

Murray hydrological studies: Surface water, groundwater and environmental water

Acid sulfate soil risk assessment and hydrochemistry

Looking after all our water needs

Report no. WST 30 January 2011

Murray hydrological studies: Surface water, groundwater and environmental water

Acid sulfate soil risk assessment and hydrochemistry

Looking after all our water needs

Department of Water Water Science Technical Series Report no. 30 January 2011

Department of Water

168 St Georges TerracePerth Western Australia 6000Telephone+61 8 6364 7600Facsimile+61 8 6364 7601www.water.wa.gov.au

© Government of Western Australia 2011

January 2011

This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the *Copyright Act 1968*, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to the Department of Water.

ISSN 1836-2869 (print) ISSN 1836-2877 (online)

ISBN 978-1-921736-72-8 (print) ISBN 978-1-921736-73-5 (online)

Acknowledgements

The Department of Water would like to thank the following for their contribution to this publication – Stephen Wong, Department of Environment, Patrick Ridley of Department of Water for ASS sampling during Stage 2 drilling, Brad Degens and Carey Johnston, Department of Water and SKM for supplying the data.

Citation details

The recommended citation for this publication is: Kretschmer, P, Wallace-Bell, P & Hall, J, 2011, *Murray hydrological studies: Surface water, groundwater and environmental water, acid sulfate soil risk assessment and hydrochemistry*, Department of Water, Western Australia, Water Science Technical Series, WST 30.

For more information about this publication, contact Peter Kretschmer, Water Science Branch.

Disclaimer

This document has been published by the Department of Water. Any representation, statement, opinion or advice expressed or implied in this publication is made in good faith and on the basis that the Department of Water and its employees are not liable for any damage or loss whatsoever which may occur as a result of action taken or not taken, as the case may be in respect of any representation, statement, opinion or advice referred to herein. Professional advice should be obtained before applying the information contained in this document to particular circumstances.

This publication is available on our website, <u>www.water.wa.gov.au</u>, or those with special needs it can be made available in alternative formats such as audio, large print, or Braille.

Contents

1	Introduction1				
	1.1	Report context and objectives Acid sulfate soil risk assessment Hydrochemistry	.1 .1 .2		
	1.2	Regional setting Geomorphology Superficial aquifer hydrodynamics	.2 .2 .3		
2	Meth	ods	5		
	2.1	Acid sulfate soil data collection and analysis	.5		
		Primary data collection	.5		
	22	Acid sulfate soil risk modelling	.6 7		
	2.2	Risk assessment modelling scenarios	.7		
		Risk assessment criteria	.8		
	2.3	Analysis	.9		
		Field sampling	.9		
		Laboratory analysis1	0		
3	Resu	Ilts: acid sulfate soil modelling1	1		
	3.1	Base case scenario (S0)1	1		
	3.2	Wet climate, no development (S09)1	4		
	3.3 3.4	Wet climate, subsurface drains at 1 0 m bol (S11)	4		
	3.5	Dry climate, no development (S27)	5		
	3.6	Dry climate, subsurface drains at 1.0 m bgl (S33)1	5		
	3.7	Historical wet climate (S36)1	6		
	3.8	Garden bore abstraction (S40)1	67		
л	Deer	liter regional hydrochomistry	' 0		
4	Nest		0		
	4.1	notal dissolved solids	8 8		
	4.3	HCO_3 to SiO_2 ratio	9		
	4.4	Hardness2	20		
	4.5	Iron	20		
	4.6 4.7	Nitrogen	'1 22		
	4.8	Other metals and metalloids	22		
	4.9	Chloride ratios2	23		
5	Disc	ussion and conclusions2	5		
	5.1	Acid sulfate soil risk assessment	25		
	5.2	Hydrochemistry2	26		
Ap	Appendices57				
Re	eferer	nces and further reading8	4		

Appendices

Appendix 1	Acid sulfate soil sampling sites used in study	59
Appendix 2	Sampling bore details and analysis	66
Appendix 3	Laboratory analytes	81

Figures

Tables

Table 2-1	Summary of interpreted depth to PASS horizon	6

Modelling scenarios used in this study.	7
Risk category criteria	9
Sampling sites in each risk category for each scenario	.11
The 15 locations classified as being at extreme risk in all scenarios	.13
Hardness scale for West Australian groundwater	.20
	Modelling scenarios used in this study. Risk category criteria. Sampling sites in each risk category for each scenario. The 15 locations classified as being at extreme risk in all scenarios. Hardness scale for West Australian groundwater.

Summary

This report focuses on two aspects of the *Murray hydrological studies*: a risk assessment of acid sulfate soil disturbance resulting from predicted changes to climate, topography and drainage, and an investigation of the groundwater and wetland hydrochemistry.

The results of the risk assessment are used to ascertain the likelihood of potential acid sulfate soils in the Murray–Serpentine region being converted to actual acid sulfate soils under different scenarios of climate, drainage and groundwater abstraction following urban development. This assessment incorporated the latest results from the groundwater–surface water modelling undertaken as part of the *Murray hydrological studies*, and used information on potential acid sulfate soils collected during the associated drilling program and from previous studies.

Assessment of acid sulfate soil risk and appropriate management, especially in areas of urban development, will help prevent water contamination and infrastructure damage.

Overall, the assessment identified little change in potential acid sulfate soil exposure risk due to shallow subsurface drainage and urban development alone, mainly due to predicted increases in groundwater recharge rates in urban areas and the effect of fill on vegetation root depth. However, the scenario modelling identified increased risk of potential acid sulfate soil exposure with drying climate and the use of garden bores.

The analyses revealed little change in risk between the 1945–1974 period and the drier 1975–2007 period. This indicates that the seasonally-full Superficial Aquifer has provided a buffer against the risk of potential acid sulfate soil oxidation in the past. However, a drying climate and garden-bore abstraction may decrease Superficial Aquifer groundwater levels, increasing the risk of potential acid sulfate soil exposure and oxidation.

The hydrochemistry investigation was undertaken to further understand groundwater hydrodynamics, determine regional patterns in groundwater quality and investigate water-rock interactions. Understanding the water quality is particularly important for determining the suitability of the groundwater for different purposes. A total of 64 bores and 9 wetland sites were sampled for this study.

