> is available for each of the 147 PDWSAs around Western Australia.

Department of Water and Environmental Regulation

Identify the hazards and hazardous events (what can happen and how)

Hazard: a biological, chemical, physical or radiological agent with potential to cause harm.⁶

Hazardous event: an incident or situation that can lead to the presence of the hazard (what can happen and how).⁶

Include every potential hazard and event. Consider continuous, intermittent and seasonal pollution patterns, and extreme or infrequent events like wildfire, floods and storms. Table 1 provides some examples; it is not exhaustive and is designed to get you thinking.⁷

Hazard	Land use/activity	Example of a hazardous event		
Pathogens ⁸	Stock grazing	Rain washing faeces into surface water or groundwater		
	Human access	Body contact with waterbody (e.g. swimming, fishing)		
	Septic tanks	Wastewater leaching into groundwater or surface runoff		
Pesticides	Spraying crops	Spray drift, runoff into a waterway, and infiltration into groundwater		
	Storage, handling	Accidental spills and leaks from poorly-stored pesticides		
Hydrocarbons	Off-road driving	Spills from accidents and leaks		
	Mining	Leaks from fuel storage tanks, spills from refuelling		
Nutrients	Using fertiliser	Incorrect use causing leaching or runoff into water source		
		Contaminants leaching into groundwater		
chemicals ⁹	Industrial activities	Spills, leaks and discharge, runoff from roads and hardstands		
Turbidity	Fire	Rain washes ash into waterways and reservoir		
	Forestry	Activity creates erosion and sediment washes into waterways and reservoir		
Salinity	Land clearing	Removing vegetation resulting in rising salinity		
Radiological	Natural occurrence	Naturally occurring in some older granitic aquifers		

Table 1: Some common hazards encountered in PDWSAs in Western Australia

⁶ Australian drinking water guidelines.

⁷ See WQIS 38: <u>Contamination in drinking water sources</u> for more examples.

⁸ See our brochure <u>Risks from pathogenic microorganisms in PDWSAs</u> for pathogen information.

⁹ Includes heavy metals, radioactive materials, and contaminants of emerging concern.

Determine the likelihood

Likelihood: the probability of a given contaminant reaching the drinking water supply offtake, that is, the point at which water is abstracted, such as the bore or dam wall.

Determine the likelihood of each of the hazards and hazardous events (from step 1) occurring, using tables 2 and 3 as a guide.

Table 2: Qualitative measures of likelihood¹⁰

Likelihood	Definition
Almost certain	Is expected to occur in most circumstances
Likely	Will probably occur in most circumstances
Possible	Might or should occur at some time
Unlikely	Could occur at some time
Rare	May occur in exceptional circumstances

Table 3: Things to consider when determining the likelihood

Consideration	S	Quantitative assessment examples		
Quantity	Amount of contaminant present	 Quantity of a possible chemical spill Estimated nutrient loading based on number of septic tanks 		
Loading	How many point sources of this contaminant are there?	Number of cattleNumber of houses with septic tanks		
Distance	How long will it take the contaminant to reach the offtake point?			
Contaminant transport (groundwater)	 Nature of the aquifer Depth to watertable Sand, clay or fractured rock Bore construction standard¹¹ 	 The distance from the hazard to the offtake point Travel time of the contaminant in the given environment 		
Contaminant transport (surface water)	 Rainfall events influencing transport Vegetation (riparian zones) attenuating contaminants 	 Contaminant fate and transport can be determined via modelling 		
Contaminant survival	 Pathogen survival rates Chemical persistence in the given environment 	 Pathogen inactivation and mortality Initial and residual chemical concentration 		

¹⁰ Australian drinking water guidelines.

¹¹ <u>Minimum construction requirements for water bores in Australia.</u>

Determine the consequences

Consequence: The outcome or impact of an event.

Think about the consequences that could occur if each of the hazards or hazardous events (from step 1) occurred, using tables 4 and 5 to guide you.

Table 4: Qualitative measures of consequence¹²

Likelihood	Definition
Catastrophic	Major impact for large population, complete failure of system, source may require complete replacement (huge costs associated).
Major	Major impact for small population, system significantly compromised and abnormal operation (if at all), high level of monitoring required, significant increase in operating cost, source may require remediation (at significant cost).
Moderate	Minor impact for large population, significant modification to normal operation but manageable, operating cost increased, increased monitoring.
Minor	Minor impact for small population, some manageable operation disruption, some increase in operating cost.
Insignificant	Insignificant impact, little disruption to operation, low increase in operating cost.

