

Lower Serpentine hydrological studies

Land development, drainage and climate scenario report

Securing Western Australia's water future

Water Science technical series

Report no. WST 48 August 2015

Lower Serpentine hydrological studies

Land development, drainage and climate scenario report

August 2015

Department of Water

Water Science Technical Series

Report no. 48

Department of Water

168 St Georges Terrace Perth Western Australia 6000 Telephone +61 8 6364 7600 Facsimile +61 8 6364 7601 National relay service 133 677 w ww.water.wa.gov.au

© Government of Western Australia

August 2015

This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the *Copyright Act 1968*, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to the Department of Water.

ISSN 1836-2877 (online)

ISBN 978-1-921992-88-9 (online)

Acknowledgements

The Department of Water would like to thank the following people for their contribution to this publication: the Water Resource Assessment Branch for report review; Dale Sanderson from the Department of Planning for provision of development area data and report review; Krish Seewraj from the South West Region for assistance with drainage scenario implementation; Paola Duarte and Melinda Burton from the Urban Water Branch for assisting with project management and scenario development.

Reference details

The recommended reference for this publication is:

Marillier, B, Hall, J & Kretschmer, P 2015, *Lower Serpentine hydrological studies – land development, drainage and climate scenario report,* Water Science Technical Series, report no. 48 Department of Water, Western Australia.

For more information about this report, contact Ben Marillier, Water Science Branch, the Department of Water, Western Australia.

Cover photograph: Aerial view of an urban development near Byford, looking west, Ben Marillier, 2011

Disclaimer

This document has been published by the Department of Water. Any representation, statement, opinion or advice expressed or implied in this publication is made in good faith and on the basis that the Department of Water and its employees are not liable for any damage or loss whatsoever which may occur as a result of action taken or not taken, as the case may be in respect of any representation, statement, opinion or advice referred to herein. Professional advice should be obtained before applying the information contained in this document to particular circumstances.

This publication is available at our website < <u>www.water.wa.gov.au</u>> or for those with special needs it can be made available in alternative formats such as audio, large print, or Braille

Contents

С	onten	ts	i			
Sı	umma	ary	v			
1	Introduction					
	1.1 Project objective					
	1.2	Scope of work	3			
2	Lowe	er Serpentine regional model scenarios: background and implementation	5			
	2.1	Land development scenarios	5			
		Background	5			
		Model implementation of development scenarios	6			
		Model implementation of drainage scenarios	10			
	2.2	Climate scenarios	. 11			
		Background	11			
		Climate scenario selection	13			
		Model implementation of sea-level-rise	10			
	2.3	Assumptions used in scenarios	20			
3		er Serpentine regional model scenarios: results and analysis	23			
0						
	3.1	Base-case scenario (SU)	24			
	3.2	Climate scenarios (S1, S4, S9, S12, S13)	21			
	3.3	Sea-level-rise scenario (S14 & S14b)	. 30			
	3.4	Land development and drainage scenarios (S2, S3, S5, S6, S7, S8, S10, S11)	. 31 22			
		Changes in water balance for development areas	32			
	35	Garden bore scenario (S8)	42			
	3.6	Waterlogging analysis	. 44			
	3.7	Surface flow data	46			
	3.8	Uncertainty and error in model results	48			
	0.0	Calibration error	48			
		Boundary conditions	49			
		Abstraction	49			
		Low er Serpentine model applicability	50			
4	Cond	clusions and recommendations	52			
Sł	norter	ned forms	.89			
GI	Glossary					
Re	References					
Т	able	es				

Table 2-1	Indicative water use from domestic bores	.6
Table 2-2	Recharge rates and parameters for development areas	.6
Table 2-3	Percentage of properties watering gardens with bore water for different lot	7
Table 2-4	GCMs and emissions scenarios selected for Lower Serpentine climate change	./ ae
	simulations	14

Table 2-5	Climate scenario variables	.18
Table 3-1	List of scenarios modelled	.23
Table 3-2	Summary of changes in groundwater levels for climate change scenarios	.27
Table 3-3	Predicted drainage volumes (ML) for drainage and land development	
	scenarios	.33
Table 3-4	Relative drainage (mm) for drainage and land development scenarios	.34
Table 3-5	Water balance for the Karnup development S0, S5 and S7	.39
Table 3-6	Water balance for the Mundijong industrial development, S0, S5 and S7	.41
Table 3-7	Water balances for S0, S5 and S8 from all development areas	.43
Table 3-8	Summary of inundation area and depth at MaxGL, and average annual	
	surface flows for climate scenarios	.44
Table 4-1	Scenarios implemented in the Lower Serpentine regional model	.53
Table 4-2	Drainage volumes from development areas for the future dry, medium and v	vet
	scenarios with drains at AAMaxGL	.54

Figures

Figure 1-1 Figure 2-1 Figure 2-2	Modelling boundary for the Serpentine region
Figure 2-3	show illustrative scenarios, and the colour band show the range of variability13 Projected reductions in average annual rainfall based on 52 GCMs and three emissions scenarios, showing 10 th , 50 th and 90 th percentile scenarios in green15
Figure 2-4	Scaled annual rainfall based on GCM projected rainfall anomalies for 2030 compared to the 1961–90 WMO period, and the 1981–2010 base-case period16
Figure 2-5	Scaled average monthly rainfall based on GCM projected rainfall anomalies for 2030 compared to the 1961–90 baseline, and the 1981–2010 base-case period
Figure 2-6	Global sea-level-rise from tide gauge (blue) and satellite (red) data. Image sourced from the IPCC (2007). Values are reported relative to average 1961–90
Figure 2-7	Boundary conditions for the Leederville Aquifer 2011–45
Figure 2-8	Location of Leederville Aquifer boundary conditions
Figure 3-1	AAMaxGL (mAHD) for the base-case (S0) scenario for 1981–201025
Figure 3-2	Groundwater inundation (m above surface) for the base-case (S0) scenario for 1981–2010, calculated from surface topography and MaxGL surface
Figure 3-3	Comparison of recharge for climate scenarios
Figure 3-4	Total drainage quantity from developments for various development, drainage and climate scenarios
Figure 3-5	Total drainage in ML/yr for the 19 development areas (S5)
Figure 3-6	Relative drainage in mm/yr for all 19 development areas (S5)
Figure 3-7	Karnup development with surface inundation derived from the MaxGL surface of the future medium scenario (S4)
Figure 3-8	Mundijong industrial development with surface inundation derived from the MaxGL surface of the future medium scenario (S4)41
Figure 3-9	Comparison of drainage for future medium climate scenarios
Figure 3-10	Groundwater fluxes in water balances for S0, S5 and S8
Figure 3-11	Flow duration curves for climate scenarios, based on modelled discharge from the Serpentine River at the model boundary
Figure 3-12	Average annual flows for the climate scenarios, based on modelled discharge from the Serpentine River at the model boundary47

Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract future dry climate (S1)
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract future
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract future
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract future medium climate (S4).
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract future medium climate with development and drains at AAMaxGL (S5)
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract future medium climate with development and drains at AAMinGL + 0.5 m (S6)62
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract future medium climate with development and drains at AAMinGL (S7)
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract future medium climate with development, garden bores and drains at AAMaxGL (S8)64
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract future wet climate (S9)
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract future wet climate with development and drains at AAMaxGL (S10) 66
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract future wet climate with development and drains at AAMinGL (S11)
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract medium climate with two wet years (S12)
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract historical wet climate (S13)
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract medium climate with sea-level-rise (S14)70
Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract wet climate with sea-level-rise (S14b)
Extent of inundation at MaxGL with dry climate (S1)73
Extent of inundation at MaxGL with medium climate (S4)
Extent of inundation at MaxGL with wet climate (S9)
Extent of inundation at MaxGL with medium climate and two wet year (S12) 76
Extent of inundation at MaxGL with historical wet climate (S13)
Extent of inundation at MaxGL with sea-level-rise and medium climate (S14)78
Extent of inundation at MaxGL with sea-level-rise and wet climate (S14b)79

Appendices

- Appendix A Changes in groundwater levels for all scenarios
- Appendix B Waterlogging analysis for climate scenarios
- Appendix C Scenario water balances

Summary

The Lower Serpentine hydrological studies is a series of three reports describing the development of a surface and groundwater model to simulate drainage, climate and land development scenarios at a regional scale. This report discusses the scenario modelling and results in the context of existing undeveloped urban and industrial zoned land, as well as industrial investigation areas.

The scenarios which were implemented in the Lower Serpentine regional model included:

- Future climate scenarios based on Intergovernmental Panel on Climate Change (IPCC) emissions scenarios, including changes in precipitation, evaporation and sealevel-rise. The scenarios were selected to provide results for a *reasonable* range of future climates, and to include historical wet periods. The following scenarios were implemented:
 - Future wet climate: -5.0% change in mean annual rainfall relative to the World Meteorological Organisation (WMO) climate baseline period 1961-90 (Institute of Numerical Mathematics (INMCM), Russian Academy of Science, Russia, B1 scenario).
 - Future medium climate: -9.8% change in mean annual rainfall relative to the WMO climate baseline period 1961-90 (NASA Goddard Institute for Space Studies (NASA/GISS), USA, B1 scenario).
 - Future dry climate: -19.1% change in mean annual rainfall relative to the WMO climate baseline period 1961-90 (Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, USA, A2 Scenario).
 - Future medium with two wet years: the future medium climate with the years 2044 and 2045 replaced with observed rainfall from 1963 and 1964 – both high rainfall years in excess of 1000 mm.
 - Historical wet: 5.2% increase in mean annual rainfall using the historical climate sequence from 1945 to 1974.

The climate scenarios represent the 10th, 50th and 90th percentile changes in average annual rainfall assessed from 52 combinations of general circulation model and emissions scenario. The sea-level-rise scenario of 0.9 m by the year 2110 was based on the state planning policy document called Position Statement – State Planning Policy No. 2.6 State Coastal Planning Policy Schedule 1 Sea-level-rise.

• **Development scenarios** based on mapping from the Metropolitan region scheme (MRS), Peel region scheme (PRS) and the Economic employment and lands strategy (EELS), provided by the Department of Planning. The development areas modelled included 'Industrial Investigation' areas from the EELS, and existing undeveloped urban, urban deferred and industrial areas from the region schemes.

• **Subsurface drainage scenarios** in areas of shallow groundwater at different levels including the pre-development average annual maximum groundwater level (AAMaxGL), average annual minimum groundwater level (AAMinGL), and AAMinGL plus 0.5 m, with fill where required for each scenario. The subsurface drainage scenarios aim to capture a *representative* range of drainage levels.

Fifteen scenarios were modelled, including the base-case (current conditions) scenario. The scenarios included various combinations of climate, development and drainage. For each scenario results are reported spatially (groundwater levels and inundation) and quantitatively (water balances and discharge).

The climate scenarios predicted the following changes relative to the base-case for AAMaxGL, AAMinGL and discharge from the Serpentine River:

- Future dry climate S1: -0.82 m AAMaxGL, -0.64 m AAMinGL, -47.5 GL/yr flow
- Future medium climate S4: -0.49 m AAMaxGL, -0.41 m AAMinGL, -26.0 GL/yr flow
- Future wet climate S9: -0.26 m AAMaxGL, -0.28 m AAMinGL, -8.7 GL/yr flow
- Historical wet climate S13: +0.28 m AAMaxGL, +0.04 m AAMinGL, +51.2 GL/yr flow

Gross recharge to the Superficial Aquifer was predicted to average 198 GL/yr for the basecase scenario (34% of rainfall), 138 GL/yr for the future dry climate (28% of rainfall) and 190 GL/yr for the future wet climate (33% of rainfall). Average annual discharge from the Serpentine River was predicted to average 96.7 GL/yr for the base-case scenario, 49.3 GL/yr for the future dry scenario, and 88.0 GL/yr for the future wet scenario.

All climate scenarios were assessed for impact on waterlogging (inundation from groundwater) extent and depth. The base-case scenario showed that around 18% of the study area is prone to waterlogging in winter; in particular, low-lying areas on the eastern margin of the coastal plain, and around Birrega Main Drain, Peel Main Drain and the Serpentine River. The future dry climate scenario predicted a shrinking of inundated area to 14%, and the historical wet scenario showed a greater area of inundation of 23% of the study area. In the future dry climate scenario the number and extent of wetlands within the study area, particularly within the Spearwood Dunes and on the Jandakot Mound, are significantly reduced. The future medium with two wet years scenario (S12) shows that the maximum groundwater level is responsive to the wet years, even after an extended period of lower rainfall. This indicates that areas historically at risk of inundation from groundwater will remain so, even after an extended period of a relatively dry climate.

The 0.9 m sea-level-rise scenario showed that groundwater levels along the coastal fringe would be affected up to 2 km inland, with the Rockingham Peninsula and Becher Point showing the greatest increases. The only development affected was the Kwinana industrial area, however, a clearance to groundwater of greater than 2 m was maintained in the sea-level-rise scenario within the affected area. Water levels along the lower reaches of the Serpentine River were elevated, but did not affect any planned or existing development areas.

Development scenarios were modelled for 19 subareas within the study area. Subsurface drainage was modelled within a subset of these development areas where shallow

groundwater was present. The volumes of subsurface drainage water predicted by the model varied between 0 ML/yr for developments with significant depth to groundwater and 4 GL/yr for the Baldivis Industrial development with drains set at the lowest level (AAMinGL) with the wet scenario. Drainage volumes increased as the subsurface drainage depth increased, and decreased with lower rainfall. For all of the development areas within the region, with drains set at AAMaxGL, the total drainage volume predicted was between 7 GL/yr for the dry scenario and 12 GL/yr for the wet scenario.

The drainage volumes presented in the report do not necessarily represent the total volume of water draining from the development area; rather, they represent the volume of water which must be managed within the development footprint. Local differences in drainage design will influence the volume of overland flow, recharge and subsurface drainage within the developments and, therefore, the results presented here should be considered indicative only.

Abstraction from domestic garden bores within the development areas was modelled for all new urban areas. Abstraction was modelled at a rate of 400 kL/yr, assuming a lot size of 400 m² covering 60% of the 50.6 km² urban residential development area, and a bore installation rate of 11% (around one in ten houses). This resulted in an additional 3.4 GL/yr of unlicensed abstraction from the Superficial Aquifer across the study area. Scenario modelling showed that the additional abstraction reduced the volume of subsurface drainage water from the development areas. There is a high degree of uncertainty associated with the garden bore abstraction scenario. This is due to uncertainties in model inputs and site characteristics which could inhibit the use of garden bores in reality. So results from this scenario should be considered indicative only. Actual abstraction rates will vary according to local aquifer transmissivity and individual usage patterns.

1 Introduction

The Department of Planning is currently undertaking a strategic environmental assessment for the Perth metropolitan area to guide urban and industrial development within the region. The Serpentine hydrological studies provide pre-development and post-development surface water and groundwater information within part of the assessment area to assist in the land development process. Post-development scenario modelling was based on existing but undeveloped zoned urban and industrial land identified in the MRS and PRS, and industrial land identified for investigation in the EELS. This study supports the water planning process within the Serpentine area, and development of a drainage and water management plan (DWMP) which will address the following aspects of the total water cycle in more detail:

- significant environmental assets including meeting their water requirements and managing the potential impacts of development
- water demand including supply options, opportunities for conservation and demand management measures, as well as wastewater management
- surface runoff including both peak event (flood) management and water sensitive urban design principles to be applied to frequent events
- groundwater including the impact of urbanisation, variation in climate, installation of drainage to manage groundwater levels, possible effects on the environment and the potential to use groundwater as a resource
- water quality management including source control of pollution, acid sulfate soil management, control of contaminated discharges from industrial areas and management of nutrient exports from surface runoff and groundwater through structural measures.

To support the DWMPs planned for the Lower Serpentine region, the Department of Water's Urban Water Management Branch instigated the following projects:

- a floodplain strategy for Birrega and Oaklands drains, Peel Main Drain, and northeast Baldivis including inundation and local catchment stormwater modelling
- hydrological studies to determine pre-development groundwater levels, water balance modelling, climate impacts, extent of current waterlogged areas and impact of development
- preparation of the Birrega and Oaklands drains DWMP
- planning for future DWMPs for the Lower Serpentine area.

The Department of Water's Water Science Branch was commissioned to deliver the 'hydrological studies' and the floodplain modelling projects. The area specified for the hydrological studies, referred to as the 'modelling boundary', comprises the Lower Serpentine regional model domain shown in Figure 1-1.

Figure 1-1 Modelling boundary for the Serpentine region

1.1 Project objective

The purpose of the *Lower Serpentine hydrological studies* is to develop and calibrate a regional-scale integrated surface water and groundwater model capable of simulating climate, drainage and land use scenarios.

The project's primary objectives are to deliver the following products:

- a calibrated regional-scale surface water and groundwater model
- climate, drainage and land use scenario modelling results
- maps and ESRI shapefiles associated with the model and scenario results.

The project requires the modelling results to ascertain the following:

- maximum, minimum, average annual maximum and average annual minimum groundwater levels (MaxGL, MinGL, AAMaxGL and AAMinGL)
- the water balance, including changes in groundwater discharges and interaction with waterways and wetlands
- re-use opportunities such as community bores and surface detention
- likely areas of waterlogging
- flows in rivers, drains and tributaries
- flood, wet, dry, average year and climate change impacts.

1.2 Scope of work

The scope of the *Lower Serpentine hydrological studies* was divided into three phases: this report addresses the third and final phase. Each phase was associated with significant project milestones and was accompanied by a scientific report. The three phases were as follows:

- 1. Develop a conceptual model of groundwater and surface water within the Serpentine study area, which:
 - a) reviews the literature covering previous work in the area
 - b) outlines the study area
 - c) describes the local hydrology and climate
 - d) develops a geological model of the study area
 - e) defines the aquifer systems and major hydrogeological processes, including relevant aquifer parameters
 - f) provides a numerical steady-state water balance that includes all major groundwater and surface water processes and the interaction between them.

The report associated with this phase – *Lower Serpentine hydrological studies: conceptual model report* (Marillier et al. 2012a) – is available from the Department of Water's website.

2. Construct and calibrate a transient regional groundwater model covering the Lower Serpentine area. This involves the simulation of surface water in relevant waterways and groundwater flow in each aquifer, the calculation of flows and water budgets for each of the aquifers, and the determination of groundwater-level contours.

Model construction was based on the conceptual model described in phase 1. The model had an appropriate level of detail for capturing major surface water and groundwater processes at the regional scale. The model was calibrated according to the criteria set by the *Murray Darling Basin Commission guidelines for groundwater flow modelling* (Middlemis 2000). Results of the calibration, validation and sensitivity analysis were reported as a component of this phase.

A detailed description of model construction and calibration is available from the Department of Water website in the report *Lower Serpentine hydrological studies: model construction and calibration report* (Marillier et al. 2012b).

- 3. A suite of scenarios were modelled to calculate the change to water balance and groundwater levels under various land use and climate scenarios. The Department of Water's Urban Water Management Branch selected scenarios for the Water Science Branch to model. The scenarios included:
 - a. Land development scenarios: These were based on information published by the Department of Planning including the Metropolitan region scheme, Peel region scheme and Economic and employment lands strategy.
 - b. **Drainage scenarios:** Subsurface drainage was modelled at a range of depths to simulate the effect on the Superficial Aquifer and estimate drainage volumes. Drainage was set at AAMinGL, AAMinGL + 0.5 m and AAMaxGL to provide a plausible range of drainage scenarios associated with development.
 - c. Climate scenarios: A range of future climate scenarios was simulated to account for various possibilities in changing rainfall and evapotranspiration. These were based on Intergovernmental Panel on Climate Change (IPCC) projections and included projected changes in rainfall and evapotranspiration. Results from global circulation models were used to generate scenario inputs. A historical wet period was also simulated.

The results of climate scenario modelling are reported spatially (groundwater contours) and quantitatively (through water balance results). The influence of scenario modelling on areas of inundation, volumes of drainage water, and groundwater levels are presented and discussed in this report.

2 Lower Serpentine regional model scenarios: background and implementation

2.1 Land development scenarios

Background

Initially it was intended that this groundwater study incorporate land development scenarios based on the areas identified in the draft South metropolitan and Peel structure plan (SMPSS). Due to the Department of Planning's ongoing strategic environmental assessment, release of the SMPSS was delayed until proposed future development areas could be confirmed. Therefore this study only includes modelling for existing but undeveloped zoned urban and industrial land identified in the Metropolitan region scheme (MRS) and Peel region scheme (PRS), and industrial land identified for investigation in the Economic and employment lands strategy (EELS).

All 'Industrial Investigation' areas which were identified in the EELS and located within the study area were included in scenario modelling. Note that the areas identified in the EELS have not been rezoned, and are still subject to the outcomes of the strategic environmental assessment. So no assumptions should be made regarding potential development in these areas.

The areas zoned 'Urban' and 'Urban Deferred' in the MRS and PRS were used to identify potential urban development in scenario modelling. Areas zoned 'Industrial' and those classified for industrial investigation in the EELS were defined as industrial development in the scenario modelling. The total development footprint is 73.5 km² for both urban and industrial land uses. The Department of Water has grouped the development areas into 19 subareas for the purposes of reporting at the development scale (Figure 2-1).

Domestic bores are used extensively on the Swan Coastal Plain to water gardens and lawns. Bores used to supply water for stock and domestic purposes and which abstract less than 1500 kL/yr do not require a groundwater licence. Table 2-1 shows indicative water use from domestic bores for urban and rural residential properties of different sizes (DoW 2009). There is considerable variability in groundwater use depending on the individual property. The Department of Water does not recommend development of garden bores in unsuitable areas as outlined in Operational policy 5.17: Metropolitan domestic garden bores (DoW 2011).

Table 2-1 Indicative water use fro	om domestic bores
------------------------------------	-------------------

Property size (m ²)	Indicative groundwater use (kL/yr)	Average bore installation rate (% of lots)		
Less than 500	400	5		
500 – 999	800	30		
1000 – 5000 (0.5 ha)	1000	50		
Greater than 5000 (0.5 ha)	1500	80		

In 2009 the Department of Water estimated that there were 167 000 garden bores in the Perth metropolitan area, with an estimated average use of 440 kL of water a year (DoW 2011).