The investigation identified two distinct water types, one dominated by silica weathering to the north of the Murray River, and the other dominated by carbonate dissolution south of the Murray River. The groundwater is generally suitable for irrigation, although in some areas uses will be limited due to poor water quality. Salinity was less than 1500 mg/L in all but four locations, with pH usually slightly acidic to neutral. High concentrations of iron, of the order of 4-6 mg/L, may limit groundwater use due to staining and clogging of irrigation systems. High total nitrogen and total phosphorus concentrations were also evident, the highest concentrations occurring in the Nambeelup region.

1 Introduction

1.1 Report context and objectives

This report combines the research of two parallel studies that have been completed for the *Murray hydrological studies*: an assessment of the risk of hydrological disturbance exposing potential acid sulfate soils to air; and an investigation of the Superficial Aquifer hydrochemistry. The study area referred to as the Murray–Serpentine region in this report, encompasses the *Murray Drainage and Water Management Plan* (DWMP) area from the *Murray hydrological studies* (Hall et al. 2010a) as shown in Figure 1-1. The methods for both the acid sulfate soil risk assessment and the hydrochemistry investigation are outlined in Section 2. The results of the risk assessment are outlined in Section 3 while the results from the hydrochemistry investigation are presented in Section 4. A discussion of both sets of results is presented in Section 5.

Acid sulfate soil risk assessment

The risk assessment ascertains the likelihood of potential acid sulfate soils in the Murray– Serpentine region being converted to actual acid sulfate soils under different drainage, groundwater abstraction and climate scenarios. It incorporates the latest results from groundwater–surface water modelling, undertaken as part of the *Murray hydrological studies* and uses data on potential acid sulfate soils collected during the *Murray hydrological studies* and from other studies (Degens 2009; SKM 2008, RPS 2006, Douglas & Partners 2007, JDA 2009).

Knowing the location of potential acid sulfate soils (PASS) in the landscape is important for understanding the risk of oxidising potential to actual acid sulfate soils through soil disturbance or changes to the hydrology in a region. Acid sulfate soils contain sulfides which typically remain stable while they are kept saturated, that is when they are below the watertable. When the watertable drops the sulfides are exposed to air and their subsequent oxidation can result in the production of sulfuric acid and the release of arsenic and metals from the soil profile. Nitrate can also oxidise sulfides with similar results.

Urbanisation can disturb the lithology and modify the hydrology through the installation of subsoil drainage, the installation of deep reticulated sewerage and underground powerlines, modification of surface drainage, groundwater pumping, nutrient application and wetland and vegetation disturbance. The Murray–Serpentine region is currently undergoing urbanisation in several areas, with a significant portion of the region under investigation for urban development in the coming decades (WAPC 2010), as shown in Figure 1-2. There is a risk of potential acid sulfate soils being oxidised as a result of this development, potentially causing widespread damage with high remediation costs. The sulfuric acid and concomitant metal and metalloid release can cause environmental harm and damage infrastructure by killing vegetation, posing health risks to people and local ecosystems, and dissolving concrete or limestone structures (DERM 2009).

In the Murray–Serpentine region much of the future urban development is likely to be concentrated around low-lying land surrounding the Peel Estuary, Murray River, Serpentine

River and Nambeelup Brook floodplains and relatively flat seasonal wetlands. These sites are typical of the environments and lithology that are associated with potential acid sulfate soil materials (Degens 2009), and therefore it is important to understand the risks in this area.

Note that this report is not a substitute for local development scale investigations, but rather should be used as a guide for understanding regional risk patterns under possible future conditions.

The authors acknowledge that this acid sulfate soil study relies heavily on the extensive work of Degens (2009), and the reader is referred to this report for more information on acid sulfate soils in the Peel region. This report also relies on the groundwater modelling that is described in Hall et al. (2010a, 2010b, 2010c). The reader should refer to these reports for details regarding the groundwater modelling.

Hydrochemistry

The primary objectives of the hydrochemistry investigation are to: determine groundwater recharge and flow dynamics; determine regional patterns in groundwater quality, and investigate water-rock interactions. To achieve this a hydrochemical survey of the Superficial Aquifer was completed over the period 2008 to 2009. A total of 64 groundwater bores and a further nine wetland locations were sampled for a range of field parameters, major ion species and nutrients. Including duplicates there was a total of 79 samples analysed. This information has been supplied to the Water Science Branch for analysis as part of the *Murray hydrological studies*.

This information can be used to inform groundwater users of likely concentrations and types of solutes in a particular area, including the source of the solutes, and inform groundwater managers of potential risks due to high levels of undesirable constituents or aquifer susceptibility to certain pollution sources.

1.2 Regional setting

Geomorphology

The soils of the coastal plain in the Murray–Serpentine region are associated with the Quaternary superficial formations of the Perth Basin. Deeney (1989) divides the upper layers of the superficial formations into four geomorphic units: the Quindalup Dune System, the Spearwood Dune System, the Bassendean Dune System and the Guildford Formation. These approximately correspond to the geological formations of the Safety Bay Sand, Tamala Limestone, Bassendean Sand and Guildford Clay respectively. This work also extensively described the geology of the superficial formations south of the Murray River. The work of Hall et al. (2010a) has further investigated the superficial formations north of the Murray River to incorporate the rest of the Murray DWMP study area.

Most of the upper soil profile within the Murray DWMP study area is composed of the Bassendean Dune System, with estuarine and alluvial deposits located around the Peel Estuary and rivers (Figure 1-1). The Bassendean Sand is composed of pale grey to white, mainly fine to medium grained sub-rounded grains of mainly aeolian deposition. The

Bassendean unit tends to consist of a leached upper profile underlain by layers of iron stained or weakly cemented sand and silty sands which may contain variably decomposed humus material. In some areas the Bassendean Sand contains profiles of sandy clay that are likely of alluvial origin. Typically Bassendean Sand is leached of carbonates, has a low cation exchange capacity and therefore has poor acid buffering capacity. It is therefore highly prone to acidification (Degens 2009).