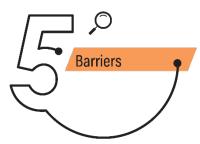
Table 5: Recommended default	consequence ratings for Pl	DWSA hazards ¹³

Hazard	Consequence	Explanation	
Pathogens	Catastrophic	The greatest risk to drinking water consumers are pathogens, which can cause illness and, in extreme cases, death. ¹²	
Pesticides	Major	Some are toxic or are suspected of causing cancer and affecting endocrine systems. ¹²	
Hydrocarbons	Major	Fuels and oils are toxic and can cause severe health issues in humans. They also can affect the water's taste and odour.	
Nutrients	Major	Can be toxic, with infants most susceptible. High levels can cause toxic algal blooms in a water body.	
Chemicals	Major	Heavy metals, pharmaceuticals and other chemicals can affect human health, and the taste of the water.	

¹² Australian drinking water guidelines.

¹³ The given ratings may not accurately represent your situation, so apply site-specific information where available.

Hazard	Consequence	Explanation
Turbidity	Major	Cloudy water impedes chlorination and makes the water look and taste unappealing. Pathogens can attach to suspended particles in cloudy water, and 'hide' from chlorination.
Salinity	Moderate	High salinity water is less palatable.
Colour	Moderate	Coloured water can cause disinfection by-products and affect the water's taste and appearance.
Radiological	Case-by-case	Radioactive compounds can cause serious health impacts.


Calculate maximum risk

Maximum risk: The likelihood of identified hazards causing harm in exposed populations, including the severity of the consequences¹⁴, in the absence of any preventive measures (sometimes called 'inherent risk').

Determine the maximum risk by finding where your likelihood (from step 2) and consequence (from step 3) intersect using Table 6. Do this for each of your hazards and hazardous events (from step 1).

Likelihood	Consequence (from step 3)				
(from step 2)	Insignificant	Minor	Moderate	Major	Catastrophic
Almost certain	Moderate	High	Very high	Very high	Very high
Likely	Moderate	High	High	Very high	Very high
Possible	Low	Moderate	High	Very high	Very high
Unlikely	Low	Low	Moderate	High	Very high
Rare	Low	Low	Moderate	High	High

¹⁴ Australian drinking water guidelines.

Identify existing preventive measures and their effectiveness

Preventive measures: Current actions, activities and processes used to prevent hazards from occurring or reduce them to acceptable levels¹⁵, such as fencing to prevent cattle from accessing a water body.

For each of your hazards and hazardous events (from step 1), consider if there are any existing preventive measures in place. Do not include measures that occur downstream of the offtake point (such as water treatment) because these are not preventive.

Assess how effective each preventive strategy is and assign it with a category from Table 7: 'controlled', 'adequate' or 'inadequate'. Note that preventive measures cannot reduce the consequence of a hazard, but they can reduce the likelihood of it occurring.

Category	Description	Effect on contamination	Suggested adjustment to likelihood
Controlled	Controls are fully in place with ongoing inspection, maintenance, monitoring and reporting	There is proven evidence ¹⁶ that the strategy prevents contaminant from reaching offtake point	Reduce the likelihood by two levels (Refer back to Table 2 for the likelihood hierarchy)
Adequate	Protection systems are in place and some procedures exist for maintenance and monitoring	Preventive strategy is likely to prevent contaminant from reaching offtake point	Reduce the likelihood by one level (Refer back to Table 2 for the likelihood hierarchy)
Inadequate	Little or no protection systems in place	Preventive strategy is not likely to prevent contaminant from reaching offtake point	No change

Table 7: Current catchment preventive strategy effectiveness and residual likelihood

Next, adjust your likelihood from step 2 based on the effectiveness of the preventive measure. Do this for each of your hazards. For example, if your preventive measure is in the 'controlled' category and your likelihood from step 2 was 'almost certain', the likelihood may reduce by two levels, to 'possible'. (Refer back to Table 2 to see the likelihood hierarchy).