Model implementation of development scenarios

Recharge and land use

Urban residential and industrial development within the Lower Serpentine area was modelled by altering the land use properties for the proposed development areas. Model parameters associated with recharge under different land uses include vegetation root depth (RD) and leaf area index (LAI). Xu et al. (2009) describe recharge rates under a variety of land uses calculated to support development of the Perth Regional Aquifer Modelling System (PRAMS). In urban residential areas, groundwater recharge was estimated as 50% of rainfall, and in urban commercial or industrial areas the recharge estimate was 63%. Recharge estimates were based on a Bassendean Sand soil type with a deep water table.

For the development scenarios, the LAI and RD were adjusted within the model for the 'industrial development' and 'urban development' land classes to obtain an appropriate recharge rate (Table 2-2). The parameters were derived within the model assuming a Bassendean Sand soil type, free-draining soils, and rainfall for the period 1975–2010. Note that within the full numerical model recharge rates will vary depending on depth to watertable, landscape position, drainage and rainfall.

Table 2-2Recharge rates and parameters for development areas

Development type	LAI (m²/m²)	RD (mm)	Modelled recharge (%)*
Industrial development	0.5	250	63
Urban development	1.0	1200	50

*Recharge modelled from 1975 to 2010

Domestic garden bores

The presence of domestic garden bores was implemented in the Mike SHE model by adding abstraction bores within the 'urban development' land use. An average lot size of 400 m² was used to determine the abstraction volume and number of bores to include in the model. This is the average residential lot size required to achieve the WAPC's objective of 15 dwellings per urban zoned hectare. A study into the incidence of bores in the Perth metropolitan area (Research Solutions 2009) reported installation rates at a more detailed scale than the Department of Water's policy document (DoW 2009), and 400 m² corresponded to a rate of 11% (see Table 2-3 below). This rate was used in the modelling scenario.

Table 2-3Percentage of properties watering gardens with bore water for different lotsizes (Research Solutions 2009)

Property size (m ²)	0–400	401–600	601–700	701–800	>800	All
Percentage of properties watering gardens with bore	11%	18%	26%	39%	47%	30%
water						

The following technique was used to determine the abstraction volumes for domestic bores:

- The total area of the 'urban development' land use was calculated (50.6 km²): 60% of this was assumed to be residential lots (30.4 km²) based on estimates provided by the Department of Planning.
- The area available for residential land was divided into 400 m² lots, assuming a bore installation rate of 11%. Abstraction was assumed to be 400 kL/yr for each bore based on Table 2-1. This equates to a total abstraction volume of 3.4 GL/yr across the entire modelling area due to new garden bores.
- The total abstraction rate was evenly distributed across grid cells within the urban development areas, assuming a constant abstraction rate between October and May. Abstraction was from the first computational layer, which corresponds to the Superficial Aquifer.

It was assumed that no unlicensed bores would be installed within planned industrial areas.

Figure 2-1 Development sub-areas for the Lower Serpentine region

Drainage

To protect infrastructure and assets from flooding and groundwater inundation, sufficient clearance from groundwater levels must be provided and maintained by groundwater drainage, earthworks, foundation design or a combination of these methods. Design of a groundwater drainage system should take into account the requirement for infrastructure and urban amenity to be protected from seasonal inundation, and the potential impact on the aquifer system, groundwater-dependent ecosystems and waterbodies. Design should ensure free-draining outlets from the drainage system, and consider the potential for capture and reuse of water; for example, by integrating drainage infrastructure with managed aquifer recharge (MAR) schemes.

To explore the effects of drainage infrastructure on regional groundwater, several drainage scenarios were modelled. Note that the drainage scenarios described here **are not prescriptive of drainage design requirements or controlled groundwater levels**. Rather the drainage scenarios are designed to give an **indicative range of groundwater levels and volumes of drainage water that result from representative subsurface drainage levels at regional scale**. Drainage requirements for individual developments will be site specific, and as such, appropriate controlled groundwater levels will vary depending on local conditions. Proponents should refer to the *Guidelines for assessing the need for and setting controlled groundwater levels* (DoW 2012) for requirements related to subsurface drainage design.

The drainage scenarios implemented with the Lower Serpentine model are based on modelled base-case groundwater levels. The drainage levels considered are the AAMaxGL, and the AAMinGL, and which are statistical representations of 1981–2010 historical groundwater levels. The selection of these levels aimed to delineate the possible range of levels at which subsurface drainage may be installed, with drainage set at AAMaxGL likely to drain less water than drainage set at AAMinGL. The following drainage scenarios we re modelled:

- no drainage
- drainage at AAMaxGL with an appropriate level of fill to simulate postdevelopment recharge conditions
- drainage at 0.5 m above AAMinGL with an appropriate level of fill to simulate post-development recharge conditions
- drainage at AAMinGL with an appropriate level of fill to simulate postdevelopment recharge conditions.

Note that fill must be represented in the model by altering the topography to correctly simulate recharge for free-draining soils in developments which contain subsurface drainage. Fill introduced to the model was assumed to have the same hydraulic properties as Bassendean Sand. Soils with lower saturated hydraulic conductivities are likely to result in less recharge.

In development areas with more than 3 m clearance to pre-development maximum groundwater levels, subsurface drainage was not simulated. The 3 m clearance depth was

used to estimate areas which would or would not require subsurface drainage at regional scale. Based on trial simulations, it was estimated that simulated groundwater levels would not increase by more than 3 m under the development scenarios, and so a 3 m cut-off level for subsurface drainage was a reasonable assumption for modelling purposes. This clearance level is not departmental policy, as drainage requirements will vary substantially between sites, and is an assumption made for modelling purposes only, as sites with significant depth to water table are unlikely to require subsurface drainage.

Model implementation of drainage scenarios

Drainage was implemented in Mike SHE using the saturated zone drainage option. This module is designed to simulate both surface channels and drains which are too small to be simulated by Mike 11 and subsurface drainage systems. Drain flow is simulated using an empirical formula which uses a time constant (leakage rate) and a drain level (absolute or relative level of drain). Drain levels were defined spatially where development is planned. The saturated zone drainage module is also used for simulation of agricultural drains within the base-case Mike SHE model.

Within Mike SHE there are several options for routing saturated zone drainage. In the case of agricultural surface drains, drainage was routed to the relevant Mike 11 channel within the model (as described in Marillier et al. 2012b). Existing agricultural drains located outside the development areas were left unchanged within the model. For the urban and industrial development areas, drainage was routed directly to a boundary cell unless an existing drain was in place. Where existing drains were in place within the developments, the drainage paths were left unchanged but the drain elevation was set to the relevant level for the scenario (e.g. AAMinGL + 0.5 m). This means that no consideration is given to the availability of free-draining outlets for the subsurface drainage. It is assumed that all water reaching the level of the drainage network can be effectively drained. This enables calculation of the volume of drainage water from each development. Existing surface drainage features remain unchanged and will drain to Mike 11, additional subsurface drainage within the development areas effectively removes water from the model, and does not drain to Mike 11, therefore free-draining outlets are assumed.

The changes to the base-case model for implementation of the drainage scenarios were as follows:

- Base-case MaxGL, AAMaxGL, AAMinGL and AAMinGL + 0.5 m were calculated using model results from the simulation period 1981–2010.
- The MaxGL surface was used to define areas which have greater than 3 m depth to the water table and would not be included in the simulation of subsurface drainage.
- Drainage levels were set at either AAMaxGL, AAMinGL, or AAMinGL + 0.5 m for areas to be included in simulation of subsurface drainage with the development areas.

- The surface topography of the model was modified to ensure that there was at least 1 m of clearance between the subsurface drainage level and the surface level of the model.
- The unsaturated zone soil type was set to Bassendean Sand for the development areas where fill was required to introduce the 1 m clearance criterion.
- The drainage time-constant was set to ensure that all groundwater reaching the subsurface drainage level would be effectively drained from the model.

The drainage water reported in the model water balance is indicative of the total volume of water which must be managed for each of the development areas. It includes the sum of the subsurface drainage water and the surface drainage water from channels which are not included in the Mike 11 network. It does not necessarily represent the off-site impact on waterways and water bodies. If the drainage water is directed internally to lakes, wetlands or rain gardens, then it may be available for re-use and, depending on residence time, a significant volume of water may be evaporated.

The development and drainage scenarios presented here are intended as regional-scale and indicative. Given the scale of the model, and absence of development specific information, it is not possible to simulate detailed drainage design. The purpose of the scenarios is to provide base-level information on the potential impacts of development. Note that the regional-scale model can be used as a basis for developing local-scale models which can simulate more detailed drainage design.

2.2 Climate scenarios

Background

The Intergovernmental Panel on Climate Change reported in 2007 (IPCC 2007) that:

Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice and rising global average sea-level.

Global atmospheric concentrations of greenhouse gases including CO_2 , methane (CH₄) and nitrous oxide (N₂O) have increased due to human activities since 1750, and in 2005 exceeded by far the natural range from the previous 650 000 years (IPCC 2007). The IPCC concludes that:

There is very high confidence that the net effect of human activities since 1750 has been one of warming.

In south-west Western Australia (SWWA), there has been a significant decline in winter rainfall since 1970 associated with Southern Hemisphere circulation (Frederiksen et al 2011). The decline has been linked to changes in storm tracks in the mid-latitudes, and is consistent with a poleward movement of winter frontal systems (Frederiksen & Frederiksen 2007). Hope et al. (2006) analysed results from several general circulation models and two emissions

scenarios and found that all models predicted the rainfall decline in the 1970s. The rainfall decline could be attributed to a reduction in the number of troughs and an increase in high pressure synoptic systems in SWWA. The models also showed that, as atmospheric concentrations of greenhouse gases increased, the synoptic response was more pronounced (Hope et al. 2006).

This evidence indicates that the combination of SWWA's location in relation to the regional synoptic systems makes the region particularly susceptible to changes in climate. As a result, it is necessary to estimate the likely impacts of climate change and account for the uncertainty associated with the various climate projections.

The IPCC developed a suite of scenarios which attempt to project likely greenhouse gas emissions based on such factors as demographic development, socio-economic development and technological change (IPCC 2000). Four storylines which account for possible changes in these factors were developed. For each storyline several scenarios were developed, giving a total of 40 emissions scenarios. The four broad groupings of emissions scenarios are as follows (IPCC 2000):

- The A1 storyline and scenario family describe a future world of very rapid economic growth, global population that peaks in mid-century and declines thereafter, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The A1 scenario family develops into three groups that describe alternative directions of technological change in the energy system. The three A1 groups are distinguished by their technological emphasis: fossil intensive (A1FI), non-fossil energy sources (A1T) or a balance across all sources (A1B).
- The A2 storyline and scenario family describes a very heterogeneous world. The underlying theme is self-reliance and preservation of local identities. Fertility patterns which across regions converge very slowly result in a continuously increasing global population. Economic development is primarily regionally oriented and per capita economic growth and technological change are more fragmented and slower than in other storylines.
- The B1 storyline and scenario family describes a convergent world with the same global population that peaks in mid-century and declines thereafter, as in the A1 storyline, but with rapid changes in economic structures toward a service and information economy, with reductions in material intensity, and the introduction of clean and resource-efficient technologies. The emphasis is on global solutions to economic, social, and environmental sustainability, including improved equity but without additional climate initiatives.
- The B2 storyline and scenario family describes a world in which the emphasis is on local solutions to economic, social, and environmental sustainability. It is a world with continuously increasing global population at a rate lower than A2, intermediate levels

of economic development, and less rapid and more diverse technological change than in the B1 and A1 storylines. While the scenario is also oriented toward environmental protection and social equity, it focuses on local and regional levels.

The storylines produce a large range of potential future emissions (Figure 2-2).

Figure 2-2 Global carbon dioxide emissions for the (a) A1, (b) A2, (c) B1 and (d) B2 emissions scenarios (sourced from IPCC 2000) - the dashed and solid lines show illustrative scenarios, and the colour band show the range of variability

The emissions storylines are used to drive a number of general circulation models (GCMs), which produce estimates of changes in temperature and climate at a global scale when coupled with land surface and ice sheet models. Given the inherent differences in the dynamics of various GCMs, the models produce different results, introducing another layer of uncertainty.

Climate scenario selection

In selecting/choosing appropriate climate scenarios for use with the Lower Serpentine model, and to capture the uncertainty associated with climate projections, results from a combination of various emissions storylines and GCMs were analysed. For each combination of scenario and GCM, the estimated changes in temperature, rainfall and potential evaporation were calculated. The change was simulated for the year 2030, relative to the World Meteorological Organisation (WMO) 'normal' period 1961–90.

The Mike ZERO climate change tool was used to report rainfall, evaporation and temperature for 22 different GCMs using the A2, B1 and A1B emissions scenarios at the longitude and latitude of the Lower Serpentine model. For some GCMs, data for only one or two of the emissions scenarios were available; therefore a total of 52 unique combinations were analysed. Figure 2-3 shows the relative change in average annual rainfall for each GCM and emissions scenario. Based on this distribution, the 10th, 50th and 90th percentile GCM and emissions scenario were selected for simulation of potential future climates in the Lower Serpentine region. This accounts for the uncertainty associated with climate projections and captures the range of likely variation.

Table 2-4 shows the three GCMs and emissions scenarios selected for modelling. These include the 10th percentile rainfall scenario (wet), based on the INMCM model with the B1 emissions scenario; the 50th percentile rainfall scenario (medium), based on the AOM 4x3 model, and the 90th percentile rainfall scenario (dry) based on the CM2-0–AOGCM model.

GCM Acronym	GCM	Research institute	Scenario	Projection year	Baseline climate sequence	Change in annual rainfall
INCM3	INMCM	Institute of Numerical Mathematics, Russian Academy of Science, Russia	B1	2030	1961 to 1990	-5.0%
GIAOM	AOM 4x3	NASA Goddard Institute for Space Studies (NASA/GISS), USA	B1	2030	1961 to 1990	-9.8%
GFCM20	CM2.0 - AOGCM	Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, USA	A2	2030	1961 to 1990	-19.1%

Table 2-4GCMs and emissions scenarios selected for Lower Serpentine climate changesimulations

% change from WMO mean annual rainfall

Figure 2-3 Projected reductions in average annual rainfall based on 52 GCMs and three emissions scenarios, showing 10th, 50th and 90th percentile scenarios in green

Model implementation of future climate data

Future climate data

To implement the selected climate scenarios in the Lower Serpentine model it was necessary to generate rainfall and evapotranspiration timeseries datasets representative of the future climate. This was done by scaling historical SILO (QDERM 2011) gridded rainfall and potential evapotranspiration (PET) data from the WMO baseline period 1961–90. The timeseries were scaled according to monthly anomaly indices which capture the differences between the WMO baseline period and the projected climate in 2030. The Mike ZERO climate change tool generates the timeseries by directly scaling rainfall data by the specified anomaly value and infers changes in PET using a temperature based method (DHI 2011). This tool was used to generate climate timeseries for the wet, medium and dry climate scenarios. Figure 2-4 shows the annual rainfall for a 30 year period, with the scaled rainfall based on the projected monthly anomalies for the wet, medium and dry scenarios. Figure 2-5 shows the average monthly rainfall for a 30 year period and scaled average monthly rainfall. Note that the various GCMs project different monthly anomalies in rainfall; however, there is general agreement that winter rainfall is reduced as emissions increase, with a slight increase in summer rainfall.

Figure 2-4 Scaled annual rainfall based on GCM projected rainfall anomalies for 2030 compared to the 1961-90 WMO period, and the 1981-2010 base-case period

Figure 2-5 Scaled average monthly rainfall based on GCM projected rainfall anomalies for 2030 compared to the 1961-90 baseline, and the 1981-2010 base-case period

The scaled rainfall and PET timeseries are based on the 1961–90 period but are representative of a potential 30 year climate sequence centred on the year 2030. So, the model simulation was configured for the period 2016–45, and discussion of climate scenarios refers to this period. All simulations include a five year 'warm up' period 2011–15 for the model to stabilise to the new climate conditions.

The Department of Water is currently developing standardised procedures for modelling the impacts of climate change. Where possible the procedures used here have been kept in line with the anticipated departmental procedures, and have been developed to account for uncertainty in climate projections.

Historical climate data

Two additional climate scenarios were developed to assess the impact of wet periods on groundwater levels. These scenarios can be considered 'high risk' in terms of surface inundation due to elevated superficial groundwater levels. The two scenarios selected were:

- Future medium scenario with two wet years which includes the future medium climate sequence, with the years 2044 and 2045 replaced with the base-case climate sequence for 1963 and 1964 (average rainfall exceeded 1000 mm in both years).
- **Historical wet scenario** which uses the climate sequence 1945–74. The average annual rainfall for this period is 887 mm in the model domain compared to 842 mm for 1961–90.

Summary of climate scenarios

Table 2-5 shows the variables associated with each climate scenario when compared to the WMO climate normal period. The *original climate sequence* refers to the historical data baseline period which was scaled to generate the *scaled climate sequence* that is representative of a possible future climate.

Average

annual PET

(mm)

1362

1392

1423

1393

1423

1390

1326

887

GCM & Original Average Scenario Scaled climate Scenario name emissions climate annual number sequence scenario sequence rainfall (mm) WMO baseline period 1961 to 1990 842 na na na Base case (current) S00 1981 to 2010 800 na na Future dry INCM3 A2 S01 1961 to 1990 2016 to 2045 682 Future medium GIAOM B1 S04 1961 to 1990 2016 to 2045 759 GFCM20 B1 S09 1961 to 1990 2016 to 2045 800 Future wet Future medium 2 wet years GIAOM B1 S12 1961 to 1990 2016 to 2045* 782

S13

1945 to 1974 2016 to 2045

Table 2-5 Climate scenario variables

*Note years 2044 and 2045 were replaced with unscaled years from 1963 and 1964

na

Model implementation of sea-level-rise

Historical wet

Global sea-level-rise has been accurately measured at $+2.4 \pm 0.4$ mm/yr using satellite altimetry over the period 1993–2003 (Cazenave & Nerem 2004). This is in contrast to the 1–2 mm/yr rates from previous decades. Figure 2-6 shows the increase in the rate of sea-level-rise in recent decades. The IPCC (2007) reports that 57% of sea-level-rise is attributable to ocean thermal expansion, with a further 28% due to decreases in glaciers and ice caps, and the remainder due to losses from polar ice sheets.

Estimates of global sea-level-rise for 2090–99 relative to 1980–99 vary between 18 and 59 cm, excluding the influence of rapid dynamic changes in ice flow (IPCC 2007). To account for the uncertainty in sea-level-rise associated with non-linear break-up of the Greenland and West Antarctic ice sheets, a worst-case scenario of 90 cm of sea-level-rise was assumed for the purposes of scenario modelling. This value is consistent with the state planning policy document Position Statement – State Planning Policy No. 2.6 State Coastal Planning Policy Schedule 1 Sea-level-rise which states:

In recognition of nationally accepted and adopted increases in sea-level-rise projections, the WAPC considers it necessary to amend the sea-level-rise value in SPP2.6. The methodology is changed to SLR increase to 0.9m to 2110, based upon IPCC AR4 (Scenario A1FI) and CSIRO 2008

Figure 2-6 Global sea-level-rise from tide gauge (blue) and satellite (red) data. Image sourced from the IPCC (2007). Values are reported relative to average 1961-90.

The sea-level-rise scenario was simulated using the future medium climate sequence with a supplementary scenario simulated using the future wet climate sequence. The ocean boundary condition was increased to 0.9 m for both the Superficial and Rockingham aquifers. The lower boundary condition for the Serpentine River within the Mike 11 model was calculated using Mike 11 stage results from the Murray regional model (Hall et al. 2010) sea-level-rise scenario. The modelling showed a 0.69 m rise in water levels in the Serpentine River just south of Punrack Drain, a result of 0.9 m sea-level-rise. The lower boundary condition for the Serpentine River set to a constant head of 0.69 m in the Lower Serpentine regional model for the sea-level-rise scenario.

2.3 Assumptions used in scenarios

The scenarios represent *a range* of possible future conditions for the Lower Serpentine region. For the period modelled in the base-case scenario, many of the variables which drive the numerical model are known or can be approximated. Some variables such as geology and soil type are unlikely to change over the timescales considered here. However, other variables are very likely to change, including climate, land use, abstraction and boundary conditions. So, to use the model for projections, it is necessary to make assumptions about the likely changes in these variables over time. For modelling purposes, the future conditions considered are for the 30 year period centred on 2030.

Future land use and climate were described in previous sections. It was also necessary to estimate several other timeseries inputs to the model including boundary conditions for the Leederville and Superficial aquifers, abstraction, and discharge from the Kwinana waste water treatment plant to the infiltration ponds near the Spectacles Wetlands.

Boundary conditions for the Leederville Aquifer

Along the northern boundary of the model, a time-varying head boundary condition is in place. These boundary conditions represent a developing cone of depression in the Leederville Aquifer to the north-west of the model, as the rate of head decline is slower at the coastline than further inland where there is more abstraction. The northern boundary is divided into eleven sections, each with an independently varying head, based on interpolated observations from monitoring bores. For each of these sections, an average annual rate of head decline was calculated by subtracting the 2001–10 average level from the 1971–80 average level. This assumes an ongoing linear decline in head based on the historical head decline for each location. The rate of decline varies between 0.07 and 0.17 cm/yr across the northern boundary. This rate of decline was applied for each year from 2011 to 2045 and used in all scenarios. The resulting boundary for each of the eleven sections is shown in Figure 2-7 for 2011–45. The location of each boundary is shown in Figure 2-8.