Silty sands and iron rich layers commonly found within the Bassendean Sand, colloquially known as 'coffee rock', are also reservoirs of highly reactive acid generating minerals that are oxidised when exposed to air (Degens 2009). Silty sands and iron rich layers were encountered in many locations during exploratory drilling conducted in 2009 (Hall et al. 2010a).

Current estuarine, swamp and alluvial deposits are often overlying the deposits of older, similar environments. The estuarine sediments which surround the Peel Estuary are mainly composed of silts and sandy silts (Degens 2009). The areas around the mouths of the rivers also contain relic channels, lakes and flats with sequences of silt and sand. These may contain accumulated sulfides such as pyrite which pose a significant acid sulfate soil risk (Degens 2009).

Superficial aquifer hydrodynamics

Recharge to the Superficial Aquifer predominantly occurs via direct rainfall, particularly in areas with a sandy profile. Clay soils that occur in the eastern part of the study area may act as a minor aquitard and reduce recharge; however surface exposures of the sandier Yoganup Formation near the Darling Scarp may act as preferential recharge areas.

For the majority of the study area, recharge to the superficial groundwater is through freedraining sandy-soils. In most areas, the watertable is close to the surface (1–5 m BGL), and has small horizontal gradients. The water flux through the unsaturated zone is thought to be predominately vertical due to recharge and evaporative processes, while lateral movement is generally negligible due to the low hydraulic gradients.

The hydraulic head isopotentials indicate groundwater of the Superficial Aquifer flows from east to west across the study area, although the rivers dissecting the plain cause deviations of flow. The phreatic head reduces from over 60 mAHD along the Darling Scarp to sea level at the lower Serpentine River, lower Murray River, and Peel Inlet. In the central plain the hydraulic gradient is small. The study area incorporates two regional groundwater flow systems – the Waroona and Serpentine. The Waroona flow system flows north towards the Murray River and west towards the Peel-Harvey Inlet. The Serpentine flow system flows west from the scarp until it is intercepted by either the Murray or Serpentine Rivers (Davidson 1984, Deeney 1989). Nambeelup Brook is also an important conduit for groundwater discharge in the central areas of the Serpentine flow system (Hall et al. 2010c).

Groundwater discharge from the Superficial Aquifer occurs via several mechanisms; surface drains, rivers, downward leakage, evapotranspiration, wetland related pond evaporation, abstraction, and discharge to the ocean. Assuming a steady state condition, as water flows through the coastal plain the losses to these discharge points are offset by recharge, where the change in storage is zero over a full seasonal cycle.

Figure 1-1 Surface geology of the study area (based on DAFWA Soil-landscape map database 2002).

2 Methods

2.1 Acid sulfate soil data collection and analysis

Primary data collection

Sampling for acid sulfate soil was carried out during the drilling phase of the *Murray hydrological studies*. A selection of 9 wetlands had a total of 23 monitoring bores constructed nearby, primarily to provide information on the interaction between surface water and shallow groundwater. Figures 2-1a and 2-1b show the location of the selected wetlands and all acid sulfate soil investigation sites including those used from other studies. The drilling program was contracted to GHD Pty Ltd who was responsible for logging core samples retrieved during the drilling process. The Department of Water was responsible for the acid sulfate soil data collection component of the program.

The push-probe drilling method was used to provide 38 mm diameter cores for logging and acid sulfate soil sampling. In instances of probe-refusal, where layers were consolidated or indurated, a hollow-stem auger was used and samples collected from the auger flight as cuttings reached the surface.

Field testing for acid sulfate soil was performed on site. Core samples were tested at 0.25 m intervals for field pH (pH_f) and pH after oxidation with a strong oxidising agent (pH_{fox}). Two equal volumes (2.5 mL) of core were sampled at each 0.25 m interval and placed into plastic vials. To one vial, 12.5 mL of deionised water was added, and 12.5 mL of 30% w/w hydrogen peroxide was added to the other. The hydrogen peroxide was buffered to a pH between 4.5 and 5.5. The pH of each vial was measured after 20 minutes had elapsed. The intensity of the material reaction to the pH_{fox} test was also recorded.

Samples were collected at 0.5 m intervals for possible laboratory analysis. Samples were sealed in airtight zip-lock bags with the air expelled, and frozen on site. At the end of every sampling day, samples were transferred to freezers for storage. Any samples submitted to the laboratory were transported frozen in portable refrigerators.

The field acid sulfate soil testing, field lithological description and further core logging provided the basis on which samples were selected for laboratory analysis. Budget constraints precluded comprehensive laboratory testing of cored profiles. Of the 281 samples taken, 30 were submitted for laboratory analysis. The selection was based on a combination of field sampling results, lithology, and in some cases the formation of jarosite in stored core samples.

Samples submitted for laboratory analysis were tested using the 'chromium reducible sulfur' (S_{CR}) and the 'suspension peroxide oxidation combined acidity and sulfur' (SPOCAS) methods (McElnea et al. 2002; Latham et al. 2002). A more detailed explanation of the acid sulfate soil testing procedure can be found in DEC (2009).

For modelling purposes a depth to acid sulfate soil from ground level was interpreted for each site. The results for the sampling sites established for the *Murray hydrological studies* are included in Table 2-1, a list of all sites is presented in Appendix 1. Field tests, lithological

descriptions and laboratory analysis were assessed to provide a depth of occurrence of PASS. The paucity of laboratory data does detract from the confidence of this assessment. Hence, subsequent modelling outputs must be viewed with caution as the depth to acid sulfate soil may be underestimated.

Wetland	Bore ID	Depth to ASS	Comment
		(m bgl)	
5056	HS80-1	4	PASS
5056	HS80-2B	3.7	PASS
5056	HS80-3	4.3	PASS
3945	HS87-1B	2.9	PASS
3945	HS87-2	1.5	PASS
3945	HS87-3	2.5	PASS
5180	HS96-1B	2.8	PASS
5180	HS96-2	2.5	PASS
5274	HS99-1B	4.5	PASS
4835	HS104-1B	>5.5	EOH at 5.5m. ASS horizon not encountered in core
4835	HS104-2A	>6.6	EOH at 6.6m. ASS horizon not encountered in core
4835	HS104-2B	>3.8	EOH at 3.8m. ASS horizon not encountered in core
4835	HS104-3A	>6.35	EOH at 6.35m. ASS horizon not encountered in core
4835	HS104-3B	>4.5	EOH at 4.5m. ASS horizon not encountered in core
13305	HS108-1B	>2.88	EOH at 2.88m. ASS horizon not encountered in core
13305	HS108-2A	4	PASS
13305	HS108-2B	3.6	PASS
5032	HS109-1	5	PASS
5032	HS109-2	4.2	PASS
7046	T560S	3.4	Actual AAS? TAA value above trigger limit.
7046	T561	4.1	PASS
7046	T563	4.4	
7046	T564	2.7	

Table 2-1 Summary of interpreted depth to PASS horizon for sites sampled as part of the Murray hydrological studies.