¹⁵ <u>Australian drinking water guidelines</u>.

¹⁶ Proven evidence may include literature, previous documented experience and/or water quality monitoring results.

Calculate residual risk

Residual risk: The likelihood of identified hazards causing harm in exposed populations, including the severity of the consequences¹⁷, after preventive measures are factored in.

Using Table 8, calculate the residual risk by finding the intersection of the original consequence from step 3 (which remains unchanged) and the residual likelihood from step 5.

Residual	Original consequence (from step 3)				
likelihood (from step 5)	Insignificant	Minor	Moderate	Major	Catastrophic
Almost certain	Moderate	High	Very high	Very high	Very high
Likely	Moderate	High	High	Very high	Very high
Possible	Low	Moderate	High	Very high	Very high
Unlikely	Low	Low	Moderate	High	Very high
Rare	Low	Low	Moderate	High	High

Table 8: Qualitative risk matrix¹⁷

¹⁷ <u>Australian drinking water guidelines</u>

Management

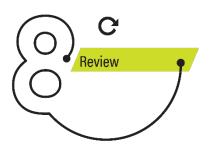
Using your residual risk from step 6, identify its priority for management using Table 9. Then, recommend management strategies to address and mitigate each risk (Table 10 includes some suggestions to get you thinking).

Table 9: Identify the priority for management

Residual risk	Management priority	Action required
Very high	High	These risks need to be addressed as first priority. On a catchment scale, recommendations in the drinking water source protection report must address these risks. If there are too many risks with high management priorities, the drinking water source or proposed development may be deemed unsuitable.
High	Medium	These risks need to be addressed as a second priority. On a catchment scale, recommendations in the drinking water source protection report may address these risks. These risks need to be monitored in case they escalate to a higher level.
Moderate	Low	These risks are considered acceptable within current management systems.
Low	Very low	However, they need to be monitored in case they escalate to a higher level.

Table 10: Example management strategies¹⁸

Land use	Hazard and hazardous event ¹⁹	Example management strategies ²⁰
Forestry	Erosion from clearing causes turbidity in feeder streams to a reservoir, affecting water treatment processes.	Ensure adequate buffers of vegetation are retained around feeder streams to attenuate turbidity prior to runoff into stream.
Light industry	Chemical spill discharges into a drain and infiltrates into groundwater near a drinking water bore.	Construct and maintain safe containment for chemicals consistent with Australian Standards. Use double-skinned tanks in properly sized, impermeable, bunded sites.
Grazing	Stock congregate near a drinking water bore, attracted by the water. Pathogens from their faeces infiltrate the groundwater.	Fence the bore to exclude stock and install stock watering points away from the bore. Ensure drinking water bore is constructed to standard ²¹ .


¹⁸ World Health Organization, *Protecting surface water for health*.

¹⁹ Refer to WQIS 38: <u>Contamination in drinking water sources</u> for more information.

²⁰ Refer to our Water quality protection note series (<u>www.dwer.wa.gov.au</u>) for best management practices for different land uses and activities.

²¹ <u>Minimum construction requirements for water bores in Australia</u>.

Department of Water and Environmental Regulation

Review

It is essential to regularly review and update your risk assessment to ensure you capture changing and new risks to the drinking water source.

The time period between risk assessments will depend on the source, the existing levels of risk, and the rate at which land uses and activities are changing in and around the source.

The more regularly the land uses change, the more often you will need to review your risk assessment.

Monitoring and evaluation processes should be in place to consider the efficacy of your management measures and to help inform decisions²². It is important to review water quality data and identify trends to see if your management strategies are working. This also helps you to identify any new hazards.

²² Australian Water Association, <u>Source water protection statement – Water quality</u>.