Figure 2-7 Boundary conditions for the Leederville Aquifer 2011-45

Figure 2-8 Location of Leederville Aquifer boundary conditions

Boundary conditions for the Superficial Aquifer

The north-western boundary of the Superficial Aquifer was set to an average groundwater level based on 2005–10 observed levels and amplitudes. Given that the Superficial Aquifer is unconfined and that the boundary condition is close to the coast, it was assumed future groundwater levels would be relatively stable. However, there is likely to be some fluctuation based on climate which will not be captured by the boundary condition, and this influence should be considered when viewing scenario results. The sensitivity of superficial groundwater levels to this boundary condition is discussed in the companion report *Lower Serpentine hydrological studies: model construction and calibration* (Marillier et al. 2012b).

Kwinana waste water treatment plant discharge

The Kwinana waste water treatment plant discharges treated wastewater to infiltration ponds to the west of the Spectacles Wetlands, resulting in a small groundwater mound. The Water Corporation provided discharge rates for 2001–10. For scenario modelling it was assumed that the discharge remained constant into the future, using the average rate from 2005 to 2010.

Abstraction

Groundwater abstraction from the area is likely to vary significantly in the future. It is difficult to forecast as allocation and use are influenced by demand, government policy and climate. Within the Rockingham, Stakehill and Cockburn groundwater management areas the Superficial, Leederville and Rockingham (where applicable) aquifers are all close to fully allocated, and in some subareas are over-allocated. An allocation plan for the Serpentine groundwater management area is currently under development but likely future allocation limits were not available at the time of writing. Hence, the average 2005–10 estimated abstraction was assumed to continue into the future for scenario analysis for the 2011–45 period. This equates to around 31 GL/yr from the Superficial Aquifer, and 8 GL/yr from the Leederville and Rockingham aquifers.

3 Lower Serpentine regional model scenarios: results and analysis

The Urban Water Management Branch of the Department of Water selected 15 scenarios for comparison to the current 'base-case' scenario. These scenarios include various combinations of climate, drainage and development scenarios (Table 3-1). They were selected to address three requirements:

- Include a reasonable range of future climate scenarios to incorporate the uncertainty associated with climate projections.
- Include a range of drainage scenarios to capture the likely variation in volume from drainage set at different levels.
- Include extreme rainfall scenarios which could influence drainage design.

The first two requirements are addressed by the combinations of future climate, drainage and development scenarios (S1 to S11). The third requirement is addressed by inclusion of scenarios S12 and S13 which incorporate historical wet periods and therefore give an upperlimit on potential inundation. S14 and S14b are sea-level-rise scenarios designed to simulate groundwater responses to increased sea-level. Note that Mike SHE cannot model variable density fluids, and therefore is unsuitable for simulating salt-water intrusion.

Scenario #*	Climate scenarios	Subsoil drainage scenarios	Development scenario
SO	Current climate	None	Current land use scenario
S1		None	Current land use scenario
S2	Dry	At AAMaxGL	Full development
S3		At AAMinGL	Full development
S4		None	Current land use scenario
S5		At AAMaxGL	Full development
S6	Medium	0.5m above AAMinGL	Full development
S7	Wedfulli	At AAMinGL	Full development
S8		AAMaxGL	Full development Garden bores
S9		None	Current land use scenario
S10	Wet	At AAMaxGL	Full development
S11		At AAMinGL	Full development
S12	Medium with two wet years	None	Current land use scenario
S13	Historical wet	None	Current land use scenario
S14	Sea level rise Future medium	None	Current land use scenario
S14b	Sea level rise Future wet	None	Current land use scenario

Table 3-1List of scenarios modelled

*Scenario number is a unique ID which is used in file naming conventions within the Mike SHE model

Results for each scenario are reported in the form of a water balance and spatial data. Spatial datasets are available from the Department of Water on request in ESRI grid format, and as contours in ESRI shapefile format. Groundwater levels for each scenario are summarised as MaxGL, AAMaxGL, AveGL, MaxGL and MinGL.

The following section describes the results of all 15 scenarios including the base-case scenario. Water balances, calculated for each scenario using the Mike ZERO water balance calculation tool, are summarised in Appendix C. Groundwater levels were calculated by post-processing results within Mike ZERO to provide statistical estimates of groundwater levels such as the AAMaxGL. For each scenario a 30 year period was selected for calculation of groundwater levels and water balances. For the base-case scenario, the sequence 1981–2010 was used for calculations while, for all other scenarios, calculations were based on the sequence 2016–45, which is representative of a hypothetical future period of time centred on 2030.

3.1 Base-case scenario (SO)

The base-case scenario (S0) represents current conditions for the Lower Serpentine area. Base-case results are reported for 1981–2010. The full simulation period is from 1970 to 2010. The *model construction and calibration report* (Marillier et al. 2012b) details the model parameters and water balance for the base-case scenario. Figure 3-1 shows the AAMaxGL calculated from the base-case model results. Figure 3-2 shows the extent of surface inundation due to groundwater based on the MaxGL. Additional model results and groundwater levels are available from the Urban Water Management Branch of the Department of Water on request.

Figure 3-1 AAMaxGL (mAHD) for the base-case (S0) scenario for 1981-2010

Figure 3-2 Groundwater inundation (m above surface) for the base-case (SO) scenario for 1981-2010, calculated from surface topography and MaxGL surface

3.2 Climate scenarios (S1, S4, S9, S12, S13)

Three future climate scenarios were simulated for the period 2011–45, and results reported for the period 2016–45; the future dry (S1), medium (S4) and wet (S9) climates. A fourth scenario incorporated the future medium climate with two wet years (1963 and 1964) at the end of the sequence (S12), and a fifth was based on an historical wet climate (S13) using 1945–74 data.

These scenarios did not incorporate any drainage or land use changes as a result of development, and aim to quantify the potential impacts of climate change on superficial groundwater levels and river flows. Table 3-2 shows the average change in superficial groundwater levels across the model area for the MaxGL, AAMaxGL, AveGL, AAMinGL and MinGL for each climate scenario relative to the base-case scenario, and changes in outflow from the Serpentine River at the model boundary. Appendix A shows the changes in AAMaxGL and AAMinGL spatially for each scenario relative to the base-case, and can be used to identify areas where groundwater shows greater responses to changes in rainfall.

Note that the changes in modelled groundwater levels result from both reduced rainfall and abstraction rates used in scenarios. As historically abstraction in the 1980s and 1990s was less than at present, and all future scenarios assumed abstraction remained at present levels, the relative differences in abstraction result in slightly lower groundwater levels in some areas independent of the lower rainfall.

Scenario #	# Scenario name	Rainfall	MaxGL	AAMaxGL	AveGL	AAMinGL	MinGL	Flow (Serpentine)*
		mm/yr	mAHD	mAHD	mAHD	mAHD	mAHD	GL/yr
S0	Base case	800	16.21	15.69	14.91	14.33	13.82	96.7
S1	Future dry climate	682	15.63	14.87	14.19	13.68	13.28	49.3
S4	Future medium climate	759	15.89	15.20	14.48	13.92	13.51	70.7
S9	Future wet climate	800	16.12	15.43	14.65	14.05	13.62	88.0
S12	Future medium climate with two wet years	782	16.24	15.29	14.53	13.93	13.51	84.1
S13	Historical wet climate	887	16.53	15.97	15.08	14.37	13.98	147.9
S14	Sea level rise with future medium climate	759	15.98	15.30	14.58	14.01	13.61	70.6
S14b	Sea level rise with future wet climate	800	16.20	15.53	14.74	14.14	13.72	88.2
Change fr	om base case		Δm	Δm	Δm	Δm	Δm	∆GL/yr
S1	Future dry climate	-15%	-0.58	-0.82	-0.72	-0.64	-0.54	-47.4
S4	Future medium climate	-5%	-0.32	-0.49	-0.43	-0.41	-0.32	-26.0
S9	Future wet climate	0%	-0.09	-0.26	-0.26	-0.28	-0.20	-8.7
S12	Future medium climate with two wet years	-2%	0.03	-0.40	-0.38	-0.40	-0.32	-12.6
S13	Historical wet climate	11%	0.32	0.28	0.17	0.04	0.15	51.2
S14	Sea level rise with future medium climate	-5%	-0.23	-0.39	-0.33	-0.31	-0.21	-26.1
S14b	Sea level rise with future wet climate	0%	-0.01	-0.16	-0.16	-0.19	-0.11	-8.5

Table 3-2Summary of changes in groundwater levels for climate change scenarios

*Outflow at model boundary from the Serpentine River

The future wet climate scenario (S9) corresponds to reduced winter rainfall but increased summer rainfall, which results in no change in average annual rainfall compared to the base-case scenario. However, the changed rainfall distribution results in less recharge, and, in

combination with higher relative abstraction, maximum groundwater levels declined 9 cm, and average groundwater levels declined 26 cm. Figure A-9 shows that both maximum and minimum groundwater levels are mainly reduced near groundwater abstraction points, and in areas with the greatest depth to watertable, through the Spearwood Dunes, on the Jandakot Mound, and along the eastern model boundary near Byford. The low-lying areas of the coastal plain show the least change in groundwater level, and flows from the Serpentine River are reduced by around 9% as a result of lower baseflow, and reduced inflows to tributaries on the Darling Scarp. In all future scenarios groundwater levels near the Kwinana wastewater treatment plant rise as a result of infiltrating waste water.

The future medium climate scenario (S4) results in a 5% reduction in average annual rainfall across the model area. As with the wet scenario, the model shows the greatest reductions in groundwater level near abstraction points, and in areas with the deepest groundwater (Figure A-4). The average groundwater level is 43 cm lower when compared to the base-case scenario, and both maximum and minimum groundwater levels are 32 cm lower. Flows from the Serpentine River average 70.7 GL/yr: a 27% reduction.

The average annual rainfall for the future dry climate scenario (S1) was 682 mm (15% less than the base-case scenario), and is 6% lower than the 2001–10 average of 725 mm. The scenario shows a 72 cm drop in average groundwater level and 58 and 54 cm drops respectively in maximum and minimum groundwater levels. The groundwater level is generally 0.5–2 m lower through the Spearwood Dunes and the Jandakot Mound (Figure A-1). There is a dramatic reduction in groundwater of up to 8 m on the eastern margin of the model near the Darling Scarp. In S1 a large portion of the model has groundwater levels lowered relative to S0. Inundation based on the MaxGL surface (Figure B-1) shows that with the drier climate a significant portion of the wetlands within the model area is no longer inundated. Reduced overland and base flow result in 49% less discharge from the Serpentine River at the model boundary.

In the future medium with two wet years scenario (S12) the maximum groundwater level is responsive to the wet years, even after an extended period of lower rainfall. The MaxGL level is 3 cm higher than in the base-case scenario, and 35 cm higher than in the medium climate scenario (S4). This indicates that areas historically at risk of inundation from groundwater will remain so, even after an extended period of a relatively dry climate. Figure B-4 shows the extent of inundation based on the S12 MaxGL.

The historical wet climate scenario (S13) has an average annual rainfall 11% higher than the base-case. The maximum groundwater level is 32 cm higher in this scenario while the MinGL and AAMinGL are only 15 cm and 4 cm higher respectively, as a result of the abstraction dataset used in all future simulations. Figure A-13 shows the change in groundwater level relative to the base-case scenario for S13. The AAMaxGL difference map shows that most of the model area experiences groundwater levels generally 0–1 m higher, with larger increases near the Darling Scarp. The AAMinGL surface is more sensitive to abstraction, and therefore only shows increases in groundwater levels in areas with fewer production bores. The Serpentine River shows a 52% increase in flow with the higher rainfall.

Figure 3-3 shows the average recharge calculated from the model water balance for each climate scenario. The future dry climate indicates that recharge would fall by 30% compared to the base-case scenario, with the medium and wet climates resulting in 15% and 4% less recharge respectively. In the historical wet climate scenario during wetter periods recharge in the area is 34% higher, although surface inundation over much of the area would eventually present an upper limit on recharge.

*Percentage of rainfall **Across the model area of 727.6 km²

Figure 3-3 Comparison of recharge for climate scenarios

3.3 Sea-level-rise scenario (S14 & S14b)

The sea-level-rise scenario involved increasing the coastal boundary condition by 0.9 m, and the Serpentine River lower boundary condition by 0.69 m (see Section 2.2). The model was simulated for the period 2011–45 using the future medium climate (S14). An alternate scenario using the future wet climate was also simulated (S14b) and changes in groundwater levels and inundation for both scenarios are reported in Appendix A.

The influence of sea-level-rise is best shown spatially in Appendix A, Figure A-14 and Figure A-15. The reduced rainfall of the future medium scenario (S14) results in lower groundwater across most of the coastal plain, which is consistent with scenario S4. However, on the coastal strip maximum and minimum groundwater levels increased by up to 0.9 m relative to the base-case scenario. The difference is greatest at the coast and reduces inland. Raised groundwater levels are most extensive on the Rockingham Peninsula and Becher Point where the land is surrounded by the ocean on three sides. The higher water levels downstream on the Serpentine River resulted in elevated groundwater levels around the river for up to 3 km upstream although the area covered is not extensive due to the grade of the river bed. Results for the sea-level-rise scenario with the future wet climate are similar (S14b); however, groundwater levels are generally higher relative to S14, and the zone of influence of the raised sea-level extends further inland. Scenario S14b is a higher risk scenario relative to S14, as the increase in coastal groundwater levels due to sea-level-rise is not offset by significantly lower recharge.

The only development in the area affected by elevated water levels is the Kwinana Industrial area. However, depth to maximum groundwater level in the affected parts of the development for S14 and S14b is generally greater than 2 m. Inundation is slightly increased around Lake Richmond and the lower end of the Serpentine River for S14b (Figure B-6).

Note that the extent of elevated groundwater levels **does not** show the extent of salt-water intrusion resulting from sea-level-rise. Mike SHE is not capable of modelling variable density fluids and therefore cannot be used for modelling salt-water intrusion. The sea-level-rise scenario is appropriate for interpreting groundwater levels but not salinity or the location of the salt-water interface.

3.4 Land development and drainage scenarios (S2, S3, S5, S6, S7, S8, S10, S11)

Land development and drainage scenarios were simulated for a combination of drainage levels and climates as follows:

- S2: development, drainage at AAMaxGL, future dry climate
- S3: development, drainage at AAMinGL, future dry climate
- S5: development, drainage at AAMaxGL, future medium climate
- S6: development, drainage at 0.5m above AAMinGL, future medium climate
- S7: development, drainage at AAMinGL, future medium climate
- **S8:** development, drainage at AAMaxGL, future medium climate, garden b ore abstraction in new urban developments
- S10: development, drainage at AAMaxGL, future wet climate
- S11: development, drainage at AAMinGL, future wet climate.

The total drainage volume for all development areas for various scenarios is shown in Figure 3-4. The drainage volume is the sum of both the subsurface drainage water, and water from the existing agricultural drainage network within the development area. It indicates the total volume of water which must be drained from the area to maintain the groundwater at the specified drainage level post-development. For the non-development scenarios (S0, S1, S4 and S9) the drainage volume indicates only the volume of water which would drain from the existing agricultural drainage network for each climate scenario.

Figure 3-4 Total drainage quantity from developments for various development, drainage and climate scenarios

Figure 3-4 shows that the volume of drainage water increases dramatically as the modelled subsurface drainage level deepens. For the future medium climate scenario, three different drainage levels were simulated, AAMaxGL (S5), AAMinGL + 0.5 m (S6), and AAMinGL (S7). In scenario S5 drainage from all development areas would total 10 GL/yr versus 5 GL/yr for the no-development, future medium climate. Most of this additional water is generated from reduced evapotranspiration and increased recharge under development areas as demonstrated by water balance calculations in Appendix C. Figure A-5 shows that drainage at AAMaxGL acts to control groundwater at the base-case AAMaxGL level while increasing the AAMinGL level (as a result of increased recharge).

For scenario S6, with drainage set at a greater depth relative to AAMaxGL (AAMinGL + 0.5 m), there is an associated increase in the volume of water predicted from the development areas, totalling 14 GL/yr. The increase is greater for scenario S7 which shows a total drainage volume of 19 GL/yr when drains are set at AAMinGL within development areas. For scenarios S6 and S7 the additional water is sourced from increase d horizontal groundwater flow into the development areas, decreased horizontal flow out, and increased recharge. These scenarios show that the deeper the subsurface drainage level is set, the greater the off-site impacts on groundwater levels. Figure A-6 and Figure A-7 show that the AAMaxGL is reduced by 0.5 to 2 m in and around the development areas for scenarios S6 and S7.

As expected, drainage volumes are greater with higher rainfall. Comparing the drainage scenarios with drains set at AAMaxGL, drainage is highest (12 GL/yr) in the future wet climate and lowest in the future dry climate at 7 GL/yr (which is comparable to drainage from the agricultural drains alone in the base-case scenario). The future medium climate shows an average drainage volume of 10 GL/yr.

Drainage for individual development areas

The drainage volume in ML from each of the development areas is shown in Table 3-3 and the relative drainage in mm is shown in Table 3-4. Results are displayed spatially for scenario S5 – future medium climate with drains set at AAMaxGL in Figure 3-5 (ML/yr) and Figure 3-6 (mm/yr). The drainage volume in ML indicates the total volume of drainage water generated from the development areas whereas the relative drainage volume in mm shows drainage generated per unit area.

The total drainage volume for each development is related to both the depth to groundwater, and the size of the development. Hence, where drainage is required, the largest development areas generally have the greatest volume of drainage water. The Mundijong Industrial and Baldivis Industrial (North-East) areas generate 1.9 and 3.5 GL/yr drainage water under the S5 scenario, with the Byford, Mandogalup, Casuarina and Mundijong areas producing 0.5–1.6 GL/yr of drainage water.

The developments which generate least drainage water are those with a significant depth to the water table – generally located to the west of the Serpentine River on the Spearwood Dunes or on the Jandakot Mound.

Development name	(SO) Base case	(S1) Future dry	(S2) Future dry, drains at AAMaxGL	(S3) Future dry drains at AAMinGL	(S4) , Future med	(S5) Future med, drains at AAMaxGL	(S6) Future med, drains at AAMinGL + 0.5m	(S7) Future med, drains at AAMinGL + 0.5m	(S9) Future wet	(S10) Future wet, drains at AAMaxGL	(S11) Future wet, drains at AAMinGL	
Armadale	124	23	74	700	43	166	795	1068	66	270	1352	
Baldivis BA1	0	0	0	0	0	13	6	47	0	101	158	
Baldivis BA4	30	1	1	230	5	21	268	458	19	90	706	
Baldivis BA6	0	0	0	38	0	1	43	86	0	18	151	
Baldivis Industrial (North-East)	1925	920	2836	3551	1322	3488	3917	4177	1721	3918	4641	
Baldivis	13	3	10	158	7	30	185	264	13	74	383	
Byford	1067	312	335	1239	550	570	1355	1828	768	815	2318	
Cardup Industrial	0	0	11	115	0	68	215	237	0	128	345	
Casuarina	1061	467	580	1007	680	826	978	1573	849	1058	2149	
Eighty Road	0	0	0	11	0	3	21	102	0	53	246	
Karnup KA1	0	0	0	47	0	2	64	306	0	115	725	<u>ا ب</u>
Kwinana Industrial	0	0	12	691	0	123	428	1373	0	342	2063	_ک
Kwinana	0	0	2	116	0	23	89	260	0	169	505	
Mandogalup	695	199	358	580	344	577	522	991	449	763	1390	
Mundijong Industrial	527	306	1573	1958	418	1914	2221	2312	490	2072	2480	
Mundijong	1447	670	1052	2460	1042	1596	2577	3320	1286	1953	4089	
Port Kennedy Industrial	0	0	0	17	0	8	24	70	0	31	146	
Postans	0	0	27	52	0	67	59	96	0	109	137	
Serpentine	326	186	189	423	263	288	486	561	312	358	641	
Total	7216	3086	7061	13394	4675	9785	14254	19129	5972	12436	24624	

Table 3-3Predicted drainage volumes (ML) for drainage and land development scenarios

Development name	(SO) Base case	(S1) Future dry	(S2) Future dry, drains at AAMaxGL	(S3) Future dry, drains at AAMinGL	(S4) , Future med	(S5) Future med, drains at AAMaxGL	(S6) Future med, drains at AAMinGL + 0.5m	(S7) Future med, drains at AAMinGL + 0.5m	(S9) Future wet	(S10) Future wet, drains at AAMaxGL	(S11) Future wet, drains at AAMinGL		
Armadale	28	5	17	156	10	37	177	238	15	60	301		
Baldivis BA1	0	0	0	0	0	5	3	19	0	41	65		
Baldivis BA4	11	0	0	87	2	8	102	173	7	34	267		
Baldivis BA6	0	0	0	24	0	1	27	54	0	12	95		
Baldivis Industrial (North-East)	189	90	279	349	130	343	385	411	169	385	457		
Baldivis	11	2	8	129	6	25	151	215	11	60	313		
Byford	113	33	35	131	58	60	144	194	81	86	246		
Cardup Industrial	0	0	7	71	0	42	133	146	0	79	213		
Casuarina	221	97	121	210	142	172	204	328	177	221	448		
Eighty Road	0	0	0	36	0	9	67	325	0	168	779		0
Karnup KA1	0	0	0	11	0	0	15	73	0	27	174	۲	200
Kwinana Industrial	0	0	3	165	0	29	102	327	0	82	491	Ē	400
Kwinana	0	0	1	33	0	7	26	74	0	48	145	2	600
Mandogalup	140	40	72	117	69	116	105	200	90	154	280		800
Mundijong Industrial	113	66	338	420	90	411	477	496	105	445	532		
Mundijong	142	66	103	241	102	157	253	326	126	191	401		
Port Kennedy Industrial	0	0	0	26	0	11	36	104	0	46	218		
Postans	0	0	18	34	0	44	38	62	0	71	89		
Serpentine	371	211	215	481	299	328	55 2	638	355	407	729		
Total	1339	611	1217	2723	907	1805	2996	4405	1137	2619	6244		

Table 3-4 Relative drainage (mm) for drainage and land development scenarios

Figure 3-5 Total drainage in ML/yr for the 19 development areas (S5)

Figure 3-6 Relative drainage in mm/yr for all 19 development areas (S5)

Changes in water balance for development areas

By assessing pre- and post-development water balances it is possible to account for changes in the hydrological cycle associated with development. In many of the development areas with a shallow water table, large volumes of subsurface drainage water are predicted, and it is important to identify the water sources, and how they could affect existing land uses and the environment.