Note: m bgl – metres below ground level. EOH = end of hole

Secondary data collection

In recent years, most large-scale urban development projects have been required to conduct detailed acid sulfate soil assessments prior to construction. These investigations have produced large amounts of data on the location, depth and volume of potential and actual acid sulfate soil materials within their respective study areas (RPS 2006, Douglas & Partners 2007, JDA 2009). This project has collated several of these assessment reports and used the data to increase understanding of where potential and actual acid sulfate soil is located.

Due to the volume of data, a simple system was devised where a single site for each development was mapped and the minimum depth found to potential or actual acid sulfate soil was ascribed to this point.

Although this could be seen as an over-simplification of the data, it was deemed suitable within the scope of this project for assessing whether a particular area has PASS materials at risk of being oxidised by a lowering of the watertable, or already has actual acid sulfate soil.

Further PASS data was gathered from a report prepared for the construction of a 10.8 km long mains water supply pipeline in Nambeelup Brook (SKM 2008). This comprehensive dataset incorporates 100 soil cores that were collected using the push-probe method to a depth of around 5.5 m unless refusal was reached prior to that depth. The east–west bore transect passes through several conservation category wetlands.

As acknowledged previously a primary data source is the recent acid sulfate soil survey completed by Degens (2009). The dataset titled "2003–2005 acid sulfate soil site evaluation summary" was obtained from the Department of Water spatial data store. This dataset contains 117 sample sites located within the Murray DWMP modelling area and all have been incorporated for analysis. The soil cores were collected to an average depth of 6 m using the push-probe method except where access or lithology precluded this method from being used. If this was the case then samples were collected using hand auguring (Degens 2009).

2.2 Acid sulfate soil risk modelling

Risk assessment modelling scenarios

The *Murray hydrological studies* project has modelled a range of climate – land-use scenarios to assess likely watertable response (Hall et al. 2010c). Eight of these scenarios were selected for this study and are summarised in Table 3-1 below. Note that development changes were applied to the areas highlighted in Figure 1-2.

ID	Climate sequence	Drainage	Development
S36	Historical wet	No drains	No development
S0	Current	No drains	No development
S9	Future Wet (MSL +0.2 m)	No drains	No development
S11	Future Wet (MSL +0.2 m)	1m fill, drains 1 m bgl	Development
S15	Future Wet (MSL +0.2 m)	No fill, drains 1 m bgl	Development
S40	Future Medium (MSL +0.2 m)	1m fill, drains 1 m bgl	Development & garden bores
S27	Future Dry (MSL +0.2 m)	No drains	No development
S33	Future Dry (MSL +0.2 m)	No fill, drains 1 m bgl	Development

Table 2-2 Modelling scenarios used in this study.

Note: MSL - mean sea level, m bgl - metres below ground level

The output of the modelling process is a predicted watertable surface based on the different climate and land-use variables. In order to assess acid sulfate soil risks, the average annual minimum groundwater level (AAMinGL) was compared to the level (i.e. depth converted to mAHD) of potential acid sulfate soils. However, several scenarios have also been compared

to the absolute minimum groundwater level (AbMinGL) to assess whether this measurement greatly alters the risk of PASS oxidisation.

The scenario identification (ID) in Table 2-2 directly corresponds to the respective scenario's identification used in the Murray regional groundwater report (Hall et al. 2010c).

Several steps were required before the predicted groundwater levels could be compared to the levels of potential acid sulfate soils. The data collected from the supplementary sources did not contain the ground elevation at each sampling site and therefore the PASS levels, which were recorded as metres below ground level (m bgl), could not be directly compared to the water levels which were recorded relative to the Australian Height Datum (mAHD). To correct this, the location for each sampling site was intersected with the Department of Water's LiDAR raster image for the region, which gives the ground level accurate to within 0.15 m at each site. The PASS depth in m bgl was then subtracted from the LiDAR surface to give PASS level in mAHD at each sampling site.

The final step involved intersecting the sample sites with the water level surface from the modelling output. The difference between the PASS level and the groundwater level was then used to classify the risk of the potential acid sulfate soil becoming oxidised according to the risk assessment criteria outlined below.

Risk assessment criteria

The *Murray hydrological studies* have modelled a range of climate and drainage scenarios to assess likely watertable responses. The resulting watertable surfaces were intersected with the known depth to potential acid sulfate soil to assess the risk of exposure.

There are a number of factors that cause a degree of uncertainty in the results. For example the regional groundwater model has a 200 m grid resolution. This level of resolution will produce errors in areas with large variations in topography. There are also localised areas where the groundwater model calibration process has not resolved errors in water level prediction. To account for this, the risk categories have incorporated modelling uncertainty. A statistical analysis of the Murray DWMP regional modelling revealed that 90% of the modelled groundwater levels were between +0.61 m and -0.95 m of the observed groundwater levels. These error values were used to set the risk category depths above or below the level of potential acid sulfate soil. Table 2-3 below shows the risk category criteria used.

Risk category	Criteria
Low	Modelled AAMinGL is 0.61 m or more above the level of potential acid sulfate soil
Moderate	Modelled AAMinGL is between 0.00 and 0.61 m above the level of potential acid sulfate soil
High	Modelled AAMinGL is between 0.00 and 0.95 m below the level of potential acid sulfate soil
Extreme	Modelled AAMinGL is 0.95 m or more below the level of potential acid sulfate soil

Table 2-3Risk category criteria.