Bringing it all together

Capture all of your risk assessment information in one place so it is available to stakeholders for input, and can be readily updated as circumstances change, and risks are reviewed. Table 11: Example preventive-risk assessment for drinking water sources (this table is not exhaustive and is designed as an example only)

	Hazards Identify all of the hazards		Cikelihood Determine the likelihood		Consequences Determine the consequences		Barriers Identify existing barriers and their effectiveness		Residual risk Calculate the residual risk		Manage Develop management strategies to address the risk		
Land use/activity	Hazard	Hazardous event	Consideratio	Travel time/ distance	Likelihood	Consequence	Maximum risk	Current preventiv	e strategies Etfective eness ff Etfective Etfective	Residual likelihood	Residual risk	Priority	Management Measures
Unconfined	Unconfined groundwater source ²³												
Fuel tank	Hydro- carbons	Spill	10,000 L	300 m, shallow bore	Possible	Major	Very high	Double-lined tanks Bunding Weekly tank audits	Controlled	Rare	High	Medium	Continue current measures
Livestock / pasture	Pathogens	Animal faeces	Variable	5 m	Almost certain	Catastrophic	Very high	Fencing around bore compound only	Adequate	Likely	Very high	High	Fence wellhead protection zone to prevent livestock access, and no fertiliser and pesticide use in that zone
	Nutrients	Fertilisers	Applied twice yearly	100 m	Likely	Major	Very high	None	Inadequate	Likely	Very high	High	
Shed	Chemicals	Leaks	Unknown	350 m	Unlikely	Major	High	Weatherproof Enclosed	Adequate	Rare	High	Medium	Best management storage and design consistent with Australian Standards
Surface wa	Surface water source												
Campsite	Pathogens	Human faeces	Variable	500 m	Rare	Catastrophic	High	None	Inadequate	Rare	High	Medium	Signs to educate camp users Install an approved toilet and wastewater treatment system
Forestry	Turbidity	Clearing causing erosion	Variable	2 km, outside RPZ	Unlikely	Moderate	Moderate	No clearing of riparian zone	Adequate	Rare	Moderate	Low	Continue excluding forestry from the RPZ

²³ An unconfined aquifer is where the upper boundary is the watertable and therefore is in contact with the atmosphere through the pore spaces in the unsaturated zone. Typically (but not always) it is the shallowest aquifer at a given location.

References

Literature and further reading about PDWSAs is available in WQPN 8: Further reading.

- Australian Water Association 2020, *Source water protection statement Water quality,* Catchment Management Specialist Network, Australian Water Association, available www.awa.asn.au.
- Cooperative Research Centre for Water Quality and Treatment 2004, *A guide to hazard identification* & *risk assessment for drinking water supplies,* CRC for Water Quality and Treatment, Salisbury, available www.waterra.com.au.
- Department of Water 2016, Water quality protection note no. 3: *Using water quality protection notes*, Government of Western Australia, Perth, available www.dwer.wa.gov.au.
- —2016, Strategic policy: *Protecting public drinking water source areas in Western Australia*, Government of Western Australia, Perth, available www.dwer.wa.gov.au.
- Department of Water and Environmental Regulation 2021, Water quality protection note no. 25: *Land use compatibility tables for public drinking water source areas*, Government of Western Australia, Perth, available www.dwer.wa.gov.au.
- —2021, Policy *Land use compatibility in public drinking water source areas*, Government of Western Australia, Perth, available www.dwer.wa.gov.au.
- National Health and Medical Research Council (NHMRC) & Natural Resource Management Ministerial Council (NRMMC) 2011, *National water quality management strategy: Australian drinking water guidelines*, Version 3.5 Updated August 2018, Australian Government, Canberra, available www.nhmrc.gov.au.
- National Uniform Drillers Licensing Committee 2020, *Minimum construction requirements for water bores in Australia*, 4th edn, Australian Government National Water Commission, Braeside, Victoria, available www.adia.com.au.
- World Health Organization 2016, *Protecting surface water for health Identifying, assessing and managing drinking-water quality risks in surface-water catchments*, WHO Press, Geneva.

Disclaimer

This document has been published by the Department of Water and Environmental Regulation. Any representation, statement, opinion or advice expressed or implied in this publication is made in good faith and on the basis that the Department of Water and Environmental Regulation and its employees are not liable for any damage or loss whatsoever which may occur as a result of action taken or not taken, as the case may be in respect of any representation, statement, opinion or advice referred to herein. Professional advice should be obtained before applying the information contained in this document to particular circumstances.

Department of Water and Environmental Regulation Prime House 8 Davidson Terrace Joondalup WA 6027 dwer.wa.gov.au © Government of Western Australia Phone: +61 8 6364 7000 Fax: +61 8 6364 7001 Email: water.quality@dwer.wa.gov.au National Relay Service 13 36 77