A water balance of the Superficial Aquifer for each development area is provided in Appendix C of this report. The water balance includes all of the major fluxes into and out of the development area. Examples from two development areas are included below. These explain the water balance and how it may be applied in understanding the influence of the development on groundwater and surface water. Firstly, the Karnup KA1 development which, based on the criteria used in scenario analysis, requires very little subsurface drainage, and secondly, the Mundijong Industrial development which is in a part of the study area prone to inundation from groundwater.

Water balances were calculated using the Mike SHE water balance tool, using the period 1981–2010 for the base-case scenario, and 2016–45 for the future scenarios.

Text descriptions of all water balance fluxes are as follows:

Precipitation	Rainfall
Evapotranspiration	Total water losses to the atmosphere through plant transpiration or evaporation
Gross recharge	Water reaching an aquifer via infiltration through the unsaturated zone – gross recharge does not include later losses from the aquifer. <i>Net recharge</i> refers to gross recharge minus evapotranspiration directly from the water table (for example, from wetlands and areas of shallow groundwater)
EVT from SZ	Evapotranspiration from the saturated zone. This includes water evaporated directly from wetlands which are surface expressions of groundwater, evaporation from groundwater near the surface and above the extinction depth, and transpiration from plants which have roots reaching the phreatic surface. It does not include evapotranspiration from the unsaturated zone.
Hor. SZ flow out	Horizontal saturated zone (groundwater) flow leaving a defined section of an aquifer laterally.
Hor. SZ flow in	Horizontal saturated zone (groundwater) flow entering a defined section of an aquifer laterally.
Ver. SZ flow out	Vertical saturated zone (groundwater) flow leaving a defined section of an aquifer.
Ver. SZ flow in	Vertical saturated zone (groundwater) flow entering a defined section of an aquifer.

OL flow in	Overland flow into a defined area, not including rivers and drains.
OL flow out	Overland flow out of a defined area, not including rivers and drains.
Drainage (total)	Total drainage water from a defined area, including subsurface drainage and surface drainage systems. In the context of the water balance this does not include flow from the Mike 11 network, which is included as 'base flow to river'.
Base flow to river	Net groundwater contribution to river flows for channels defined in the Mike 11 network.
Irrigation	Water applied to the land surface to support plant growth. For the Serpentine model this includes infiltrated water from the Kwinana waste water treatment plant
Total Error	The error calculated from the water balance due to numerical errors in the model. Unaccounted for losses or gains in the water balance calculations.
∆Storage	Change in storage is the difference in the total volume of water contained in an aquifer for two distinct times. Δ Storage is calculated by subtracting total outflows from total inflows.

Karnup KA1 development

The Karnup KA1 development is located along the elevated ridge of the Spearwood Dunes in the south of the study area and to the west of the Serpentine River. It is unlikely to require significant drainage infrastructure to maintain clearance from groundwater (Figure 3-7).

Three scenario water balances are shown in Table 3-5: the base-case scenario (S0), the future medium climate scenario with drains at AAMaxGL (S5), and the future medium climate scenario with drains at AAMinGL (S7).

The influence of the development on recharge can be seen in the reduced evapotranspiration and increased recharge for scenarios S5 and S7 compared to S0. For S5 the increase in recharge is balanced by increased horizontal flow from the site. For S7, the deeper subsurface drainage is intercepted by the phreatic surface more often and, as a result, the volume of drainage increases substantially. Note that the net horizontal and vertical groundwater fluxes are negative for all three scenarios, indicating that groundwater flows away from the development area, however, net outflow is much lower for S7 relative to S0 as horizontal flow within the aquifer is replaced by drainage.

Figure 3-7 Karnup development with surface inundation derived from the MaxGL surface of the future medium scenario (S4)

F lux	Avera	ge annual (r	nm)	Percentage of rainfall			
FIUX	SO	S5	S7	SO	S5	S7	
Precipitation	800	766	766	100%	100%	100%	
Evapotranspiration	594	552	552	74%	72%	72%	
Gross recharge	209	214	214	26%	28%	28%	
EVT from SZ	0	0	0	0%	0%	0%	
Hor. SZ flow out	109	87	75	14%	11%	10%	
Hor. SZ flow in	32	22	61	4%	3%	8%	
Ver. SZ flow out	151	157	143	19%	21%	19%	
Ver. SZ flow in	7	6	14	1%	1%	2%	
Abstraction	0.1	0.1	0.1	0%	0%	0%	
OLflowin	0	0	0	0%	0%	0%	
OL flow out	0	0	0	0%	0%	0%	
Drainage (total)	0	0.4	73	0%	0%	10%	
Base flow to River	0	0	0	0%	0%	0%	
Irrigation	0	0	0	0%	0%	0%	
Total Error	0	0	0	0%	0%	0%	

Table 3-5Water balance for the Karnup development S0, S5 and S7

S0 = base case, S5 = Future medium with drains at AAMaxGL, S7 = Future medium with drains at AAMinGL

Mundijong industrial development

The Mundijong industrial development, located to the west of the Mundijong town site, is in an area subject to extensive seasonal inundation from groundwater (Figure 3-8). The water balance results for scenarios S0, S5 and S7 are shown in Table 3-6.

The water balance from the Mundijong industrial development shows distinct differences in comparison to Karnup. Recharge is substantially higher post-development. Pre-development, groundwater was at, or close to, the surface over much of the area, and the evapo-transpiration from the saturated zone (EVT from SZ) totalled 20% of rainfall, and was a substantial outward flux. In addition, overland flow resulting from saturation excess runoff totalled 14% of rainfall. With the post-development scenarios, both fluxes are reduced almost to zero as a result of the free-draining conditions created by the development fill and subsurface drainage. These changes result in a significant increase in recharge and a large volume of drainage water.

In the case of S7, drainage water volume exceeds gross recharge, with the deficit balanced by reduced net horizontal flows. This shows that, by setting subsurface drainage deeper (AAMinGL), the development drainage is beginning to draw on the regional Superficial Aquifer. However, with drainage set at AAMaxGL (S5) the development increases net horizontal flows, effectively discharging groundwater to the surrounding Superficial Aquifer.

The comparison between the Karnup and Mundijong industrial developments demonstrates the difficulties associated with water management in inundated areas. Karnup requires very little drainage infrastructure and can probably be developed with little impact to groundwater levels off-site whereas Mundijong industrial requires drainage and fill across the whole development. Selection of drainage level (controlled groundwater level) is a very important consideration which will influence both the total drainage volume from the site as well as off-site impacts on surface water and groundwater.

Figure 3-8 Mundijong industrial development with surface inundation derived from the MaxGL surface of the future medium scenario (S4)

F lux	Avera	ge annual (n	nm)	Percentage of rainfall			
FIUX	SO	S5	S7	SO	S5	S7	
Precipitation	863	831	831	100%	100%	100%	
Evapotranspiration	692	362	379	80%	44%	46%	
Gross recharge	262	481	452	30%	58%	54%	
EVT from SZ	175	17	2	20%	2%	0%	
Hor. SZ flow out	27	70	17	3%	8%	2%	
Hor. SZ flow in	70	59	86	8%	7%	10%	
Ver. SZ flow out	13	23	18	2%	3%	2%	
Ver. SZ flow in	4	2	5	1%	0%	1%	
Abstraction	2	3	3	0%	0%	0%	
OLflowin	35	4	6	4%	0%	1%	
OL flow out	119	4	7	14%	1%	1%	
Drainage (total)	113	411	496	13%	49%	60%	
Base flow to River	8	18	7	1%	2%	1%	
Irrigation	0	0	0	0%	0%	0%	
Total Error	0	0	0	0%	0%	0%	

Table 3-6	Water balance	for the Mundijo	ng industrial	development	, S0, S5 and S7
-----------	---------------	-----------------	---------------	-------------	-----------------

S0 = base case, S5 = Future medium with drains at AAMaxGL, S7 = Future medium with drains at AAMinGL

3.5 Garden bore scenario (S8)

The garden bore scenario was configured with the future medium climate, drains at AAMaxGL, and abstraction from garden bores in the urban residential developments, as described in Section 2.1. It can be compared with scenario S5, which is identical but without the additional abstraction. The scenario was designed to assess the combined impacts of unlicensed abstraction and urban development.

Scenario S8 demonstrates that garden bore abstraction reduces the volume of drainage water expected from the development areas by 10% from 10 GL/yr (S5) to 9 GL/yr (S8). Figure 3-9 illustrates how scenario S8 compares to the other scenarios with the future medium climate. Drainage volume for S8 is between the base-case scenario and the future medium drains at AAMaxGL scenario, indicating that abstraction acts to offset the increase in recharge from development.

Figure 3-9 Comparison of drainage for future medium climate scenarios

Table 3-7 shows the water balances for the base-case (S0), future medium with drains at AAMaxGL (S5) and garden bore (S8) scenarios for all development areas in mm/yr and GL/yr. Figure 3-10 graphically shows fluxes for evapotranspiration, horizontal flow, abstraction and drainage.

Flux	S0	S5	S8
FIUX	GL/yr	GL/yr	GL/yr
Precipitation	59	56	56
Evapotranspiration	47	36	35
Gross recharge	19	23	23
EVT from SZ	9	2	2
Hor. SZ flow out	15	18	16
Hor. SZ flow in	16	14	14
Ver. SZ flow out	2	2	2
Ver. SZ flow in	0	0	0
Abstraction	2	4	7
OL flow in	2	1	1
OL flow out	3	0	0
Drainage (total)	7	10	9
Base flow to River	0	1	0
Irrigation	0	0	0
Total Error	0	0	0

Table 3-7Water balances for S0, S5 and S8 from all development areas

Figure 3-10 Groundwater fluxes in water balances for S0, S5 and S8

For the garden bores scenario (S8), abstraction is one of the major losses from the aquifer, reducing drainage, and horizontal flow of groundwater from the development areas. The total drainage volume is more than in the pre-development conditions (S0) but less than in the post-development scenario without garden bore abstraction (S5). The key finding of the scenario is that, under development conditions without abstraction, the reduced evapotranspiration is largely offset by increased drainage and horizontal flow whereas with the inclusion of garden bores reduced evapotranspiration is offset by increased abstraction combined with increased drainage.

The increased abstraction from scenario S8 also acts to lower the minimum groundwater level within the development area relative to the base-case scenario in some developments

(Figure A-8). There is a risk of exposing potentially acid sulfate soils (PASS) if groundwater levels are lowered, and abstraction of groundwater is one potential mechanism for this. Therefore the risk of causing acid sulfate soils should be considered when bores are being installed; in particular, community bores which would concentrate the draw in a single location.

There is a high degree of uncertainty associated with the garden bore abstraction scenario, due to uncertainties in model inputs and site characteristics which could inhibit the use of garden bores.

3.6 Waterlogging analysis

Waterlogging refers to areas where the superficial groundwater is above the land surface. Waterlogging was mapped by extracting the maximum superficial groundwater level from the scenario concerned. The MaxGL surface was resampled from 200 m to 10 m resolution using bilinear interpolation. The resampled MaxGL was subtracted from a 10 m resolution digital elevation model (resampled from 1 m LiDAR). This results in a surface representing depth to groundwater, such that negative values indicate water above the ground surface. Note that due to the resampling procedure, areas with steep slopes may misrepresent the true extent of inundation. Results for all non-development scenarios (S1, S4, S9, S12, S13, S14, S14b) are shown in Appendix B.

The waterlogging maps show the maximum inundation extent based on the highest modelled groundwater level for each scenario. The maps can be compared with the base-case (S0) scenario shown previously in Figure 3-2. Table 3-8 lists the total areas of inundation associated with the maximum groundwater level for the climate scenarios, and the average annual flows from the Serpentine River at the model boundary.

	Rainfall	Area of inundation	Average inundation	Discharge Serpentine
Scenario	(mm)	(km²)	depth (m)	River (GL/yr)
SO	800	134.3	0.43	96.7
S1	682	104.4	0.39	49.3
S4	759	118.8	0.40	70.7
S9	800	136.4	0.42	88.0
S12	782	144.8	0.44	84.1
S13	887	166.0	0.50	147.9
S14	759	122.6	0.41	70.6
S14b	800	138.9	0.43	88.2

Table 3-8Summary of inundation area and depth at MaxGL, and average annualsurface flows for climate scenarios

The future dry climate scenario (S1) shows a 30 km² reduction in the extent of inundation, and a shallower average depth relative to S0. The areas with the greatest reductions in inundation area are those with free draining soils and deeper groundwater. These include the Spearwood Dunes and Safety Bay Sands in the west of the study area, and the Jandakot Mound. As these areas have little surface runoff as a result of saturation excess, there is no

capacity for increased recharge as groundwater drops – which means that the phreatic surface is more responsive to changes in rainfall. Added to this is the effect in residential areas of unlicensed abstraction which tends to be concentrated in areas with significant depth to groundwater within the study area.

With the drier climate and increased abstraction (relative to pre-2000 levels) the S1 scenario shows that many wetlands in these susceptible areas may disappear even in the wettest years. Examples include Churcher Swamp, Pike Swamp and Anstey Swamp, as well as other wetlands located in the Spearwood Dunes and on the Jandakot Mound. Lakes Cooloongup and Walyungup show substantial reductions in surface area and depth. With the continued nearby infiltration of water from the Kwinana waste water treatment plant the water levels in the Spectacles Wetlands did not fall.

To the east of the Peel Main Drain on low-lying sections of the coastal plain, the extent of inundation for S1 relative to S0 is not significantly reduced. As rainfall is reduced, saturation excess runoff (overland flow) is also reduced, allowing increased recharge to groundwater – the groundwater is essentially buffered by the surface water. As such, many of the waterlogging prone areas are likely to remain waterlogged even with large reductions in rainfall. The reduced rainfall is much more apparent in the Serpentine River outflows which are reduced by almost half for S1 relative to S0.

The future medium climate scenario S4 shows similar results to scenario S1. Many wetlands in the base-case scenario are greatly reduced in extent and depth or disappear completely. The future wet climate scenario S9 shows a slight reduction in the extent and depth of wetland water levels on the Jandakot Mound and in the Spearwood Dunes. However, the extent and depth of inundation is actually slightly increased in some areas as a re sult of the altered rainfall patterns (i.e. the scaled rainfall 1961–90 used for the future wet climate includes higher rainfall years than the base-case period 1981–2010, despite having a similar average rainfall).

Scenario S12, with future medium climate with two wet years at the end of the sequence, shows a similar extent of inundation to the base-case (S0) scenario. Both wet years have in excess of 1000 mm rainfall and the groundwater levels rise dramatically from recharge over the two years. So, even after a sustained period of reduced rainfall, the wet years are sufficient to raise groundwater levels to maximum levels comparable to those modelled in the base-case period. In some sections of the model, the extent and depth of inundation for S12 is increased relative to S0. This indicates that planning for drainage and inundation must consider not only the dry climate scenario or low rainfall years, as isolated wetter than average years could result in significant rises in groundwater levels resulting in inundation and posing a threat to infrastructure.

Scenario S13 shows the response of groundwater to a higher average annual rainfall of 887 mm relative to 800 mm for the base-case (S0) scenario, with several high rainfall years. Figure B-5 shows the extent of inundation at MaxGL for this scenario. In all areas of inundation within the model for S0, S13 has increased waterlogging depth and extent. The

affect is most pronounced in local depressions between dunes. The total inundated area is 32 km² greater than for S0: a 24% increase.

The sea-level-rise scenario with the future medium climate (S14) shows that, over most of the area, waterlogging does not increase relative to scenario S4 – future medium climate. Similarly, S14b does not show a dramatic increase in inundation extent relative to S9. For both scenarios, S14 and S14b, there is an increase in water levels and the extent of inundation at Lake Richmond, Lake Walyungup, Anstey Swamp and the southernmost pool in the Serpentine River (Figure B-6 and Figure B-7).

3.7 Surface flow data

The Lower Serpentine integrated surface water and groundwater model was used to simulate open channel flows for 12 rivers and drains. Six flow gauges were used for calibrating the river flows, and the results are reported in Marillier et al. (2012b). Stage and discharge data can be extracted from the Mike 11 results files at any computational point within the river network, and this information may be useful in studies concerning environmental water requirements or allocation planning. Detailed flow analysis is beyond the scope of this project, however, the Lower Serpentine model and associated results files are available on request from the Department of Water. The waterways for which data is available include: Beenyup Brook, Berriga Drain, Cardup Brook, Dirk Brook, Karnet Brook, Manjedal Brook, Medulla Brook, Myara Brook, Oaklands Drain, Peel Main Drain, Punrack Drain, and the Serpentine Drain/River. Results are available only for the sections of these waterways located on the Swan Coastal Plain.

Figure 3-11 shows, for each of the climate scenarios, flow duration curves derived from modelled average daily discharge for the Serpentine River at the model boundary. Note that peak flows at subdaily time-step may exceed the maximum flows shown on the curve. Curves were calculated using 1981–2010 data for the base-case scenario and 2016–45 data for all other scenarios. Figure 3-11 shows average annual flows for the same periods.

The graph illustrates the reduction in flows which can be expected with reduced rainfall. The flow duration curve for the future wet (S9) scenario is comparable to that of the base-case scenario, with flows in all sections of the curve slightly less frequent. The future medium and dry climates both show more significant reductions in flow through all parts of the curve, attributed to both reduced baseflow and overland flow. The reduction is greatest for the dry climate, with fewer medium and high flow events in winter. This is a result of the reduced overland flow which occurs as groundwater levels, and therefore rejected recharge, decrease. The historical wet scenario (S13) shows little change in the low-flow end of the curve, however, mid-range and peak flows are larger and more frequent relative to the base-case scenario. This reflects an increase in rejected recharge, and is consistent with the waterlogging results described in Section 3.6.

Figure 3-11 Flow duration curves for climate scenarios, based on modelled discharge from the Serpentine River at the model boundary

Figure 3-12 Average annual flows for the climate scenarios, based on modelled discharge from the Serpentine River at the model boundary

3.8 Uncertainty and error in model results

Groundwater models are approximations of reality; how faithfully they make those approximations depends on many facets of the modelling process: the quantity and quality of the data available to conceptualise, construct and calibrate the model; the ability of the model's equations to match physical processes; and the accuracy of the projections which are implemented in scenario modelling.

The dynamic nature of groundwater modelling has ramifications for the interpretation and use of models and their output. Dynamic changes of the groundwater system and its forcing agents (for example, abstraction, climate and land use) complicate the task of accurately hind-casting and forecasting hydrogeological behaviour. The fact that groundwater flow modelling is typically based on limited data influences our ability to represent the groundwater system. Lack of data can manifest in several forms within a groundwater model:

- inadequate model conceptualisation
- uncertainty in locations lacking calibration data
- errors associated with insufficient or incorrect forcing data (rainfall, boundary conditions, abstraction)
- insufficient resolution or precision in the model.

All of these points are applicable to the use of the Lower Serpentine regional model for scenario modelling and prediction. Every effort was made to reliably and accurately represent the groundwater and surface water within the study area, however, model results should always be interpreted in the context of the uncertainty and error associated with the model and, where possible, validated by appropriate field observations.

The following sections describe some of the sources of error and uncertainty which should be considered for the Lower Serpentine model.

Calibration error

The Lower Serpentine hydrological studies: model construction and calibration report (Marillier et al. 2012b) contains a detailed discussion of areas within the model which did not calibrate well, with some diagnosis of the problems. Error statistics for each of the calibration bores were described in Appendix C of the report and provide the best indication of model reliability for particular areas. Calibration was targeted at accurately reproducing the annual maximum observed groundwater levels. The following areas were problematic for calibration:

• The north-eastern corner of the model area, near T120(O) and T170. In this area, the model calibrated sufficiently for the period 1970–90 but from 1990 onwards the model fails to simulate ongoing declining head in this area. The error is probably a result of the exclusion from the model of the Cattamarra Aquifer which underlies this area and has shown a significant decline in head over the same period. Developments in this area include **Armadale** and **Byford**. This error results in an over-prediction of groundwater levels, surface inundation from groundwater and subsurface drainage within this area for recent decades.

 The area to the west of the Jandakot Mound near T180 (O), T190 (O), T240 (O) and T130 (O). The effects of abstraction seem to be over-estimated in this section of the model, and the declining groundwater trend in the area is over-predicted. In addition, the conceptualisation of the Superficial Aquifer geology is not detailed enough to capture the east to west transition from Bassendean Sand to Tamala Limestone and the associated steep hydraulic gradient. Sections of the **Postans** and **Kwinana** developments are located in this area. Groundwater levels are generally underpredicted in these developments by around 1 m but this is unlikely to affect inundation mapping or drainage estimates given that the depth to the water table is several metres or more in this area.

Boundary conditions

The northern, southern and eastern boundaries of the Superficial Aquifer were set as noflow, with a small section in the north-east assigned a time-varying head boundary, and the western boundary set to 0 mAHD to approximate mean sea level. A detailed discussion of boundary conditions and model sensitivity is available in the *Lower Serpentine hydrological studies: model construction and calibration report* (Marillier et al. 2012b). Generally, model results will be less reliable along the model boundary, particularly for predictive scenarios where changing conditions outside the model boundary may affect groundwater levels and flows within the model. The **Armadale** and **Mandogalup** development areas may be affected.

Abstraction

Some sections of the model are sensitive to changes in abstraction, as described in the *Lower Serpentine hydrological studies: model construction and calibration report* (Marillier et al. 2012b). There is considerable uncertainty in the abstraction data used in the model base-case period due to the lack of reliable data prior to the mid-2000s and the absence of metering data for the majority of groundwater licenses in the area. Further more, for predictive scenarios it is necessary to make assumptions about future abstraction rates, as described in Section 2.3. This introduces uncertainty into sections of the model which are sensitive to abstraction, including the Spearwood Dunes, sections of the Jandakot Mound, and the eastern extent of Byford. Generally, maximum groundwater levels are less sensitive to abstraction and developments in affected areas have significant depths to groundwater so drainage results from development areas should be relatively unaffected.