Investigation of the modelled results revealed that in the low-lying estuarine areas the minimum groundwater levels were below mean sea level (MSL). Following a review of the observed water levels and discussions with B. Degens (pers. comm. 2010) who conducted the regional acid sulfate soil study in the area (Degens 2009), it was deduced that minimum groundwater levels were unlikely to be below mean sea level. In these situations, the minimum predicted AAMinGL or AbMinGL was increased to mean sea level.

2.3 Hydrochemistry data collection and analysis

Sampling sites

A total of 64 sampling bores were installed and sampled for the *Murray hydrological studies* during 2008 and 2009. In addition nine sampling points were established in wetlands at which surface water was collected in 2009. Depending on whether the bore was installed in 2008 or 2009, some sites were sampled in October and December 2008 and the remaining bores were sampled in early December 2009. Figure 2-2 illustrates the location of all sampled sites for this study and Appendix 2 provides the bore location, screen depth and sampling results. A bore completion report for the 2009 phase of drilling is being compiled and is likely to be published in late 2010. All bores were constructed using PVC casing. Screened intervals comprised slotted PVC casing. The annulus about the screened interval was gravel packed, with a bentonite seal above the screen. Deeper holes had cement grout filling the annulus to surface. A concrete pad and a galvanised standpipe were then installed at each site. In addition, surface water samples were taken from nine wetlands in November 2009 to compare against the groundwater samples.

Field sampling

In 2008 samples were taken by pumping the bore using a 12 volt submersible pump at a rate of around 11 L/min. In 2009, water samples were collected from the bore using a 12 volt submersible Twister pump at a rate between 5 and 7 L/min. In some cases pumping rates were as low as 1 L/min (where there was little water in the well). At least three well volumes of water were evacuated prior to sampling to remove stagnant water from both within the bore and around the bore screen. The pump was located within the screen interval except in those bores where the screen depth was greater than 20 m (where samples were taken at

approximately 20 m, the maximum length of the sampling hose). The physical water quality parameters of pH, electrical conductivity, temperature and dissolved oxygen were recorded in water pumped to the surface into a 10L bucket. Note this method may have reduced the accuracy of the dissolved oxygen reading. The probes used in 2009 were WTW 330i handheld meters fitted with the appropriate probes. An Insite DO meter and probe combination was used in 2008 for physical water quality measurements. Where required the probes were calibrated daily using standards at the beginning and end of each day of sampling. The wetland samples were taken adjacent to the water level measurement point establish in each wetland as part of the *Murray hydrological studies*, with the sample bottles filled once fully submerged to avoid pond scum contaminating the sample. For the wetlands the physical water quality variables were measured in-situ.

Laboratory analysis

Analysis of water samples was undertaken by National Measurement Institute (NMI), Western Australia. The standard laboratory methods are not discussed in detail in this report, however Appendix 3 lists the analytes measured, reference numbers for the relevant measurement method, and the limit of reporting for each analyte.

The ionic charge balance of each sample was calculated for quality assessment purposes. This resulted in the identification of a large number of samples that had an electrical balance difference of more than 5%, the recommended limit for analysis error (Hounslow 1995). Discussion with the NMI Laboratories and interrogation of the data indicates reported values for sodium and chloride was likely to be responsible for much of the error due to concentrations being rounded to the nearest 10 mg/L. This issue tended to be most prevalent but not limited to samples that had very low total dissolved solids.

3 Results: acid sulfate soil modelling

All scenarios discussed in this section were developed as part of the *Murray hydrological modelling* (Hall et al. 2010c). As each scenario has individual characteristics and responses, the results for each are discussed separately. Results for the scenarios modelled are presented in Figures 3-1a to 3-8, and Table 3-1. To allow more consistent identification of differences between each scenarios risk profile all scenarios are compared to S0 (current climate, no drains, no development) AAMinGL.

Compared to average annual minimum groundwater level (AAMinGL)					
		Potential acid sulfate soil risk			
Scenario	Low	Moderate	High	Extreme	Total
S0	126	40	77	17	260
S09	116	49	77	18	260
S11	137	45	63	15	260
S15	129	42	72	17	260
S27	116	43	76	25	260
S33	121	46	73	20	260
S36	130	42	71	17	260
S40	118	49	73	20	260

Table 3-1 Number of sampling sites in each risk category for each scenario.

Compared to al	osolute minimum	aroundwater level	(AbMinGL)
compared to at		groundwater level	

		Potential acid sulfate soil risk			
Scenario	Low	Moderate	High	Extreme	Total
S0	116	39	80	25	260
S11	118	51	73	18	260
S15	120	42	76	22	260

3.1 Base case scenario (SO)

Description: Current climate, no subsurface drains and no development

The base case scenario (S0) was modelled to provide a baseline of current PASS exposure risk in the modelling area. Table 3-1 shows that there were a combined 94 sites classified as either high or extreme risk of exposure to air and 166 sites as either moderate or low risk of exposure to air. Of the 17 sites classified as extreme, 15 are classified as such in all subsequent scenarios. To avoid repetition, a separate discussion about these sites has been included in Table 3-2. All sites that have known actual acid sulfate soil were classified as either high or extreme risk. High risk sites were geographically interspersed with moderate and low risk sites, with 77 high risk sites to 40 moderate risk sites and 126 low risk sites (Table 3-1). Note that low risk sites included sample sites where no PASS was found. This means that many of the low risk sites have no known potential risk for the full depth of the core, and therefore did not change their risk category irrespective of the climate or land-use scenario applied.

Modelling using the absolute minimum water level, rather than the average annual minimum groundwater level, produced eight more extreme risk sites, three more high risk sites and ten fewer low risk sites. Most of the additional extreme risk sites occur along the Lakes Road

pipeline transect. This transect coincidentally runs along the edge of a paleochannel where the regional groundwater model had been difficult to calibrate, therefore the risk classification of these sites should be viewed with caution. Several sites south of the Murray River also changed to extreme risk which may be of concern for waterway health.

Extreme sites

Fifteen sampling sites were classified as extreme under all climate and development scenarios. Discussion about each of these sites is provided in Table 5-2 below. Some of the sites classified as extreme were due to actual acid sulfate soil being found in those locations. In other locations, under prediction of AbMinGL by the model may be the cause for the extreme risk, while some sites have potential acid sulfate soil recorded at a depth that would normally be expected to be above the groundwater level. This latter effect may be caused by elevation increases in areas that had been developed between acid sulfate soil sampling and the elevation data being collected.