Uncertainty in climate and sea-level-rise scenarios

As described in Section 2.2, there is a large degree of uncertainty associated with the projected climate and sea-level-rise scenarios. The selection of the 10th, 50th and 90th percentile climate scenarios for the year 2030 aims to capture uncertainty so the risks associated with climate change can be accounted for. For example, the highest risk scenario for groundwater inundation would be the future wet climate scenario while the future dry scenario would be the highest risk when considering wetland loss. Note that the 50th percentile scenario does *not* represent the most likely scenario. Uncertainty was not considered in the sea-level-rise scenario, the estimated sea-level-rise applied in the model

scenario was based on state planning policy. The IPCC (2007) suggest a range of potential sea-level-rise scenarios based on the various emissions scenarios and model projections.

Uncertainty in drainage design and recharge for development scenarios

The Lower Serpentine regional model area is 728 km² and not designed for simulating detailed development-scale drainage design. As a result, certain assumptions are made about the urban and industrial developments which influence the outcome of model results. These include the post-development recharge rate, the subsurface drainage level, and the fill level. Depending on the local-scale design of a development, all of these factors may vary, thus influencing post-development groundwater levels and estimates of drainage.

The development scenarios investigated in this report assume infiltration of stormwater on site and, therefore, recharge rates substantially increased post-development. Depending on local hydraulic constraints, this level of infiltration may not be possible in all sites. Recharge rates may be lower, with higher rates of overland flow, and associated requirements for treatment and storage of water at the surface.

The scenarios also assume free-draining outlets for subsurface drainage. In many cases, development areas are situated low in the landscape, and the availability of free-draining outlets for subsurface drainage will determine the controlled groundwater level (CGL). For example, in many developments, a CGL at AAMinGL would not be feasible.

Fill levels were defined based on the selected subsurface drainage level for the development scenarios. To obtain appropriate clearance from groundwater, fill will probably be required in many of the development areas. However, its exact level and location will vary significantly depending on the assumptions used in the modelling. The level of fill and subsurface drainage influence the post-development groundwater levels so the final drainage design within an individual development is likely to result in groundwater levels and drainage volumes that differ from any of the scenarios modelled here.

Lower Serpentine model applicability

The Lower Serpentine regional model is appropriate for assessing the following at the regional scale:

- relative water balance changes for urban development areas
- relative changes in superficial groundwater level and river flows as a result of climate change
- relative changes in superficial groundwater level as a result of urban development, drainage and abstraction
- relative changes in coastal groundwater levels as a result of sea-level rise
- potential volumes of drainage water resulting from urban development based on assumptions of recharge, drainage level and fill.

In addition, the regional model is suitable for provision of district-scale groundwater level evaluation in areas where the inherent model error is deemed acceptable. If the error is unacceptably large then it may be necessary to develop a localised model with a finer grid

and revised conceptualisation using local data. Alternatively, local hydrogeological data may be sufficient to provide district-scale information without the requirement for groundwater modelling.

4 Conclusions and recommendations

This scenario report represents the final phase of the Lower Serpentine hydrological studies. It describes the selection process for drainage, climate and development scenarios implemented with the Lower Serpentine regional model, the numerical implementation of the scenarios, and the results of the scenario modelling. The results reported include groundwater levels, groundwater inundation maps, river flows and water balances for each of the 15 scenarios modelled, including the base-case scenario.

The scenarios modelled included:

- Future climate scenarios based on IPCC emissions scenarios, including changes in precipitation, evaporation and sea-level-rise. The scenarios were selected to provide results for a *reasonable* range of future climates, and to include historical wet periods. The following scenarios were implemented:
 - Future wet climate: -5.0% change in mean annual rainfall relative to the WMO climate baseline period 1961-90.
 - Future medium climate: -9.8% change in mean annual rainfall relative to the WMO climate baseline period 1961-90.
 - Future dry climate: -19.1% change in mean annual rainfall relative to the WMO climate baseline period 1961-90.
 - Future medium with two wet years: the future medium climate with the years 2044 and 2045 replaced with observed rainfall from 1963 and 1964 – both high rainfall years in excess of 1000 mm.
 - Historical wet: 5.2% increase in mean annual rainfall using the historical climate sequence 1945–74.
 - Sea-level-rise: Increase in sea-level of 0.9 m by the year 2110.
- **Development scenarios** based on information from the Metropolitan Region Scheme (MRS), the Peel Region Scheme (PRS) and Economic and Employment Lands Strategy (EELS) published by the Department of Planning. The development areas modelled included 'Industrial Investigation' areas from the EELS and existing undeveloped urban, urban deferred and industrial areas from the region schemes.
- **Subsurface drainage scenarios** in areas of shallow groundwater at different levels including AAMaxGL, AAMinGL and AAMinGL plus 0.5 m, with fill where required. The subsurface drainage scenarios aim to capture a *representative* range of drainage levels.

Table 4-1 lists the scenarios implemented in the model.

Scenario #*	Climate scenarios	Subsoil drainage scenarios	Development scenario
S0	Current climate	None	Current land use scenario
S1		None	Current land use scenario
S2	Dry	At AAMaxGL	Full development
S3		At AAMinGL	Full development
S4		None	Current land use scenario
S5		At AAMaxGL	Full development
S6	Medium	0.5m above AAMinGL	Full development
S7	Wedram	At AAMinGL	Full development
S8		AAMaxGL	Full development Garden bores
S9		None	Current land use scenario
S10	Wet	At AAMaxGL	Full development
S11		At AAMinGL	Full development
S12	Medium with two wet years	None	Current land use scenario
S13	Historical wet	None	Current land use scenario
S14	Sea level rise Future medium	None	Current land use scenario
S14b	Sea level rise Future wet	None	Current land use scenario

Table 4-1Scenarios implemented in the Lower Serpentine regional model

*Scenario number is a unique ID which is used in file naming conventions within the Mike SHE model

For the climate change scenarios without development (S1, S4, S9 and S13), the changes in groundwater levels and flows from the Serpentine River relative to the base-case (S0) scenario were:

- Future dry climate S1: -0.82 m AAMaxGL, -0.64 m AAMinGL, -47.5 GL/yr flow.
- Future medium climate S4: -0.49 m AAMaxGL, -0.41 m AAMinGL, -26.0 GL/yr flow.
- Future wet climate S9: -0.26 m AAMaxGL, -0.28 m AAMinGL, -8.7 GL/yr flow.
- Historical wet climate S13: +0.28 m AAMaxGL, +0.04 m AAMinGL, +51.2 GL/yr flow.

The driest climate scenario resulted in significant reductions in the extent, depth and occurrence of wetlands within the model area. Flows from the Serpentine River were shown to be sensitive to changes in rainfall, with a 19% reduction in rainfall resulting in a 49% reduction in flow. Groundwater levels were most sensitive to changes in rainfall in areas with a significant depth to groundwater, and were least sensitive in areas with groundwater at the surface.

Subsurface drainage was modelled for the 19 development areas within the Serpentine model. Table 4-2 shows the volume of drainage for several of the drainage scenarios. Modelling showed that drainage volumes increase as rainfall increases and as deeper drainage levels are set.

The drainage volumes presented in Table 4-2 are indicative only, and are based on assumptions regarding recharge, drainage level and fill surface. Drainage volume will be highly variable depending on the local-scale design implemented for individual developments. The drainage volume does not necessarily represent water which will be

discharged from the development areas. Rather, it is indicative of the volume of water which will require management at the development scale. The development scenarios assumed an increased recharge as a result of increased impervious surface areas, and therefore, increased overland flow infiltrating at the development scale. Depending on drainage design, more or less water may be recharged; however, the total volume requiring management will be similar regardless of impervious area runoff being infiltrated or treated at the surface.

Table 4-2	Drainage volumes from development areas for the future dry, medium and
wet scenarios	with drains at AAMaxGL

Development name	(SO) Base case	(S2) Future dry, drains	(S5) Future med,	(S10) Future wet,		
		at AAMaxGL	drains at AAMaxGL	drains at AAMaxGL		
Armadale	124	74	166	270	•	
Baldivis BA1	0	0	13	101		
Baldivis BA4	30	1	21	90		
Baldivis BA6	0	0	1	18		
Baldivis Industrial (North-East)	1925	2836	3488	3918		
Baldivis	13	10	30	74		
Byford	1067	335	570	815		
Cardup Industrial	0	11	68	128		
Casuarina	1061	580	826	1058		
Eighty Road	0	0	3	53		0
Karnup KA1	0	0	2	115	2	2000
Kwinana Industrial	0	12	123	342	٦L/	4000
Kwinana	0	2	23	169	2	6000
Mandogalup	695	358	577	763		8000
Mundijong Industrial	527	1573	1914	2072		
Mundijong	1447	1052	1596	1953		
Port Kennedy Industrial	0	0	8	31		
Postans	0	27	67	109		
Serpentine	326	189	288	358		

Many of the development areas are in locations with shallow groundwater, or groundwater above the surface, and these areas are the most constrained from a hydrological perspective. Generally, the developments located along the eastern fringe of the coastal plain and the proposed Baldivis Industrial area generate the greatest volumes of subsurface drainage water, and will require more investment to manage groundwater than other areas with deeper groundwater.

The 0.9 m sea-level-rise scenario showed an increase in groundwater levels up to 2 km inland from the coast, and up to 3 km upstream on the Serpentine River. The changes in groundwater levels are most extensive on the Rockingham Peninsula and Becher Point where the land is surrounded on three sides by the ocean. Of the developments, only the Kwinana Industrial area is within the region affected by sea-level-rise though groundwater is deep enough to avoid any inundation. Note that Mike SHE is not capable of modelling

variable density fluids and so the sea-level-rise scenario does not give an indication of saltwater intrusion.

Analysis of inundation due to groundwater (waterlogging) was undertaken for each climate scenario. The analysis indicated that groundwater occurred at, or above, the land surface in many low-lying parts of the study area, particularly in the central and eastern parts of the coastal plain. The base-case scenario indicated that the maximum groundwater level was above the surface across 134 km², or 18%, of the total area modelled. The dry climate scenario indicated a smaller area of waterlogging (104 km² or 14%) though some low-lying areas were still subject to extensive inundation. The historical wet scenario showed that 166 km² (23%) of the study area was inundated by groundwater in the higher rainfall regime.

The future medium climate with two wet years scenario illustrated that a short sequence of high rainfall events could raise groundwater levels quickly, even after long periods of lower rainfall. This resulted in waterlogging at or above levels which occurred under a rainfall regime which is wetter on average but without very high rainfall years.

Abstraction from domestic garden bores within the development areas was modelled for all new urban areas. Abstraction was modelled at a rate of 400 kL/yr, assuming a lot size of 400 m² covering 60% of the 50.6 km² urban development area, and a bore installation rate of 11% (approximately one in 10 houses). This resulted in an additional 3.4 GL/yr of unlicensed abstraction from the Superficial Aquifer across the study area. Scenario modelling showed that the additional abstraction reduced the volume of subsurface drainage water from the development areas. There is a high degree of uncertainty associated with the garden bore abstraction scenario, due to uncertainties in model inputs and aquifer suitability. Therefore, results from this scenario should be considered as indicative only. Actual abstraction rates will vary according to local aquifer transmissivity and individual usage patterns.

The Lower Serpentine regional model is suitable for downscaling or providing boundary conditions for local area models. These models can be used to refine results for individual developments or wetlands. It is recommended that, before developing local area models, the suitability of the conceptual model is assessed at the local scale, and that local data is used to refine the model and its calibration. The Lower Serpentine regional Mike SHE model and associated results and inputs are available in digital format from the Department of Water on request.

Appendices

Appendix A Changes in groundwater levels for all scenarios

Figure A-1 Difference in AAMaxGL (A) and AAMinGL (B): base-case (SO) subtract future dry climate (S1)

Figure A-2 Difference in AAMaxGL (A) and AAMinGL (B): base-case (SO) subtract future dry climate with development and drainage at AAMaxGL (S2)

Figure A-3 Difference in AAMaxGL (A) and AAMinGL (B): base-case (SO) subtract future dry climate with development and drainage at AAMinGL (S3)

Figure A-4 Difference in AAMaxGL (A) and AAMinGL (B): base-case (SO) subtract future medium climate (S4)

Figure A-5 Difference in AAMaxGL (A) and AAMinGL (B): base-case (SO) subtract future medium climate with development and drains at AAMaxGL (S5)

Figure A-7 Difference in AAMaxGL (A) and AAMinGL (B): base-case (SO) subtract future medium climate with development and drains at AAMinGL (S7)

Figure A-9 Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract future wet climate (S9)

Figure A-11 Difference in AAMaxGL (A) and AAMinGL (B): base-case (SO) subtract future wet climate with development and drains at AAMinGL (S11)

Figure A-12 Difference in AAMaxGL (A) and AAMinGL (B): base-case (SO) subtract medium climate with two wet years (S12)

Figure A-13 Difference in AAMaxGL (A) and AAMinGL (B): base-case (SO) subtract historical wet climate (S13)

Figure A-14 Difference in AAMaxGL (A) and AAMinGL (B): base-case (SO) subtract medium climate with sea-level-rise (S14)

Figure A-15 Difference in AAMaxGL (A) and AAMinGL (B): base-case (S0) subtract wet climate with sea-level-rise (S14b)

Appendix B Waterlogging analysis for climate scenarios

Figure B-1 Extent of inundation at MaxGL with dry climate (S1)

Figure B-2 Extent of inundation at MaxGL with medium climate (S4)

Figure B-3 Extent of inundation at MaxGL with wet climate (S9)

Figure B-4 Extent of inundation at MaxGL with medium climate and two wet year (S12)

Figure B-5 Extent of inundation at MaxGL with historical wet climate (S13)

Figure B-6 Extent of inundation at MaxGL with sea-level-rise and medium climate (\$14)

Figure B-7 Extent of inundation at MaxGL with sea-level-rise and wet climate (S14b)

Appendix C Scenario water balances

Average annual water balances calculated for the model area

							Ave	rage annua	al flux quan	tity (mm/y	/r)					
Development	Area Flux	S0	S1	S2	S 3	S4	S5	S6	S7	S 8	S 9	S10	S11	S12	S13	S14
	727.6 Precipitation	800	682	682	682	759	759	759	759	759	800	800	800	782	887	759
	Evapotranspiratio	n 644	564	556	551	613	604	602	597	602	632	622	612	611	632	619
	Gross recharge	272	189	197	197	231	239	238	239	239	262	270	271	256	364	229
	EVT from SZ	125	75	74	69	92	90	86	83	88	103	100	90	96	131	96
	Hor. SZ flow out	12	5	6	5	7	8	8	7	8	9	9	8	8	13	6
¥	Hor. SZ flow in	0	1	1	1	1	1	1	1	1	1	0	1	1	0	1
mei	Ver. SZ flow out	42	36	36	36	40	41	41	40	41	44	45	43	42	54	38
t t	Ver. SZ flow in	11	7	7	7	7	7	7	7	7	8	8	8	8	10	10
3	Abstraction	26	43	43	43	43	43	43	43	48	43	43	43	43	43	43
4	OL flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	OL flow out	1	0	0	0	1	1	1	1	1	1	1	1	1	3	1
	Drainage (total)	74	32	39	45	49	56	61	67	55	62	73	87	60	116	49
	Base flow to River	11	7	8	7	9	9	9	9	9	10	10	9	9	13	9
	Irrigation	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							Av	erage annu	al flux quar	ntity (GL/y	r)					
								-	-							
Development	Area Flux	S0	S1	S2	S3	S4	S5	S6	S7	S8	S 9	S10	S11	S12	S13	S14
	727.6 Precipitation	500											593	E C O	6.45	552
		582	496	496	496	552	552	552	552	552	582	582	362	209	645	
	Evapotranspiratio	582 n 468	496 410	496 404	496 401	552 446	552 440	552 438	552 435	552 438	582 460	582 453	446	445	645 460	451
	Evapotranspiratio Gross recharge	582 n 468 198	496 410 138	496 404 143	496 401 143	552 446 168	552 440 174	552 438 173	552 435 174	552 438 174	582 460 190	582 453 196	446 197	445 186	460 265	451 167
	Evapotranspiratio Gross recharge EVT from SZ	582 n 468 198 91	496 410 138 55	496 404 143 54	496 401 143 50	552 446 168 67	552 440 174 65	552 438 173 62	552 435 174 60	552 438 174 64	582 460 190 75	582 453 196 72	446 197 66	445 186 70	645 460 265 95	451 167 70
	Evapotranspiration Gross recharge EVT from SZ Hor. SZ flow out	582 n 468 198 91 9	496 410 138 55 4	496 404 143 54 4	496 401 143 50 4	552 446 168 67 5	552 440 174 65 6	552 438 173 62 5	552 435 174 60 5	552 438 174 64 6	582 460 190 75 6	582 453 196 72 7	446 197 66 6	445 186 70 6	645 460 265 95 10	451 167 70 5
ŧ	Evapotranspiratio Gross recharge EVT from SZ Hor. SZ flow out Hor. SZ flow in	582 n 468 198 91 9 0	496 410 138 55 4 1	496 404 143 54 4 1	496 401 143 50 4 1	552 446 168 67 5 1	552 440 174 65 6 0	552 438 173 62 5 1	552 435 174 60 5 1	552 438 174 64 6 0	582 460 190 75 6 0	582 453 196 72 7 0	446 197 66 6 0	445 186 70 6 1	645 460 265 95 10 0	451 167 70 5 1
ment	Evapotranspiratio Gross recharge EVT from SZ Hor. SZ flow out Hor. SZ flow in Ver. SZ flow out	582 n 468 198 91 9 0 30	496 410 138 55 4 1 26	496 404 143 54 4 1 26	496 401 143 50 4 1 26	552 446 168 67 5 1 29	552 440 174 65 6 0 30	552 438 173 62 5 1 30	552 435 174 60 5 1 29	552 438 174 64 6 0 30	582 460 190 75 6 0 32	582 453 196 72 7 0 32	446 197 66 6 0 32	445 186 70 6 1 30	460 265 95 10 0 40	451 167 70 5 1 27
at chme nt	Evapotranspiratio Gross recharge EVT from SZ Hor. SZ flow out Hor. SZ flow in Ver. SZ flow out Ver. SZ flow in	582 n 468 198 91 9 0 30 8	496 410 138 55 4 1 26 5	496 404 143 54 4 1 26 5	496 401 143 50 4 1 26 5	552 446 168 67 5 1 29 5	552 440 174 65 6 0 30 5	552 438 173 62 5 1 30 5	552 435 174 60 5 1 29 5	552 438 174 64 6 0 30 5	582 460 190 75 6 0 32 6	582 453 196 72 7 0 32 6	446 197 66 6 0 32 6	445 186 70 6 1 30 6	645 460 265 95 10 0 40 7	451 167 70 5 1 27 7
ull catchment	Evapotranspiratio Gross recharge EVT from SZ Hor. SZ flow out Hor. SZ flow in Ver. SZ flow in Ver. SZ flow in Abstraction	582 n 468 198 91 9 0 30 8 19	496 410 138 55 4 1 26 5 31	496 404 143 54 4 1 26 5 31	496 401 143 50 4 1 26 5 31	552 446 168 67 5 1 29 5 31	552 440 174 65 6 0 30 5 31	552 438 173 62 5 1 30 5 31	552 435 174 60 5 1 29 5 31	552 438 174 64 6 0 30 5 35	582 460 190 75 6 0 32 6 31	582 453 196 72 7 0 32 6 31	446 197 66 6 0 32 6 31	445 186 70 6 1 30 6 31	645 460 265 95 10 0 40 7 31	451 167 70 5 1 27 7 31
Full catchment	Evapotranspiratio Gross recharge EVT from SZ Hor. SZ flow out Hor. SZ flow out Ver. SZ flow out Ver. SZ flow in Abstraction OL flow in	582 n 468 198 91 9 0 30 30 8 19 0	496 410 138 55 4 1 26 5 31 0	496 404 143 54 4 1 26 5 31 0	496 401 143 50 4 1 26 5 31 0	552 446 168 67 5 1 29 5 31 0	552 440 174 65 6 0 30 5 31 0	552 438 173 62 5 1 30 5 31 0	552 435 174 60 5 1 29 5 31 0	552 438 174 64 6 0 30 5 35 35 0	582 460 190 75 6 0 32 6 31 0	582 453 196 72 7 0 32 6 31 0	446 197 66 6 0 32 6 31 0	445 186 70 6 1 30 6 31 0	460 265 95 10 0 40 7 31 0	451 167 70 5 1 27 7 31 0
Full catchment	Evapotranspiratio Gross recharge EVT from SZ Hor. SZ flow out Hor. SZ flow in Ver. SZ flow in Abstraction OL flow in OL flow out	582 n 468 198 91 9 0 30 8 19 0 1	496 410 138 55 4 1 26 5 31 0 0	496 404 143 54 4 1 26 5 31 0 0	496 401 143 50 4 1 26 5 31 0 0	552 446 168 67 5 1 29 5 31 0 1	552 440 174 65 6 0 30 5 31 0 0	552 438 173 62 5 1 30 5 31 0 0	552 435 174 60 5 1 29 5 31 0 0	552 438 174 64 6 0 30 5 35 35 0 0	582 460 190 75 6 0 32 6 31 0 1	582 453 196 72 7 0 32 6 31 0 1	446 197 66 6 0 32 6 31 0 1	445 186 70 6 1 30 6 31 0 1	460 265 95 10 0 40 7 31 0 2	451 167 70 5 1 27 7 31 0 1
Full catchment	Evapotranspiratio Gross recharge EVT from SZ Hor. SZ flow out Hor. SZ flow out Ver. SZ flow in Abstraction OL flow in OL flow out Drainage (total)	582 n 468 91 9 0 30 8 19 0 1 54	496 410 138 55 4 1 26 5 31 0 0 23	496 404 143 54 4 1 26 5 31 0 0 0 28	496 401 143 50 4 1 26 5 31 0 0 33	552 446 168 67 5 1 29 5 31 0 1 35	552 440 174 65 6 0 30 5 31 0 0 41	552 438 173 62 5 1 30 5 31 0 0 44	552 435 174 60 5 1 29 5 31 0 0 49	552 438 174 64 6 0 30 5 35 0 0 40	582 460 190 75 6 0 32 6 31 0 1 45	582 453 196 72 7 0 32 6 31 0 1 53	446 197 66 6 0 32 6 31 0 1 63	445 186 70 6 1 30 6 31 0 1 44	645 460 265 95 10 0 40 7 31 0 2 85	451 167 70 5 1 27 7 31 0 1 35
Full catchment	Evapotranspiratio Gross recharge EVT from SZ Hor. SZ flow out Hor. SZ flow out Ver. SZ flow out Ver. SZ flow in Abstraction OL flow in OL flow out Drainage (total) Base flow to River	582 n 468 198 91 9 0 30 8 19 0 1 54 8	496 410 138 55 4 1 26 5 31 0 0 23 5	496 404 143 54 4 1 26 5 31 0 0 0 28 6	496 401 143 50 4 1 26 5 31 0 0 33 5	552 446 168 67 5 1 29 5 31 0 1 35 7	552 440 174 65 6 0 30 5 31 0 0 41 7	552 438 173 62 5 1 30 5 31 0 0 44 6	552 435 174 60 5 1 29 5 31 0 0 49 6	552 438 174 64 6 0 30 5 35 0 0 40 7	582 460 190 75 6 0 32 6 31 0 1 45 7	582 453 196 72 7 0 32 6 31 0 1 53 7	446 197 66 6 0 32 6 31 0 1 63 6 6	569 445 186 70 6 1 30 6 31 0 1 44 7	643 460 265 95 10 0 40 7 31 0 2 85 9	451 167 70 5 1 27 7 31 0 1 35 7
Full catchment	Evapotranspiratio Gross recharge EVT from SZ Hor. SZ flow out Hor. SZ flow out Ver. SZ flow out Ver. SZ flow in Abstraction OL flow in OL flow out Drainage (total) Base flow to River Irrigation	582 n 468 198 91 9 0 30 30 8 19 0 1 54 8 1	496 410 138 55 4 1 26 5 31 0 0 23 5 1	496 404 143 54 4 1 26 5 31 0 0 28 6 1	496 401 143 50 4 1 26 5 31 0 0 33 5 1	552 446 168 67 5 1 29 5 31 0 1 35 7 1	552 440 174 65 6 0 30 5 31 0 0 41 7 1	552 438 173 62 5 1 30 5 31 0 0 44 6 1	552 435 174 60 5 1 29 5 31 0 0 49 6 1	552 438 174 64 6 0 30 5 35 0 0 40 7 1	582 460 190 75 6 0 32 6 31 0 1 45 7 1	582 453 196 72 7 0 32 6 31 0 1 53 7 1	446 197 66 6 0 32 6 31 0 1 63 6 1	569 445 186 70 6 1 30 6 31 0 1 44 7 1	643 460 265 95 10 0 40 7 31 0 2 85 9 1	451 167 70 5 1 27 7 31 0 1 35 7 1

Average annual water balances calculated for each development area (mm/yr)

mprometry mprometry pic bits pic bits <	.	Area	-					Av	erage ann	ual flux qu	antity (mi	n)						
41 Propertiesion 711 663 663 663 764 761 775 776 <t< th=""><th>Development</th><th>(km²)</th><th>Flux</th><th>S0</th><th>S1</th><th>S2</th><th>S3</th><th>S4</th><th>S5</th><th>S6</th><th>S7</th><th>S8</th><th>S9</th><th>S10</th><th>S11</th><th>S12</th><th>S13</th><th>S14</th></t<>	Development	(km²)	Flux	S0	S1	S2	S3	S 4	S 5	S6	S7	S 8	S 9	S10	S11	S12	S13	S14
Desperimentation 0.8 486 486 486 486 485 973 486 485 973 985 485 985		4.5	Precipitation	781	663	663	663	741	741	741	741	741	779	779	779	764	903	741
Glass instands 303 810 256 211 316 310 11 310 11 310 11 310 11 310 11 310 11 310 11 310 11 310<		I	Evapotranspiration	618	496	422	432	556	475	486	464	453	573	493	466	556	584	556
Profile 125 31 32 31 32 31 32 31 33 <			Gross recharge	203	180	256	231	206	291	270	282	305	222	319	322	221	291	206
IND. Z.F. Brown IO 33 33 33 34 35 35 10 37 38 39 70 38 70 38 70 38 70 38 70 38 90 30 90 10 110 711 110 711 110 711 100 710 70		l	EVT from SZ	125	31	12	1	50	19	10	1	11	62	23	1	57	104	50
Part Dist Dist <thdist< th=""> Dist Dist <thd< th=""><th></th><td></td><td>Hor. SZ flow out</td><td>67</td><td>53</td><td>101</td><td>41</td><td>58</td><td>111</td><td>47</td><td>41</td><td>92</td><td>61</td><td>116</td><td>39</td><td>59</td><td>70</td><td>58</td></thd<></thdist<>			Hor. SZ flow out	67	53	101	41	58	111	47	41	92	61	116	39	59	70	58
vec: vec: <th< th=""><th>e</th><td>,</td><td>Hor. SZ HOW III</td><td>103</td><td>85 100</td><td>58 119</td><td>138</td><td>92</td><td>110</td><td>141</td><td>1/1</td><td>117</td><td>90</td><td>110</td><td>193</td><td>94</td><td>112</td><td>92</td></th<>	e	,	Hor. SZ HOW III	103	85 100	58 119	138	92	110	141	1/1	117	90	110	193	94	112	92
E. Numerican 42 19 70	ada	,	ver. SZ flow in		0	0	104	0	0	0	104	0	0	0	104	0	0	0
Cittowin 75 11 3 5 20 6 9 7 6 88 11 14 98 15 15 15 10 15 10 15 10 15 10 15 10 15 10 15 10 10 <	Ę		Abstraction	42	70	70	70	70	70	70	70	136	70	70	70	70	70	70
Och Description 10 28 5 17 17 17 28 15 16 10	<		OL flow in	75	11	3	5	20	6	9	7	6	38	11	14	38	153	20
prinange (point) 28 5 10 0			OL flow out	160	29	0	5	50	0	4	3	0	84	0	7	82	286	50
BaseRhover, New 0		1	Drainage (total)	28	5	17	156	10	37	177	238	25	15	60	301	15	45	10
irrigation 0		I	Base flow to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total first 0 <th< th=""><th></th><td>1</td><td>rrigation</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>		1	rrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12 Introduction 1/3 1/3 1/38			Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
removementary cit 145 145 146 146 147 147 148 148 149 149 141 <		2.4	Precipitation	/63	667	66/ 522	667	/38	/38	/38	/38	/38	/82	/82	782	/62	863	/38
LOY frameS2 L. L. D <thd< th=""> D D <t< th=""><th></th><td></td><td>Gross recharge</td><td>151</td><td>96</td><td>145</td><td>525</td><td>126</td><td>187</td><td>180</td><td>558 180</td><td>183</td><td>160</td><td>224</td><td>222</td><td>151</td><td>258</td><td>126</td></t<></thd<>			Gross recharge	151	96	145	525	126	187	180	558 180	183	160	224	222	151	258	126
Tool: Strowert 201 37 120 138 149 199 190 142 117 244 111 Wor: Strowert 0			EVT from SZ	8	0	145	145	120	102	2	100	105	4	224	222	2	11	2
Part Part <th< th=""><th></th><td>1</td><td>Hor. SZ flow out</td><td>204</td><td>87</td><td>142</td><td>106</td><td>111</td><td>172</td><td>139</td><td>121</td><td>138</td><td>143</td><td>199</td><td>142</td><td>117</td><td>214</td><td>111</td></th<>		1	Hor. SZ flow out	204	87	142	106	111	172	139	121	138	143	199	142	117	214	111
Set Unit S: Envolve 0	÷.	I	Hor. SZ flow in	221	290	296	263	287	296	264	262	323	287	319	287	289	284	288
Yes Here: Effervin 0	BA	,	Ver. SZ flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Base Abstraction 177 305 <t< th=""><th>ivis</th><td>,</td><td>Ver. SZ flow in</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	ivis	,	Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B D. flow in 0	ald		Abstraction	177	305	305	305	305	305	305	305	371	305	305	305	305	305	305
Difflow out: 0 <t< th=""><th>Ξ</th><td></td><td>OL flow in</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	Ξ		OL flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distange (bit) D <thd< th=""> D <thd< th=""> <t< th=""><th></th><td></td><td>OL flow out</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<></thd<></thd<>			OL flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Base flow in Anver 0			Drainage (total)	0	0	0	0	0	5	3	19	1	0	41	65	0	0	0
Tradition 0			rrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VEG 2.6 Precipitation 763 667 667 738 738 738 738 782 783 533 531 51 54 51 522 52 52 55			Total Frror	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Evolutionary piration 600 495 451 477 544 492 516 509 486 573 503 511 546 657 643 Gross recharge 18 17 217 150 123 3 4 0 2 29 6 0 18 101 213 130 214 151 222 225 284 121 233 140 214 140 44 71 234 140 215 1225 284 121 233 140 0 200 0 </th <th></th> <td>2.6</td> <td>Precipitation</td> <td>763</td> <td>667</td> <td>667</td> <td>667</td> <td>738</td> <td>738</td> <td>738</td> <td>738</td> <td>738</td> <td>782</td> <td>782</td> <td>782</td> <td>762</td> <td>863</td> <td>738</td>		2.6	Precipitation	763	667	667	667	738	738	738	738	738	782	782	782	762	863	738
Second schware 218 176 217 190 207 250 226 229 230 240 244 244 244 244 244 244 244 244 244 244 244 244 244 243 200 118 101 115 222 223 264 1125 213 120 213 120 213 120 213 120 213 120 213 120 213 120 213 120 213 130 0			Evapotranspiration	609	495	451	477	544	492	516	509	486	573	503	511	546	657	547
FVT from SZ 60 3 1 0 1.3 3 4 0 2.2 2.5 6.4 1.5 1.01 1.53 1.01 1.53 1.22 2.22 2.55 4.7 8.5 1.18 6.0 4.5 4.2 1.46 5.7 9.7 5.5 4.7 8.5 1.18 6.0 4.5 4.2 1.46 5.4 4.7 5.5 Wer: S.E flow in 0 </th <th></th> <td></td> <td>Gross recharge</td> <td>218</td> <td>176</td> <td>217</td> <td>190</td> <td>207</td> <td>250</td> <td>226</td> <td>229</td> <td>253</td> <td>240</td> <td>284</td> <td>271</td> <td>234</td> <td>323</td> <td>206</td>			Gross recharge	218	176	217	190	207	250	226	229	253	240	284	271	234	323	206
Prof. St flow out 162 217 253 178 224 263 151 222 225 264 125 231 190 218 Mor. St flow out 0		I	EVT from SZ	60	3	1	0	13	3	4	0	2	29	6	0	18	101	15
Yea Hor. S2 flow in 42 67 57 97 55 47 85 118 60 45 42 146 54 47 75 Ver. S2 flow in 0		I	Hor. SZ flow out	182	217	253	178	224	263	182	151	222	225	264	125	231	190	218
Bayes Ver. S2 flow out 0	A4	1	Hor. SZ flow in	42	67	57	97	55	47	85	118	60	45	42	146	54	47	52
Yer. Schowin 0 <t< th=""><th>is B</th><td></td><td>Ver. SZ flow out</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	is B		Ver. SZ flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PS Abstration 1.3 2.6 2.0 <th2.0< th=""> 2.0 2.0 <th2.0< th=""><th>div</th><td></td><td>Ver. SZ flow in</td><td>15</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th2.0<></th2.0<>	div		Ver. SZ flow in	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OL flow with 1 0 0 0 1 0 0 1 0 1 <t< th=""><th>Bal</th><td></td><td>Ol flow in</td><td>12</td><td>20</td><td>20</td><td>20</td><td>20</td><td>20</td><td>20</td><td>20</td><td>92</td><td>20</td><td>20</td><td>20</td><td>20</td><td>20</td><td>20</td></t<>	Bal		Ol flow in	12	20	20	20	20	20	20	20	92	20	20	20	20	20	20
Orainage (total) 11 0 0 87 2 8 102 173 3 7 34 267 5 47 2 Base flow to River 1 0 <th></th> <td></td> <td>OL flow out</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>4</td> <td>1</td>			OL flow out	1	0	0	0	1	0	0	0	0	1	0	1	1	4	1
Base flow to River 1 0		I	Drainage (total)	11	0	0	87	2	8	102	173	3	7	34	267	5	47	2
irrigation 0		1	Base flow to River	1	0	0	0	0	0	0	0	0	1	1	0	0	2	0
Total Error 0 <th< th=""><th></th><td>I</td><td>rrigation</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>		I	rrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.6 Precipitation 795 668 668 762 762 762 762 805 805 805 784 891 762 Evapotraspiration 669 588 524 524 525 555 555 555 653 557 612 248 153 241 132 144 169 156 151 161 215 210 120 <th></th> <td></td> <td>Total Error</td> <td>0</td>			Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Page Evapotranspiration 669 588 524 524 525 557		1.6	Precipitation	795	688	688	688	762	762	762	762	762	805	805	805	784	891	762
Yers Yers <th< th=""><th></th><td>I</td><td>Evapotranspiration</td><td>669</td><td>588</td><td>524</td><td>524</td><td>635</td><td>555</td><td>555</td><td>555</td><td>555</td><td>653</td><td>557</td><td>557</td><td>632</td><td>655</td><td>637</td></th<>		I	Evapotranspiration	669	588	524	524	635	555	555	555	555	653	557	557	632	655	637
Yes Yes <th></th> <td></td> <td>Gross recharge</td> <td>149</td> <td>100</td> <td>163</td> <td>163</td> <td>129</td> <td>206</td> <td>206</td> <td>206</td> <td>206</td> <td>157</td> <td>248</td> <td>248</td> <td>153</td> <td>251</td> <td>128</td>			Gross recharge	149	100	163	163	129	206	206	206	206	157	248	248	153	251	128
Mon-Schow in 100 <t< th=""><th></th><td></td><td>Hor SZ flow out</td><td>183</td><td>107</td><td>147</td><td>134</td><td>133</td><td>184</td><td>169</td><td>156</td><td>151</td><td>161</td><td>215</td><td>172</td><td>140</td><td>210</td><td>123</td></t<>			Hor SZ flow out	183	107	147	134	133	184	169	156	151	161	215	172	140	210	123
Yer, SZ flow out 0	<u>م</u>		Hor. SZ flow in	182	251	227	239	251	223	234	248	255	252	222	264	254	235	243
Ver.SZ flow in 0	BA	,	Ver. SZ flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Particition 144 248 <th< th=""><th>ivis</th><td>,</td><td>Ver. SZ flow in</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	ivis	,	Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C OL flow in 0	ald		Abstraction	144	248	248	248	248	248	248	248	314	248	248	248	248	248	248
OL flow out 0 <th< th=""><th>8</th><td></td><td>OL flow in</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	8		OL flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Drainage (total) 0 0 0 24 0 1 27 54 0 0 12 95 0 0 0 0 Base flow to River 0			OL flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Base flow to River 0		1	Drainage (total)	0	0	0	24	0	1	27	54	0	0	12	95	0	0	0
Total Error 0 <th< th=""><th></th><td></td><td>Base flow to River</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>			Base flow to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Instruction 0 <th< th=""><th></th><td></td><td>Total Error</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>			Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Evaptranspiration 647 595 328 380 638 347 396 407 346 645 350 409 632 639 630 632 630 630 632 631 632 631 632 631 632 637 235 379 215 EVT from SZ 130 96 8 4 110 8 5 4 8 116 9 4 113 130 111 Hor. SZ flow out 19 22 72 17 21 70 23 15 72 20 68 14 21 18 21 18		10.2	Precipitation	787	665	665	665	740	740	740	740	740	780	780	780	761	863	740
Gross recharge 275 166 347 288 215 405 351 338 405 254 444 377 245 379 215 EVT from SZ 130 96 8 4 110 8 5 4 8 116 9 4 113 130 111 Hor. SZ flow out 19 22 72 17 21 70 23 15 72 20 68 14 21 18 21 Hor. SZ flow out 0			Evapotranspiration	647	595	328	380	638	347	396	407	346	645	350	409	632	619	638
EVT from SZ 130 96 8 4 110 8 5 4 8 116 9 4 113 130 1111 Hor. SZ flow out 19 22 72 17 21 70 23 15 72 20 68 14 21 18 21 Hor. SZ flow out 0 <	st)		Gross recharge	275	166	347	288	215	405	351	338	405	254	444	377	245	379	215
Hor. SZ flow out 19 22 72 17 21 70 23 15 72 20 68 14 21 18 21 Hor. SZ flow in 82 71 44 108 76 50 91 119 47 80 53 125 78 92 76 Ver. SZ flow out 0	Ęa	I	EVT from SZ	130	96	8	4	110	8	5	4	8	116	9	4	113	130	111
Hor. SZ flow in 82 71 44 108 76 50 91 119 47 80 53 125 78 92 76 Ver. SZ flow out 0	Ę	I	Hor. SZ flow out	19	22	72	17	21	70	23	15	72	20	68	14	21	18	21
Ver. SZ flow out 0	No	I	Hor. SZ flow in	82	71	44	108	76	50	91	119	47	80	53	125	78	92	76
Ver. 32 flow in 0	ial (,	Ver. SZ flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Prostruction 13 25	str	,	ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Structure 11 7 2 1 7 3 2 4 10 6 5 9 19 7 Sign OL flow out 8 3 0 1 4 0 0 1 0 7 0 1 6 15 4 Sign Drainage (total) 189 90 279 349 130 343 385 411 339 169 385 457 158 292 130 Base flow to River 5 3 7 2 4 8 3 2 8 4 9 2 4 6 4 Irrigation 0 <th>npu</th> <td></td> <td>nustraction Of flow in</td> <td>15</td> <td>25 A</td> <td>25</td> <td>25</td> <td>25</td> <td>25 1</td> <td>25</td> <td>25</td> <td>25 1</td> <td>25 10</td> <td>25</td> <td>25</td> <td>25</td> <td>25 10</td> <td>25</td>	npu		nustraction Of flow in	15	25 A	25	25	25	25 1	25	25	25 1	25 10	25	25	25	25 10	25
Z Drainage (total) 189 90 279 349 130 343 385 411 339 169 385 457 158 292 130 G Base flow to River 5 3 7 2 4 8 3 2 8 4 9 2 4 6 4 Irrigation 0	li si		OL flow out	8	4	2 0	1	4	4	о О	∠ 1	4 0	10	n	э 1	9 6	19	, 1
Base flow to River 5 3 7 2 4 8 3 2 8 4 9 2 4 6 4 Irrigation 0<	ldiv		Drainage (total)	189	90	279	349	130	343	385	411	339	, 169	385	457	158	292	130
Irrigation 0	Ba		Base flow to River	5	3	7	2	4	8	3	2	8	4	9	2	- 30	6	4
Total Error 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		I	rrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Average annual water balances calculated for each development area (mm/yr) cont.