Site	Description
ASS61401001	Actual ASS located at 0.2 m bgl. Standing water level (SWL) located below ASS when sampled in September
ASS61401003	Actual ASS located at 1 m bgl. SWL located below ASS when sampled in September
ASS61401403	Actual ASS located 2.2 m bgl. SWL located below ASS when sampled in November
ASS61400401	PASS located 1.5 m bgl. AAMinGL modelled at 6.54 mAHD, PASS located at 7.72 mAHD. Sample site located at a break in slope where the 200 m model cell size can lead to error
ASS61400211	PASS located at 1.5 m bgl. AAMinGL located at 3.52 mAHD, PASS located at 4.68 mAHD. Model under predicts groundwater levels by approximately 0.6 m which if accounted for would place the bore in the 'high' risk category
ASS61400101	PASS located at 0.25 m bgl which is within the normal seasonal unsaturated zone depth
MLB-2	PASS located at 0.2 m bgl which is within the normal seasonal unsaturated zone. Data sourced from private investigation
SB04	PASS located at 1.4 m bgl. This is generally within the seasonal unsaturated zone, however model may slightly under predict due to close proximity of the Murray River. Data sourced from private investigation
BH7	PASS located 1.5 m bgl. This is generally within the seasonal unsaturated zone, however model may slightly under predict due to close proximity of the Murray River. Data sourced from private investigation
RH78,RH79, RH81, RH82	PASS located between 1.5 and 3 m bgl. These sample sites are located close to calibration bore HS105A and HS105B which were under predicted in the regional modelling (mean error 2.8 m)
RH71, RH72	PASS between 1.5 and 2 m bgl, generally within the seasonal unsaturated zone. The palaeochannel may influence groundwater model errors here

Table 3-2 The 15 locations classified as being at extreme risk in all scenarios.

3.2 Wet climate, no development (S09)

Description: 'Wet' future climate prediction where mean annual rainfall is predicted to reduce by 1.6%, no subsurface drains and no development. It includes a sea level rise of 0.2 m.

S09 incorporates the wettest future climate scenario that was modelled as part of the *Murray Hydrological Studies*. When compared to the S0 AAMinGL scenario the differences are small. There is one more extreme risk site adjacent to the Serpentine River (Figure 3-2), the number of moderate risk sites increases by nine, mostly around the Murray River, while the number of high risks sites is unchanged (Table 3-1).

3.3 Wet climate, subsurface drains at ground level (\$11)

Description: 'Wet' future climate prediction where mean annual rainfall is predicted to reduce by 1.6%, all urban development zones identified in WAPC (2010) fully developed and with 1.0 m of fill on top of the existing surface level with subsurface drainage installed 1.0 m below the top of the fill. It includes a sea level rise of 0.2 m.

Despite the installation of subsurface drainage the risk of exposing PASS through a lowering of the watertable decreased in this scenario. When compared to the S0 AAMinGL scenario the number of sites in the extreme risk category decreased by two, both within the boundaries of the urban development. There were also 14 fewer high risk sites and five more moderate risk sites while low risk sites increased by 11 (Figure 3-3a).

There are two main reasons for the lower risk. Firstly, urban development marginally increases gross recharge, since recharge under pasture is approximately 45%, and as little as 10% under native vegetation (Hall et al. 2010c). This increases to approximately 50% in urbanised areas due to infiltration basins, soak wells, rain gardens and reduced areas of deep-rooted vegetation. Secondly, the change in aquifer thickness caused by imported fill may raise water levels in some areas. Fill of 1.0 m with subsurface drains set at the pre-development ground level means that the watertable will still rise to at least the previous ground level. In addition compared with pre-development, root depth of perennial vegetation relative to previous water levels is effectively raised by 1.0 m due to the fill height, therefore raising AAMinGL and lowering the risk of PASS exposure.

Note that abstraction via garden bores or municipal bores was not included in this scenario. The effect of these is discussed in scenario S40.

The scenario S11 AbMinGL illustrates the risk of PASS being exposed during the driest year in the modelling period (Figure 3-3b). There was a slight increase in risk compared to S11 AAMinGL, but it is considerably lower than the risk profile of S0 AbMinGL.

3.4 Wet climate, subsurface drains at 1.0 m bgl (S15)

Description: 'Wet' future climate prediction where mean annual rainfall is predicted to reduce by 1.6%, all urban development zones identified in WAPC (2010) fully developed, no fill and subsurface drainage installed 1.0 m below the existing surface. It includes a sea level rise of 0.2 m.

The S15 AAMinGL scenario has a slightly lower risk profile compared to S0 AAMinGL, with an equal number of extreme risk sites, five fewer high risk sites, two more moderate and three more low risk sites (Figure 3-4a and Table 3-1). As explained in Section 5.3 urban development marginally increases recharge.

The S15 AbMinGL risk profile was similar to the risk profile of S0 AbMinGL. There are three fewer extreme sites, four fewer high risk sites and a slight increase in moderate sites and low risk sites. Again most of the risk reduction occurs within the immediate vicinity of proposed development areas (Figure 3-4b).

3.5 Dry climate, no development (S27)

Description: 'Dry' future climate with mean annual rainfall 16% less than current climate, no subsurface drains and no development. It includes a sea level rise of 0.2 m.

The scenario S27 AAMinGL produced the lowest AAMinGL surface out of all the scenarios. Compared to S0 there were eight more extreme sites, five of which are located at the eastern end of the Lakes Road pipeline transect (Figure 3-5), where groundwater model calibration was difficult (refer discussion in Table 3-2).

Importantly there were 10 fewer low risk sites. The fact that the increase in risk has not been more significant may reflect the fact that the aquifer fills to the surface and the discharges to wetlands and surface drains in many areas under the current S0 base case climate. Therefore, the drier climate of S27 may tend to reduce this overflow component rather than the watertable height.

3.6 Dry climate, subsurface drains at 1.0 m bgl (\$33)

Description: 'Dry' future climate with mean annual rainfall 16% less than current climate, widespread urban development, no fill and subsurface drainage installed 1.0 m below the surface. It includes a sea level rise of 0.2 m.