Development	Area	F low					Av	erage ann	ual flux qu	antity (mr	n)						
Development	(km ²)	Flux	S0	S1	S2	S 3	S 4	S5	S6	S7	S8	S 9	S10	S11	S12	S13	S14
	1.2	Precipitation	763	667	667	667	738	738	738	738	738	782	782	782	762	863	738
		Evapotranspiration	605	486	457	440	547	508	511	474	494	582	532	478	552	660	551
		Gross recharge	235	201	254	231	227	281	257	272	289	251	307	312	248	293	226
		EVT from SZ	80	20	43	3	37	49	30	6	44	58	56	8	44	132	39
		Hor. SZ flow out	284	300	424	292	351	399	279	245	380	333	3/1	203	355	2/8	342
.s		Ver SZ flow out	141	107	222	195	108	195	204	195	219	154	105	215	108	155	105
di		Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bal		Abstraction	1	1	1	1	1	1	1	1	67	1	1	1	1	1	1
		OL flow in	3	1	0	1	1	1	1	1	1	3	1	2	2	8	1
		OL flow out	8	0	0	0	2	0	0	0	0	9	0	1	7	49	2
		Drainage (total)	11	2	8	129	6	25	151	215	17	11	60	313	9	29	6
		Base flow to River	4	2	3	0	3	5	1	1	4	3	5	1	3	6	3
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9.4	Evapotranspiration	/81	663	663	663	741	741	741	/41	741	779	779	//9	764	903	741
		Gross recharge	266	174	208	454 211	216	242	2/1	400 257	253	247	271	400 292	244	39/	216
		EVT from SZ	99	42	34	5	60	43	25	5	233	71	47	252	65	103	60
		Hor. SZ flow out	190	141	180	131	161	197	148	140	174	174	209	146	165	216	161
		Hor. SZ flow in	185	111	115	123	137	138	146	151	133	155	152	172	141	204	137
ē		Ver. SZ flow out	23	33	36	31	33	36	32	31	35	32	36	30	33	32	33
Je Ve		Ver. SZ flow in	2	1	1	1	1	1	1	2	1	1	1	2	1	1	1
B		Abstraction	23	39	39	39	39	39	39	39	105	39	39	39	39	39	39
		OL flow in	40	12	3	10	16	4	12	11	4	29	7	20	24	94	16
		OL flow out	56	21	3	12	27	4	10	12	3	44	6	20	37	118	27
		Drainage (total)	113	33	35	131	58	60	144	194	42	81	86	246	76	195	58
		Base flow to River	8	2	4	1	4	6	2	1	4	6	7	2	5	13	4
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1.6	Precipitation	831	710	710	710	796	796	796	796	796	835	835	835	822	956	796
	1.0	Evapotranspiration	563	486	364	401	528	384	426	426	384	539	388	429	525	550	528
		Gross recharge	257	221	348	305	264	413	365	365	413	286	450	400	284	342	264
		EVT from SZ	67	3	0	0	12	0	0	0	0	21	0	0	18	78	12
a		Hor. SZ flow out	310	216	296	226	254	333	246	239	333	275	350	237	259	318	254
stri		Hor. SZ flow in	272	235	213	233	262	237	271	273	230	278	256	305	267	340	262
np		Ver. SZ flow out	11	15	19	18	16	18	18	18	19	16	18	17	16	15	16
드		Ver. SZ flow in	9	16	15	18	15	14	18	19	14	15	14	19	15	15	15
qu		Abstraction	155	245	265	245	261	271	258	256	271	267	271	257	262	271	261
Cai		OL flow out	/	4	4	4	20	4	4	4	4	20	6	12	27	1/	20
		Drainage (total)	00	11	2	71	20	12	133	9 146	38	59	79	213	57	159	20
		Base flow to River	4	0	0	0	1	2	0	0	1	2	3	0	2	10	1
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4.8	Precipitation	809	665	665	665	742	742	742	742	742	782	782	782	761	856	742
		Evapotranspiration	623	524	445	456	578	492	527	485	480	601	507	459	577	602	578
		Gross recharge	364	245	257	262	290	296	292	315	301	327	327	358	317	441	290
		EVT from SZ	170	103	38	53	124	46	77	58	39	142	52	35	130	172	124
		Hor. SZ flow out	438	431	451	412	436	453	436	395	439	436	449	380	436	435	436
na		Ver SZ flow out	474	409	375	436	430	400	449	490	413	452	419	529	439	479	430
lari		Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ası		Abstraction	14	23	23	23	23	23	23	23	89	23	23	23	23	23	23
0		OL flow in	8	1	0	0	2	0	1	0	0	5	0	0	4	16	2
		OL flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Drainage (total)	221	97	121	210	142	172	204	328	146	177	221	448	160	284	142
		Base flow to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.2	Iotal Error	762	667	667	0	729	729	729	729	729	0	0	0	762	0	729
	0.3	Evanotranspiration	703 588	547	524	524	738 584	738 557	738 557	738 557	738 557	782 588	782	782 558	579	578	738 584
		Gross recharge	181	120	143	143	154	181	181	181	181	193	223	223	182	291	154
		EVT from SZ	3	0	0	0	0	0	0	0	0	0	0	0	0		0
		Hor. SZ flow out	272	67	68	66	79	106	80	56	85	135	151	65	90	329	75
Ţ		Hor. SZ flow in	695	516	536	535	607	658	656	833	654	718	885	1267	623	1039	570
Roa		Ver. SZ flow out	204	7	14	6	38	52	35	17	38	86	90	28	45	258	26
tγ		Ver. SZ flow in	9	160	125	152	77	51	68	106	77	32	23	104	72	1	100
igh		Abstraction	423	726	726	726	726	726	726	726	792	726	726	726	726	726	726
ш		OL flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		OL flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Drainage (total)	0	0	0	36	0	9	67	325	1	0	168	779	0	0	0
		base flow to River	0	U	U	U	U	U	0	U	U	U	U	U	U	U	U
		Total Error	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n
			v		5	v		v	÷	5			5	÷	÷		

Average annual water balances calculated for each development area (mm/yr) cont.

	Area						Ave	erage ann	ual flux qu	antity (mn	n)						
Development	(km²)	Flux	S0	S1	S2	S 3	S4	S 5	S6	S7	S8	S 9	S10	S11	S12	S13	S14
	4.2	Precipitation	800	691	691	691	766	766	766	766	766	810	810	810	788	896	766
		Evapotranspiration	594	569	522	522	605	552	552	552	552	609	554	554	599	579	605
		Gross recharge	209	121	169	169	161	214	214	214	214	201	255	255	188	317	161
		EVT from SZ	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
		Hor. SZ flow out	109	53	72	68	65	87	84	75	59	78	95	74	69	113	61
CA1		Hor. SZ flow in	32	34	23	28	33	157	29	61 142	34	31	33	115	33	35	37
ē		Ver. SZ flow in	151	125	10	151	140	157	154	145	154	109	1/5	249	151	232	132
Ē		Abstraction	0	19	10	0	15	0	0	14	66	0	0	24	15	0	15
Ka		OL flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		OL flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Drainage (total)	0	0	0	11	0	0	15	73	0	0	27	174	0	0	0
		Base flow to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4.2	Precipitation	763	667	667	667	738	738	738	738	738	782	782	782	762	863	738
		Evapotranspiration	204	403	294	292	462	309	307	307	309	499	311	309	466	578	518
		EVT from SZ	294	1/	574	3/3	27	429	451	451	429	525 //3	4/1	472	31	9/	53
-		Hor. SZ flow out	425	377	467	367	406	512	468	337	514	434	532	311	418	506	333
stria		Hor. SZ flow in	271	170	167	204	196	193	213	277	192	225	228	367	204	321	163
ñp		Ver. SZ flow out	65	51	65	42	61	75	67	38	75	68	79	32	64	84	44
<u>م</u>		Ver. SZ flow in	0	0	0	0	0	0	0	1	0	0	0	3	0	0	0
an		Abstraction	5	8	8	8	8	8	8	8	8	8	8	8	8	8	8
ž.		OL flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Ý		OL flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Drainage (total)	0	0	3	165	0	29	102	327	27	0	82	491	0	0	0
		Base flow to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	35	Precipitation	764	667	667	667	738	738	738	738	738	781	781	781	761	862	738
	5.5	Evapotranspiration	684	587	476	485	649	519	543	521	512	677	533	527	650	685	653
		Gross recharge	115	75	156	153	92	184	175	187	187	117	214	223	112	209	91
		EVT from SZ	91	45	14	20	59	21	36	26	18	74	28	29	62	108	62
		Hor. SZ flow out	604	495	600	527	551	662	599	572	594	612	710	616	562	760	533
		Hor. SZ flow in	588	484	482	445	541	532	507	505	518	592	599	587	551	700	526
ana		Ver. SZ flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>vi</u>		Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ŷ		Abstraction	10	1/	1/	1/	17	1/	17	17	83	17	1/	17	1/	1/	17
		OL flow out	72	58	49	58	66	56	67	66	56	72	61	72	70	14 89	66
		Drainage (total)	0	0	1	33	0	7	26	74	3	0	48	145	0	0	0
		Base flow to River	11	6	10	4	8	11	7	5	10	10	12	5	9	14	8
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5.0	Precipitation	812	663	663	663	739	739	739	739	739	779	779	779	756	845	739
		Evapotranspiration	736	597	510	541	654	561	609	577	543	686	583	563	653	696	654
		Gross recharge	291	158	176	170	204	211	187	217	215	238	236	243	225	341	204
		EVI from SZ	311	144	74 450	93	186	92	117	105	/9	223	106	94	195	298	136
٩		Hor SZ flow in	688	534	511	533	577	553	568	585	565	609	585	626	584	667	577
alu		Ver. SZ flow out	0	0	0	0	0	0	0	0	0	0	0	020	0	0	0
gog		Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ano		Abstraction	42	73	73	73	73	73	73	73	139	73	73	73	73	73	73
Σ		OL flow in	16	12	12	12	14	14	14	14	14	15	15	15	14	17	14
		OL flow out	20	13	24	15	15	29	30	18	29	17	34	35	16	23	15
		Drainage (total)	140	40	72	117	69	116	105	200	96	90	154	280	77	153	69
		Base flow to River	20	11	18	7	14	20	14	8	19	15	20	9	14	20	14
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	7 ۾	Precipitation	863	741	741	741	831	831	831	831	831	872	872	871	859	990	831
	4.7	Evapotranspiration	692	649	346	360	693	362	366	379	362	702	367	385	687	679	693
		Gross recharge	262	184	408	380	233	481	471	452	481	251	516	486	253	341	233
_		EVT from SZ	175	135	16	1	158	17	4	2	17	161	18	2	161	178	158
tria		Hor. SZ flow out	27	27	71	18	28	70	29	17	70	28	70	16	28	28	28
lust		Hor. SZ flow in	70	68	58	82	69	59	69	86	57	70	59	88	70	72	69
hd		Ver. SZ flow out	13	18	23	18	18	23	19	18	23	18	23	18	18	19	18
gue		Ver. SZ flow in	4	2	2	4	2	2	3	5	2	2	2	5	2	3	2
dijc		Abstraction	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
ŭ j			35	14	5 2	4	24	4	5	6 7	3	54 111	5	/	34 111	79 220	24
ž		Drainage (total)	113	55 66	338	ە 420	80 90	4 411	3 477	7 496	409	105	э 445	9 532	106	177	80 90
		Base flow to River	8	6	16	6	7	18	11	7	18	8	18	8	8	10	7
		Irrigation	0	0	0	0	, 0	0	0	0	0	0	0	0	0	0	, 0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Average annual water balances calculated for each development area (mm/yr) cont.

	Area					Av	erage ann	ual flux qu	antity (mi	n)						
Development	(km ²)	S0	S1	S2	S 3	S 4	S 5	S6	S7	S 8	S 9	S10	S11	S12	S13	S14
	10.2 Precipitation	863	741	741	741	831	831	831	831	831	872	872	871	859	990	831
	Evapotranspiration	696	632	566	513	686	612	598	546	587	700	623	525	681	689	686
	Gross recharge	328	216	258	272	278	317	312	335	324	310	354	380	312	465	278
	EVT from SZ	171	114	76	42	143	87	70	45	69	154	91	26	149	194	143
	Hor. SZ flow out	143	131	159	115	137	162	119	113	153	141	165	112	139	153	137
gu	Hor. SZ flow in	145	114	102	142	128	115	150	165	118	136	121	177	131	157	128
ijo	Ver. SZ flow out	/	/		6		8	6	6		/	8	6	/	8	
pur	Ver. SZ flow in	5	4	4	4	4	4	5	5	4	5	5	6	5	6	4
Ĕ	Abstraction	6	10	10	10	10	10	10	10	76	10	10	10	10	10	10
	OL flow out	40	17	12	2	29	20	15	11	19	41	20	1/	42	99	29
	Drainage (total)	140	66	102	241	102	157	252	226	120	126	101	401	126	242	102
	Base flow to River	142	8	103	241	102	13	255	520	11	120	131	401	120	19	102
	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.7 Precipitation	800	691	691	691	766	766	766	766	766	810	810	810	788	896	766
	Evapotranspiration	480	398	301	301	430	314	314	315	314	448	317	317	429	531	444
	Gross recharge	339	294	391	391	337	452	452	452	452	366	493	493	360	399	327
Ē	EVT from SZ	18	0	0	0	1	0	0	0	0	4	0	0	2	35	5
stris	Hor. SZ flow out	93	91	141	129	101	155	145	119	156	107	153	92	101	97	106
sinp	Hor. SZ flow in	36	11	1	5	13	2	8	28	2	17	12	68	14	45	22
Ē	Ver. SZ flow out	274	217	253	244	251	289	281	258	290	276	308	251	255	301	239
edy	Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ŭ	Abstraction	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Ke	OL flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ort	OL flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	Drainage (total)	0	0	0	26	0	11	36	104	10	0	46	218	0	0	0
	Base flow to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1.5 Precipitation	668	572	572	572	635	635	635	635	635	672	672	672	651	732	635
	Evapotranspiration	617	544	365	365	601	393	393	393	393	624	393	393	601	631	602
	Gross recharge	58	37	207	207	50	242	242	242	242	58	2/9	2/9	63	123	50
	EVI IFOITI SZ	210	202	200	400	280	205	200	201	202	20	416	405	10	23	264
	Hor SZ flow in	222	202	225	240	260	212	211	227	214	205	272	220	261	410	204
S	Ver SZ flow out	0	0	0	0	0	0	0	0	0	355	0	0	0	415	0
itar	Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pos	Abstraction	67	116	116	116	116	116	116	116	116	116	116	116	116	116	116
	OL flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	OL flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Drainage (total)	0	0	18	34	0	44	38	62	43	0	71	89	0	0	0
	Base flow to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.9 Precipitation	916	806	806	806	907	907	907	907	907	949	949	949	941	1037	907
	Evapotranspiration	633	607	567	492	646	616	584	520	592	654	626	521	640	606	646
	Gross recharge	488	335	376	450	436	485	570	586	494	489	564	665	491	662	436
	EVT from SZ	111	78	48	5	96	55	39	6	41	95	55	0	97	99	96
	Hor. SZ flow out	45	44	100	21	44	98	26	18	90	44	99	17	44	43	44
Je	Hor. SZ flow in	62	52	46	107	57	54	99	125	57	58	56	130	58	63	57
ntir	Ver. SZ flow out	14	35	39	31	35	38	31	30	38	34	38	30	34	34	35
bei	Ver. SZ flow in	3	1	1	3	2	1	2	3	1	2	1	3	2	2	2
Ser	Abstraction	14	22	22	22	22	22	22	22	88	22	22	22	22	22	22
	OL flow in	328	178	92	155	259	145	236	227	144	325	192	290	318	509	259
	OL flow out	236	120	3	24	179	4	27	33	4	226	6	54	225	377	179
	Drainage (total)	371	211	215	481	299	328	552	638	297	355	407	729	353	529	299
	Base flow to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Irrigation	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U
		T	U	U	U	U	U	U	U	U	U	U	U	U	U	U

Average annual water balances calculated for each development area (ML/yr)

	Area							A	verage anr	nual flux q	uantity (M	IL)					
Development	(km²)	Flux	S0	S1	S2	S 3	S 4	S5	S6	S7	S8	S9	\$10	\$11	S12	\$13	S14
	4.5	Precipitation	3502	2974	2974	2974	3323	3323	3323	3323	3323	3494	3494	3494	3426	4049	3323
		Evapotranspiration	2773	2225	1893	1939	2493	2131	2180	2079	2030	2572	2211	2090	2495	2617	2493
		Gross recharge	912	808	1147	1037	922	1305	1209	1263	1369	995	1432	1442	989	1304	922
		Hor. SZ flow out	301	238	454	186	224	496	213	182	412	280	519	175	256	313	224
		Hor. SZ flow in	461	383	261	620	411	285	634	766	329	432	304	865	420	503	411
lale		Ver. SZ flow out	215	488	527	465	496	533	482	466	524	500	536	465	498	508	496
nac		Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Arr		Abstraction	188	313	313	313	313	313	313	313	609	313	313	313	313	313	313
		OL flow in	338	51	12	23	92	28	38	31	26	170	48	64	169	686	92
		Drainage (total)	124	131	74	23	12	166	705	1069	111	576	270	1252	300 67	200	224
		Base flow to River	124	23	0	0	43	0	0	1003	0	0	270	1352	0	200	43
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	2.4	Precipitation	1862	1628	1628	1628	1801	1801	1801	1801	1801	1906	1906	1906	1859	2105	1801
		Evapotranspiration	1521	1393	1273	1280	1497	1357	1366	1362	1355	1524	1364	1367	1490	1501	1498
		Gross recharge	368	235	354	348	307	445	438	440	446	390	547	543	369	629	306
		Hor S7 flow out	497	212	346	258	270	420	340	296	338	3/18	485	346	285	521	271
÷.		Hor. SZ flow in	539	707	723	642	699	723	645	639	788	699	777	700	705	692	702
BA		Ver. SZ flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ivis		Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ald		Abstraction	432	743	743	743	743	743	743	743	904	743	743	743	743	743	743
•		OL flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		OL flow out	0	0	0	0	0	0	0	0	0	0	0	159	0	0	0
		Base flow to River	0	0	0	0	0	13	0	47	2	0	101	158	0	0	0
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2.6	Precipitation	2015	1762	1762	1762	1949	1949	1949	1949	1949	2063	2063	2063	2011	2278	1949
		Evapotranspiration	1607	1307	1190	1259	1437	1298	1362	1343	1284	1513	1329	1349	1442	1735	1445
		Gross recharge	576	464	574	502	547	659	598	605	669	633	750	715	619	853	544
		EVI from SZ	158	574	668	470	502	695	11	200	586	76	16	221	48 610	267	40 574
4		Hor. SZ flow in	111	178	151	256	145	124	223	313	160	119	111	385	142	125	137
BA		Ver. SZ flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ivis		Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ald		Abstraction	39	67	67	67	67	67	67	67	242	67	67	67	67	67	67
8		OL flow in	8	1	1	1	2	1	1	1	1	10	1	2	8	56	3
		OL flow out	3	1	0	1	1	0	1	1	0	3	1	1	3	10	1
		Base flow to River	30	1	1	230	5	21	208	458	8	19	90	706	14	123	0
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1.6	Precipitation	1265	1094	1094	1094	1213	1213	1213	1213	1213	1282	1282	1282	1247	1418	1213
		Evapotranspiration	1066	936	835	835	1010	884	884	884	884	1039	887	887	1006	1042	1013
		Gross recharge	237	160	260	259	206	328	328	328	328	250	395	395	243	399	204
		EVI from SZ	32	1	224	212	212	202	270	249	240	256	242	274	5	25	105
10		Hor. SZ flow in	291	400	362	380	399	295	373	395	240 406	402	354	420	404	354	386
BAI		Ver. SZ flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ivis		Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ald		Abstraction	230	395	395	395	395	395	395	395	500	395	395	395	395	395	395
8		OL flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		OL flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Drainage (total)	0	0	0	38	0	1	43	86	1	0	18	151	0	0	0
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10.2	Precipitation	7999	6757	6757	6757	7517	7517	7517	7517	7517	7929	7929	7929	7738	8772	7517
		Evapotranspiration	6575	6053	3331	3864	6482	3525	4028	4134	3520	6555	3562	4155	6425	6287	6485
ast)		Gross recharge	2792	1687	3527	2932	2183	4118	3566	3432	4119	2586	4515	3834	2487	3857	2183
Ę		EVT from SZ	1324	971	78	36	1123	86	51	39	81	1182	92	43	1152	1322	1125
ft		Hor SZ flow in	193	229	/28	1/0	213	/U/	238 977	151	/31	198 815	696 527	145	213 790	18/	209
ž,		Ver. SZ flow out	0.00	, 1 /	445	1	1	2	<i>عد</i> 1	1200	400	1	2	1209	1 1		1
rial		Ver. SZ flow in	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lust		Abstraction	148	254	254	253	254	254	254	254	254	254	254	253	254	254	254
Ind		OL flow in	110	41	24	9	68	43	31	15	43	98	60	28	87	197	68
ivis		OL flow out	78	28	2	6	42	3	5	6	3	69	4	11	60	148	42
ald		Drainage (total)	1925	920	2836	3551	1322	3488	3917	4177	3448	1721	3918	4641	1610	2972	1325
-		Base flow to River	48	33	74	19	41	84	35	22	82	46	89	24	43	57	41
		Total Error	4	1	0	3	2	0	3	3	0	2	0	3	2	2	2
		-		-	-	-	-	-	-	-	-	-	-	-	-	-	

Average annual water balances calculated for each development area (ML/yr) cont.

Development	Area	5 hours						Α	verage ann	nual flux q	uantity (M	IL)					
Development	(km²)	Flux	S0	S1	S2	S 3	S 4	S 5	S6	S7	S 8	S 9	S10	S11	S12	S13	S14
	1.2	Precipitation	935	817	817	817	904	904	904	904	904	957	957	957	933	1056	904
		Evapotranspiration	741	595	559	539	670	621	626	580	604	713	652	586	676	808	674
		Gross recharge	288	246	311	283	278	344	315	332	354	307	375	382	304	359	276
		EVT from SZ	98	24	52	4	45	60	36	7	54	71	69	10	54	162	48
		Hor. SZ flow out	348	448	519	358	429	488	341	300	465	408	454	249	435	341	418
<u>s</u>		Ver SZ flow out	1/2	230	2/2	237	206	239	249	239	269	189	226	260	205	190	199
div		Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bal		Abstraction	1	1	1	1	1	1	1	1	82	1	1	1	1	1	1
		OL flow in	3	1	1	1	2	1	1	1	1	4	2	3	3	9	2
		OL flow out	9	0	0	0	3	0	0	0	0	11	0	1	8	60	3
		Drainage (total)	13	3	10	158	7	30	185	264	21	13	74	383	11	35	7
		Base flow to River	5	2	4	1	3	6	2	1	5	4	7	1	4	7	3
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9.4	Precipitation	7370	6258	6258	6258	6992	6992	6992	6992	6992	7352	7352	7352	7210	8521	6992
		Evapotranspiration	55/8	4908	4596	4286	2020	2281	4948	4606	4841	2221	5200	4601	2204	2715	2028
		EVT from S7	932	392	319	1990	2058	405	2270	52	2560	666	2554	2732	2304 611	971	2058
		Hor. SZ flow out	1796	1333	1697	1236	1517	1859	1397	1323	1646	1647	1971	1382	1552	2035	1517
		Hor. SZ flow in	1748	1048	1089	1161	1290	1300	1374	1429	1256	1460	1438	1621	1334	1929	1290
q		Ver. SZ flow out	220	308	341	296	307	338	298	289	331	306	338	287	307	305	307
fer		Ver. SZ flow in	15	6	6	12	7	7	11	15	7	8	8	18	8	12	7
â		Abstraction	216	372	372	372	372	372	372	372	995	372	372	372	372	372	372
		OLflowin	381	115	30	95	155	40	110	106	33	274	67	185	224	884	155
		OL flow out	527	197	28	114	258	38	94	112	32	413	59	189	346	1115	257
		Drainage (total)	1067	312	335	1239	550	570	1355	1828	400	768	815	2318	721	1839	550
		Base flow to River	77	20	34	9	37	54	19	13	42	52	70	16	46	121	37
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1.0	Precipitation	12//	1140	11/0	11/0	1297	1297	1297	1297	1297	1251	1251	1251	1220	1546	1297
	1.0	Evanotranspiration	911	786	589	648	854	622	688	688	622	871	628	693	850	889	854
		Gross recharge	415	357	563	493	426	668	590	590	668	462	728	646	459	553	426
		EVT from SZ	109	4	0	0	19	0	0	0	0	34	0	0	30	126	19
-		Hor. SZ flow out	502	349	478	366	411	539	398	386	538	445	566	383	420	513	411
tria		Hor. SZ flow in	440	381	345	377	423	384	438	442	372	450	413	494	431	549	423
qus		Ver. SZ flow out	18	25	30	29	25	29	29	29	30	25	29	28	25	24	25
5		Ver. SZ flow in	15	26	25	29	25	23	30	30	23	24	23	31	25	23	25
лр		Abstraction	251	397	428	396	423	438	418	413	438	433	439	416	423	439	423
ď		OLflowin	11	7	6	7	7	7	7	7	7	12	10	10	11	28	7
		OL flow out	140	1/	3	15	33	3	15	15	3 61	63	120	21	60	257	33
		Base flow to River	6	0	11	115	1	200	215	257	2	2	120	545	2	16	1
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4.8	Precipitation	3876	3188	3188	3188	3556	3556	3556	3556	3556	3747	3747	3747	3647	4102	3556
		Evapotranspiration	2986	2510	2135	2186	2771	2360	2527	2326	2301	2882	2430	2201	2765	2885	2771
		Gross recharge	1746	1176	1233	1254	1391	1418	1402	1508	1442	1567	1569	1715	1519	2116	1391
		EVT from SZ	814	494	180	252	595	222	370	278	187	680	251	168	621	825	595
		Hor. SZ flow out	2100	2068	2162	1977	2091	2171	2091	1893	2107	2092	2153	1822	2088	2087	2090
a		Hor. SZ flow in	2273	1962	1799	2092	2090	1916	2151	2350	1981	2167	2007	2537	2105	2296	2090
ari		Ver. SZ flow in	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
asu		Abstraction	65	112	112	112	112	112	112	112	428	112	112	112	112	112	112
0		OL flow in	38	3	0	0	10	0	3	0	0	22	0	1	19	75	10
		OL flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Drainage (total)	1061	467	580	1007	680	826	978	1573	698	849	1058	2149	766	1364	680
		Base flow to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.3	Precipitation	241	211	211	211	233	233	233	233	233	247	247	247	241	272	233
		Evapotranspiration	186	173	166	166	184	176	1/6	1/6	1/6	186	1/6	176	183	182	184
		FVT from \$7	5/ 1	38 0	45 0	45 0	49 0	/د ۱	57	رد ۱	5/	01	/U 0	/U 0	/د ۱	92	49 0
		Hor. SZ flow out	86	21	21	21	25	34	25	18	27	43	48	20	28	∠ 104	24
7		Hor. SZ flow in	219	163	169	169	192	208	207	263	207	227	279	400	197	328	180
loai		Ver. SZ flow out	64	2	4	2	12	16	11	5	12	27	28	9	14	81	8
₹ F		Ver. SZ flow in	3	50	39	48	24	16	21	34	24	10	7	33	23	0	32
ight		Abstraction	133	229	229	229	229	229	229	229	250	229	229	229	229	229	229
ü		OL flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		OL flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Drainage (total)	0	0	0	11	0	3	21	102	0	0	53	246	0	0	0
		Base flow to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		IUIAI ETTUT	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U

Average annual water balances calculated for each development area (ML/yr) cont.