The scenario S33 AAMinGL has three more extreme risk sites, four fewer high risk sites, six additional moderate risk site and five fewer low risk sites compared to S0 AAMinGL (Figure 3-6). As with scenario S27, the additional extreme sites again occur at the eastern end of the Lakes Road pipeline transect, where groundwater model calibration was difficult (refer discussion in Table 3-2).

Overall S33 has a lower risk profile than S27. Both were modelled with the same climate but S27 had no future urban development or drainage included. The diminished risk reflects the slight increase in gross groundwater recharge that occurs in urban development.

3.7 Historical wet climate (\$36)

Description: Represents a wet period in the historical rainfall record, in this case between 1945 and 1974. There was no urban development, no fill, no subsurface drainage and no sea level rise modelled.

The scenario S36 AAMinGL was included to see how a previous increase in mean annual rainfall may affect watertable levels and therefore the PASS exposure risk. The results showed a slight decrease in risk compared to the current climate, with an equal number of extreme risk sites, six fewer high risk sites, two more moderate risk sites, and four additional low risk sites (Figure 3-7). The reduction in high risk sites occurs adjacent the Murray River, along the Lakes Road pipeline and near the Serpentine River.

The results indicate that AbMinGL is likely to have changed little between the current climate and historical wet climate. One reason for the broad similarity in AbMinGL across scenarios is because the aquifer fills to the surface in many areas during the current climate (S0), therefore the wet climate mainly increases the amount of runoff rather than the volume of water stored in the aquifer. Additionally, the similar results are also partially due to the root depth parameter which is not varied in the modelling except where the fill is incorporated (root depth is constant measured in depth below ground level, but raised measured relative to AHD due to the fill).

3.8 Garden bore abstraction (\$40)

Description: Medium climate change scenario with mean annual rainfall 8.7% lower than the current climate. All urban development zones identified in WAPC (2010) fully developed and with 1.0 m of fill on top of the existing surface level with subsurface drainage installed 1.0 m below the top of the fill. It includes a sea level rise of 0.2 m. Garden bores are added to the model, extracting water from October to May.

Garden bores are particularly important in lowering the AbMinGL and potentially increasing PASS exposure because they can draw the water level below the root depth of vegetation during periods of low rainfall, when otherwise AbMinGL would generally reflect root depth. Evidence of the additional summer drawdown caused by bores screened in the Superficial Aquifer can be seen in other development areas such as Bartram Road (Hall 2010). Scenario S40 AAMinGL (Figure 3-8) has a higher risk profile than S0.

Increases in risk were mainly limited to the eastern half of the Lakes Road pipeline and near Murray and Serpentine Rivers. However the effects were reduced due to the fill raising root depth and urban development marginally increasing gross recharge. Figure 3-9 illustrates the drawdown caused by garden bores when compared to a matching scenario without garden bores (S20 was not analysed for acid sulfate soil risk as part of this report). It shows that garden bores could lower AbMinGL by up to 1.0 m (Hall et al. 2010c). Therefore if fill is not used or high levels of recharge in the urban environment are not achieved the risk profile may be much higher. Additionally the design of garden bores will affect the depth of watertable drawdown. Typically a single garden bore shared between multiple users will lead to deeper, more localised cones of depression in the watertable; therefore potentially

increasing the risk of exposing PASS. Distributed low-yield garden bores will minimise the cones of depression, reducing the risk of PASS exposure. For details regarding density and extraction rates of garden bores used for groundwater modelling please refer to Hall et al. (2010c).

3.9 Wetland bores

The wetlands sites discussed in Section 2.1 are of high environmental value (rated as conservation category wetlands by the Department of Environment and Conservation). For this reason a brief but separate outline of the risks faced by these wetlands in the scenarios is given.

The results indicate that none of these sites are either high or extreme risk, with most of them being of low risk. For scenario S0 there was one moderate risk site at Greyhound Road wetland (UFI 5032 from the DEC geomorphic wetlands database), one site at Scott Road wetland (UFI 5180), and two sites at Barragup wetland (UFI 3945). For the driest scenario, S27, there is an additional moderate risk site at Scott Road and Elliot Road wetlands (UFI 5056), otherwise there appears to be little alteration of the risk profile at these sites.

The sediments located directly in the wetland were not sampled. The profile of PASS in wetland sediments should be investigated if any urban developments are likely to reduce minimum groundwater levels in these areas.

4 Results: regional hydrochemistry

4.1 Total dissolved solids

Total dissolved solids (TDS) ranged between 80 mg/L (T680A) and 8080 mg/L (HS95) in the study area. The latter high value may be influenced by high clay content in the local lithology leading to increased evapoconcentration of solutes compounded by the bore being located amongst a stand of trees. Because samples were taken in different years at different times of year it is difficult to ascertain with a high level of accuracy the variation in TDS across the region; however some general conclusions can be made.

A total of 42 out of the 67 sites recorded a TDS of less than 500 mg/L, with 62 out of the 67 samples recording values below 1500 mg/L which is often used as a guiding limit on irrigation water quality. Where nested piezometers were sampled, typically salinities were slightly higher in the deeper portion of the Superficial Aquifer (Figure 4–1). To confirm this, samples taken from paired bores at the same time were analysed using a paired t-test, which confirmed that the shallow bores were statistically more likely to be fresh compared to deep bores (P=0.003). This is a common phenomenon due to the leaching of solutes from the tree root zone into the deeper Superficial Aquifer.

Bores located near the Murray River and between North and South Dandalup Rivers appear to have the highest salinities which may reflect higher rates of evapoconcentration and reduced flushing due to increased clay content in these regions. No sampling sites were located close to the estuarine reaches of the Murray and Serpentine Rivers; however it is likely that brackish water resides in the parts of the Superficial Aquifer in these regions.

Notably, none of the bores surrounding Barragup Lake (PLI 3945) recorded a TDS above 1250 mg/L, however the lake recorded a temperature compensated electrical conductivity of 15,700 μ S/cm, approximately equivalent to 9420 mg/L (note the wetlands samples did not have TDS measured in the laboratory). The high lake salinity may reflect evapoconcentration or it could reflect interaction with an unmapped salt wedge extending from either the Peel Inlet or Serpentine River that was not intercepted by the installed bores.