	Area							A	verage ani	nual flux q	uantity (N	IL)					
Development	(km²)	Flux	S0	S1	S2	\$3	S4	S 5	S6	S7	58	S9	S10	S11	S12	S13	S14
	4.2	Precipitation	3336	2882	2882	2882	3194	3194	3194	3194	3194	3376	3376	3376	3283	3734	3194
		Evapotranspiration	2477	2374	2174	2175	2522	2301	2301	2301	2301	2537	2310	2310	2497	2414	2522
		Gross recharge	870	507	706	706	669	891	891	891	891	837	1065	1065	782	1323	669
		EVT from SZ	2	0	0	0	0	0	0	0	0	0	0	0	0	4	0
		Hor. SZ flow out	457	220	298	285	272	363	348	312	247	327	394	309	288	471	255
(A1		Hor. SZ flow in	133	141	96	115	136	91	120	253	142	130	136	479	136	145	155
호		Ver. SZ flow in	20	520	559	548	67	220	22	596	27	703	731	102	61	908	56
nu		Abstraction	0	/8	41	43	02	27	52	00	275	40	20	102	01	24	0
Ka		OL flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		OL flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Drainage (total)	0	0	0	47	0	2	64	306	0	0	115	725	0	0	0
		Base flow to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4.2	Precipitation	3204	2801	2801	2801	3099	3099	3099	3099	3099	3280	3280	3280	3198	3621	3099
		Evapotranspiration	2311	1692	1232	1227	1937	1296	1290	1290	1296	2096	1304	1298	1956	2427	2174
		Gross recharge	225	57	1569	1574	12/4	1802	1809	1809	1802	1365	1976	1982	1369	202	221
_		Hor S7 flow out	1784	1584	1960	1540	1705	2147	1964	1414	2157	1819	2233	1304	1752	2124	1397
tria		Hor. SZ flow in	1136	713	701	857	823	809	893	1162	806	946	958	1540	857	1346	684
qus		Ver. SZ flow out	272	216	273	177	255	315	283	159	313	287	333	136	267	352	184
Ē		Ver. SZ flow in	0	0	0	2	0	0	0	6	0	0	0	14	0	0	0
ana		Abstraction	21	35	35	35	35	35	35	35	35	35	35	35	35	35	35
vin		OL flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0
ž		OL flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
		Drainage (total)	0	0	12	691	0	123	428	1373	112	0	342	2063	0	0	0
		Base flow to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	25	Precipitation	2669	2328	2328	2328	2576	2576	2576	2577	2576	2727	2727	2727	2658	3010	2577
	5.5	Evapotranspiration	2387	2051	1661	1695	2267	1811	1897	1820	1789	2364	1862	1839	2269	2392	2280
		Gross recharge	400	264	544	533	320	641	611	652	652	407	748	778	392	731	318
		EVT from SZ	318	156	49	70	206	73	127	90	61	257	96	102	216	379	217
		Hor. SZ flow out	2109	1728	2096	1838	1926	2310	2090	1997	2075	2135	2479	2152	1963	2655	1860
_		Hor. SZ flow in	2053	1690	1685	1555	1890	1856	1771	1763	1809	2068	2090	2050	1923	2445	1838
ana		Ver. SZ flow out	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
ž		Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X		Abstraction	34	58	58	58	58	58	58	58	288	58	58	58	58	58	58
		OL flow out	40	32	172	32	3/	107	38	37	107	40	212	41	39	49	3/
		Drainage (total)	251	203	2	116	252	23	232	252	197	252	169	505	244	309	252
		Base flow to River	38	22	33	15	28	39	25	17	35	33	43	19	30	49	28
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Total Error	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5.0) Precipitation	4029	3289	3289	3289	3670	3670	3670	3670	3670	3869	3869	3869	3753	4196	3670
		Evapotranspiration	3652	2963	2534	2688	3246	2787	3022	2863	2698	3404	2896	2796	3243	3457	3246
		Gross recharge	1447	786	874	846	1014	1047	928	1078	1069	1182	1169	1206	1118	1692	1014
		EVT from SZ	1543	716	367	460	925	459	580	521	390	1107	529	467	968	1481	925
•		Hor. SZ flow out	2350	2106	2230	2055	21/4	2289	2212	2063	2224	2207	2313	2051	2182	2270	21/4
alu E		Ver SZ flow out	3415	2051	2530	2044	2807	2744	2822	2902	2808	3023	2904	3110	2899	3310	2800
60		Ver. SZ flow in	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
and		Abstraction	211	361	361	361	361	361	361	361	689	361	361	361	361	361	361
Σ̈́		OL flow in	78	59	59	59	68	68	69	68	68	72	73	73	70	83	68
		OL flow out	98	64	121	76	76	145	150	89	144	84	169	171	80	113	76
		Drainage (total)	695	199	358	580	344	577	522	991	475	449	763	1390	383	761	344
		Base flow to River	97	56	88	35	69	98	69	39	92	75	101	43	71	97	69
		Irrigation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			1 4022	2452	2452	2452	U 2971	U 2971	U 2971	U 2971	U 2971	U 1061	U /1061	U 1061	0	U 1611	U 2971
	4./	Evapotranspiration	3225	3024 3024	3432 1611	1677	3227	1688	1707	1767	J687	3271	4001 1717	4001 1792	3200	3163	3227
		Gross recharge	1220	859	1901	1772	1085	2243	2194	2105	2243	1168	2402	2266	1179	1589	1085
		EVT from SZ	815	627	75	6	738	81	21	8	81	749	82	8	750	832	738
rial		Hor. SZ flow out	127	127	332	84	129	324	134	77	324	128	325	76	129	130	129
ust		Hor. SZ flow in	328	316	270	381	323	275	323	401	265	325	276	409	325	334	323
hd		Ver. SZ flow out	61	84	109	83	85	108	89	82	109	85	108	82	85	87	85
8 u		Ver. SZ flow in	20	9	8	19	10	9	13	21	9	11	9	22	10	13	10
dijo		Abstraction	8	14	14	14	14	14	14	14	14	14	14	14	14	14	14
Jun		OL flow in	165	65	12	20	111	17	24	28	16	160	21	35	160	369	111
Σ		OL flow out	554	257	15	28	399	20	12	33	20	519	24	44	517	1024	399
		vrainage (total)	527	306	1573 77	1958	418	1914	2221	2312	1904	490	2072	2480	495	823	418
		Irrigation	39	27)/ 0	28 0	34 N	δ4 Λ	52	34 N	دة 0	3/	co n	30 N	30 N	48 0	34 N
		Total Error	2	1	0	1	1	0	1	1	0	1	0	1	1	1	1
-																	

Average annual water balances calculated for each development area (ML/yr) cont.

	Area							A	Average an	nual flux o	quantity (N	/IL)					
Development	(km ²)	ix	S0	S1	S2	\$3	S4	S5	S6	S7	S8	S 9	S10	S11	S12	S13	S14
	10.2 Precipitati	on	8806	7555	7555	7555	8472	8472	8472	8472	8472	8889	8888	8888	8760	10094	8472
	Evapotran	spiration	7102	6447	5768	5235	6992	6240	6104	5571	5984	7144	6356	5359	6945	7032	6992
	Gross rech	narge	3348	2203	2635	2774	2831	3234	3178	3414	3302	3161	3606	3874	3182	4742	2831
	EVT from S	Z	1744	1164	777	429	1459	887	717	454	700	1574	931	261	1521	1983	1459
	Hor. SZ flo	w out	1455	1337	1624	1178	1398	1657	1214	1150	1563	1434	1681	1143	1419	1564	1398
ŝ	Hor. SZ flo	win	1480	1161	1038	1449	1305	1171	1529	1687	1206	1383	1235	1804	1337	1601	1305
ijo	Ver. SZ flov	w out	68	68	74	64	71	77	64	64	70	74	79	65	73	83	71
pur	Ver. SZ flov	win	53	39	38	46	46	44	48	53	41	50	48	58	48	62	46
Ĩ	Abstractio	n	59	100	100	100	100	100	100	100	1/3	100	100	100	100	100	100
	OL flow on	+	4/4	171	122	/1	297	201	149	116	189	416	263	169	425	1010	297
	Drainage	total)	411	670	1052	2460	1042	1506	20	2220	1220	1206	1052	4090	1207	320	1042
	Baseflow	to River	1/1	80	1052	2400	112	1330	2577	5520	116	1280	146	4085	1207	190	112
	Irrigation	to niver	0	0	0	40	0	152	0	0	0	0	140	0	0	150	0
	Total Error	r	3	1	0	1	1	0	1	1	0	1	0	1	1	1	1
	0.7 Precipitati	on	536	463	463	463	514	514	514	514	514	543	543	543	528	601	514
	Evapotran	spiration	322	267	202	202	288	211	211	211	211	300	213	213	288	356	298
	Gross rech	narge	227	197	262	262	226	303	303	303	303	245	330	330	241	267	219
-	EVT from S	z	12	0	0	0	1	0	0	0	0	3	0	0	2	23	3
tri	Hor. SZ flo	w out	63	61	95	86	68	104	97	80	105	72	103	62	68	65	71
snp	Hor. SZ flo	win	24	7	1	4	9	2	6	19	2	12	8	45	9	30	15
Ē	Ver. SZ flov	w out	184	145	170	164	168	194	188	173	194	185	206	168	171	202	160
fpa	Ver. SZ flov	win	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ĕ.	Abstractio	n	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Ke	OL flow in		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ti	OL flow ou	it	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
₽.	Drainage (total)	0	0	0	17	0	8	24	70	7	0	31	146	0	0	0
	Base flow	to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Irrigation		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total Error	r	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1.5 Precipitati	on	1027	880	880	880	977	977	977	977	977	1034	1034	1034	1001	1126	977
	Evapotran	spiration	949	837	562	562	924	605	605	605	605	959	605	605	925	971	925
	Gross rech	arge 7	105	57	318	318	77	3/2	372	3/2	372	105	429	429	97	188	25
	EVI from S	2	400	13	614	615	420	608	614	602	612	30	640	622	424	30	25
	Hor SZ flo	win	490	404 506	400	615	450	480	470	502	402	444 E 47	407	025 E09	454	604	407 E22
s	Ver S7 flor	will	495	590	499	525	554	480	478	505	465	547	497	508	333	044	552
tan	Ver. SZ flov	win	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pos	Abstractio	n	104	178	178	178	178	178	178	178	178	178	178	178	178	178	178
-	OL flow in		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	OL flow ou	t	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Drainage (total)	0	0	27	52	0	67	59	96	66	0	109	137	0	0	0
	Base flow	to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Irrigation		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Total Error	r	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.9 Precipitati	on	806	709	709	709	797	797	797	797	797	835	835	835	828	912	797
	Evapotran	spiration	557	534	499	433	568	542	514	458	521	575	550	458	562	533	568
	Gross rech	narge	429	294	330	396	384	427	502	515	435	430	496	584	431	582	384
	EVT from S	Z	98	68	42	5	84	48	35	5	36	83	49	0	85	87	84
	Hor. SZ flo	w out	40	38	88	19	39	86	23	16	79	38	87	15	39	37	39
e	Hor. SZ flo	win	55	46	41	94	50	47	87	110	50	51	49	114	51	55	50
ţi	Ver. SZ flov	w out	13	30	34	27	30	34	28	26	33	30	34	26	30	30	30
bei	Ver. SZ flov	win	3	1	1	2	1	1	2	3	1	1	1	3	1	1	1
Ser	Abstractio	n	12	19	19	19	19	19	19	19	77	19	19	19	19	19	19
	OL flow in		289	156	81	136	228	127	208	200	126	285	169	255	279	448	228
	OL flow ou	it:	207	105	3	21	157	4	24	29	4	199	6	47	198	332	157
	Drainage (total)	326	186	189	423	263	288	486	561	261	312	358	641	310	465	263
	Base flow	to River	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Irrigation		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	iotal Erroi		1	0	0	0	0	0	0	0	U	0	U	0	U	0	0

Shortened forms

AHD	Australian height datum
AAMaxGL	average annual maximum groundwater level
AAMinGL	average annual minimum groundwater level
AR4	(IPCC) assessment report four
AveGL	average groundwater level
CSIRO	Commonwealth Scientific and Industrial Research Organisation
DHI	Danish Hydraulic Institute
DoP	Department of Planning
DoW	Department of Water
DWMP	drainage and water management plan
ESRI	Earth Systems Research Institute
EVT	evapotranspiration
GCM	general circulation model
IPCC	Intergovernmental Panel on Climate Change
LAI	leaf area index
LiDAR	light detection and ranging
MaxGL	maximum groundwater level
MinGL	minimum groundwater level
MRS	Metropolitan Region Scheme
OL	overland (flow)
PASS	potentially acid sulfate soils
PET	potential evapotranspiration
PRAMS	Perth Regional Aquifer Modelling System
RD	root depth
SLR	sea-level-rise
SWWA	south west Western Australia
SZ	saturated zone
WAPC	Western Australian Planning Commission
WMO	World Meteorological Organisation

Glossary

abstraction	Pumping groundwater from an aquifer
acid sulfate soils	Soils containing iron sulphides which have been exposed to oxygen and produced sulphuric acid
aquifer	A geological formation or group of formations which have the ability to receive, store and transmit significant quantities of water
baseflow	The contribution of groundwater to river flows
emissions scenario	A social, political and economic scenario which is used to estimate future greenhouse gas emissions
flow duration curve	A visual summary of the percentage of time that a given flow is exceeded at a point in a river system
general circulation model (GCM)	A numerical model which describes circulation within the atmosphere and/or ocean. GCMs form the basis of global climate models in combination with land surface, ice sheet and sea ice models. Note that the terms 'global climate model' and 'general circulation model' are used interchangeably, but are in fact distinct.
gross recharge	Water reaching an aquifer via infiltration through the unsaturated zone – gross recharge does not include later losses from the aquifer.
net recharge	Gross recharge minus evapotranspiration directly from the water table (for example, from wetlands and areas of shallow groundwater)
hydrological cycle	Describes the cycle of water on and in the earth and atmosphere
Intergovernmental Panel on Climate Change	A scientific body established to provide ongoing assessment of information concerning the risk of climate change
overland flow	Also 'surface runoff', flow across the surface of the earth that is not in defined channels
peak flow	Flows in rivers and drains which are at the top of the hydrograph. Generally infrequent and for a short duration
phreatic surface	See water table
potentially acid sulfate soils	Soils which have the potential to produce sulphuric acid when exposed to oxygen
salt-water intrusion	The movement of saline water into freshwater aquifers
satellite altimetry	The measurement of altitude from a satellite platform. Can be used to determine the elevation of the earth and ocean surface.
saturated zone	The portion of an aquifer below the water table where all pore spaces are saturated with water.

Southern Hemisphere circulation	A general term used to describe atmospheric circulation within the Southern Hemisphere.
transmissivity	The rate at which water is transmitted through a unit width of an aquifer under a unit hydraulic gradient
unsaturated zone	Also the 'vadose zone' is part of the earth between the water table and the earth's surface
water balance	Describes the flow of water into and out of a system (e.g. an aquifer)
water table	The water surface within an unconfined aquifer where the pressure head is equal to atmospheric pressure
waterlogging	Saturation of the soil and land surface from groundwater. In the context of this report, waterlogging refers to inundation which occurs from groundwater at, or above the surface topography
wetland	A permanently or seasonally saturated area of land. Within the Serpentine study area wetlands are generally surface expressions of groundwater

References

- Cazenave, A & R Nerem 2004, 'Present-day sea-level change: Observations and causes', *Reviews of Geophysics,* vol. 42, RG3001, doi:10.1029/2003RG000139.
- Danish Hydraulic Institute 2011 *Climate change: MIKE by DHI functionality scientific documentation*, Danish Hydraulic Institute, Denmark.
- Department of Water 2009, *Strategic policy 2.03– Managing unlicensed groundwater use,* Department of Water, Western Australia.
- Department of Water 2011, Operational policy 5.17– Metropolitan domestic garden bores, DWPF 5.17, Department of Water, Western Australia.
- Department of Water 2012, *Guidelines for assessing the need for and setting controlled* groundwater levels – draft for public comment, Department of Water, Western Australia.
- Frederiksen C, Frederiksen, J, Sisson, J & Osbrough, S 2011, 'Changes and projections in Australian winter rainfall and circulation: anthropogenic forcing and internal variability', *International Journal of Climate Change: Impacts and Responses*, vol. 2, no. 3, pp. 143– 162.
- Frederiksen, J & Frederiksen, C 2007, 'Interdecadal changes in southern hemisphere winter storm track modes', *Tellus*, vol. 59a, iss. 5, pp. 599–617.
- Hall, J, Quinton, B, Marillier, B & Kretschmer, P 2010, *Murray hydrological studies: surface water, groundwater and environmental water model construction and calibration report,* Water Science Technical Series, report no. 25, Department of Water, Western Australia.
- Hope, P, Drosdowsky, W & Nicholls, N 2006, 'Shifts in the synoptic systems influencing southwest Western Australia', *Climate Dynamics*, vol. 26, pp. 51–764.
- Intergovernmental Panel on Climate Change 2000, *IPCC Special report on emissions scenarios*, N Nakicenovic & R Swart (eds), IPCC, Cambridge University Press, Cambridge, United Kingdom.
- Intergovernmental Panel on Climate Change 2007, *Climate Change 2007: Synthesis Report*, contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, R Pachauri & A Reisinger (eds), IPCC, Geneva, Switzerland.
- Marillier, B, Hall, J & Kretschmer, P 2012a, *Lower Serpentine hydrological studies: conceptual model report,* Water Science Technical Series, report no. 45, Department of Water, Western Australia.
- Marillier, B, Hall, J & 2012 Kretschmer, P 2012b, *Lower Serpentine hydrological studies model construction and calibration report*, Water Science Technical Series, report no. 46, Department of Water, Western Australia.
- Middlemis, H 2000, *Murray Darling Basin Commission groundwater flow modelling guidelines*, Aquaterra Consulting Pty Ltd.

- Queensland Department of Environment and Resource Management 2011, *DERM enhanced meteorological datasets*, <http://www.longpaddock.qld.gov.au>, accessed online February 2011.
- Research Solutions 2009, *Incidence of bores in the Perth metropolitan area,* a report prepared for the Department of Water, Western Australia from Research Solutions Pty Ltd, 15p.
- Western Australian Planning Commission 2007, *Liveable neighbourhoods: a Western Australian Government sustainable cities initiative*, Western Australian Planning Commission, Perth, Western Australia.
- Western Australian Planning Commission 2005, *State Planning Policy 2.6, State Coastal Planning Policy*, Prepared under part 3 of the Planning and Development Act 2005 by the Western Australian Planning Commission, Perth Western Australia
- Xu, C, Canci, M, Martin, M, Donnelly, M & Stokes, R 2009, *Perth regional aquifer modelling* system (*PRAMS*) model development: application of the vertical flux model, Hydrogeological record series, Report no. 27, Department of Water, Western Australia.

Securing Western Australia's water future

Department of Water

168 St Georges Terrace, Perth, Western Australia PO Box K822 Perth Western Australia 6842 Phone: (08) 6364 7600 Fax: (08) 6364 7601 www.water.wa.gov.au

8831 00 0815