4.2 pH, acidity and alkalinity

The pH of a solution is the measure of the activity of hydrogen ions (H^+), where 'activity' is the same as 'concentration' in dilute solutions. It is expressed as the negative logarithm of the hydrogen ion concentration.

$pH = -log_{10}[H+]$

Most commonly, assessments regarding the acidity of groundwater are discussed solely in terms of pH. Lack of consideration of other components of groundwater acidity, can result in the under-estimation of acidity. Subsequently, any potential acidity-related risk to groundwater-receiving environments can be underestimated.

Contributions to acidity are protons (hydrogen ions) and dissolved metals which upon hydrolysis release H^+ ("metal acidity" of Kirby & Cravotta, 2005). Weak acids, such as organic acids from humic material, are not fully dissociated so the concentration of H^+

measured by pH underestimates the total acidity of a solution. Acidity can be counteracted by alkalinity. Alkalinity of water is its acid neutralising capacity and comprises bicarbonate, carbonate, hydroxide and weak bases.

Neutral pH is 7.0 by definition. Anything above this value is alkaline and any value below is acidic. A pH of range 6.5 to 8 specified as the guideline value for protection of slightly disturbed freshwater aquatic ecosystems of south-west Australia (ANZECC & AMMCANZ 2000). The ability of a system (includes sediment profile, surface water and groundwater) to resist changes in pH is referred to as the buffering capacity of the system. In the context of ASS, the buffering capacity is usually discussed in terms of a system's capacity to resist lowing of pH.

The buffering capacity of PASS is provided by minerals (e.g. carbonates, phosphates, and silicates), ion exchange sites (measured as cation exchange capacity), oxidation of organic matter and any alkalinity component of groundwater. Small increases in H⁺ in groundwater (lowering of pH) may be buffered by the displacement of metal ions from cation exchange sites, resulting in the subsequent release of metal ions to groundwater. Low pH values can result in desorption of metals and metalloids, and if pH values are low enough, dissolution of minerals. Metal ions in groundwater can then release acidity by a series of hydrolysis reactions, one of which is shown below

$$Fe^{3+} + H_2O \leftrightarrow FeOH^{2+} + H^+$$

Once metals and metalloids are released into groundwater they can be taken up by flora and fauna (if acidic groundwater discharges to surface-water ecosystems), and potentially cycle through aquatic and terrestrial food chains.

Lowering of the watertable due to pumping can lead to the oxidation of PASS and subsequently a lowering of groundwater pH, similar to that seen near several pumping zones further north on the Swan Coastal Plain (Yesertner 2009).

Figure 4-2 illustrates that most sampling sites in this study had a pH of 5–7. This mildly acidic value is common in Bassendean Sands due to its lack of carbonate minerals and poor cation exchange capacity, and therefore poor pH buffering capacity (Yesertner 2009). South of the River Murray the pH tends to be near neutral to slightly basic (pH 6.5–8) which is likely to be a result of the greater carbonate content in the Ascot Formation.

Of some concern is the acidity in and around wetland PLI 5032. This wetland recorded a field pH of 4.16, and adjacent bores HS109-1 (pH 4.00), HS109-2 (pH 4.15) and HS108-2B (pH 3.96) recorded the three lowest values in the entire study area. It is unclear whether local disturbance and oxidation of acid sulfate soils has caused the acidification of groundwater in this area. Potentially the low pH is related to high concentrations of organic acids contributing to low pH. Given it's locality to properties potentially using groundwater, this site may warrant further investigation.

4.3 HCO3 to SiO2 ratio

When viewed regionally, the groundwater of the Superficial Aquifer can be split into two types based on the HCO_3/SiO_2 ratio. Figure 4-3 illustrates that the southern half of the study area has waters with a HCO_3/SiO_2 ratio typically above 8, while those in the northern half

tend to be more strongly dominated by silica dissolution with a HCO_3/SiO_2 of less than 4. The higher bicarbonate concentration in the south is likely to be a result of calcite dissolution in the seashell rich Ascot Formation. In the north, the Ascot Formation is absent and instead the Rockingham and Gnangara Sands are present. These formations are low in carbonates and therefore the HCO_3/SiO_2 ratio is much lower, and thus increased dominance of silicate weathering is seen in the water chemistry. It is not surprising to note the very similar regional patterns for pH and the HCO_3/SiO_2 ratio, as HCO_3 plays an important role in buffering acidity.

4.4 Hardness

Hardness is the sum of the Ca and Mg concentrations expressed as mg/L equivalents of calcium carbonate (CaCO₃). Calcium carbonate that has precipitated out of solution is often seen in kettles and hot water services. Table 4-1 contains a hardness scale that was established by the Chemistry Centre of Western Australia suitable for use in the Perth region (Davidson 1995). In much of the Murray study area, the Superficial Aquifer contains water that is very soft to moderately soft, being less than 100mg/L in nearly all sampling locations north of the Murray River. The dissolution of calcium carbonate in the Ascot Formation south of the Murray River results in increased hardness (HS79A has the highest at 360 mg/L) (Figure 4-4). Two additional sites between the North and South Dandalup Rivers displayed very hard water where the water is also slightly saline. Typically a concentration of less than 100 mg/L is preferred for domestic purposes other than potable water (Yesertner 2009).

Table 4-1	Hardness s	scale suitable	for West	Australian	groundwater	(Davidson	1995)
-----------	------------	----------------	----------	------------	-------------	-----------	-------

Hardness scale (mg/L as CaCO3)						
<50	very soft					
50-100	moderately soft					
100-150	slightly hard					
150-200	moderately hard					
200-300	hard					
>300	very hard					

4.5 Iron

Iron is commonly found in the groundwater of the Swan Coastal Plain. Sources of iron include the iron-indurated sands known colloquially as 'coffee rock', pyrite (FeS₂) and the mineral illminite. Untreated groundwater which is high in iron can clog irrigation systems and cause unsightly staining of infrastructure. Under certain conditions hydrolysis of iron rich groundwater can also result in an increase in acidity and the precipitation of ferrihydrite as shown in the reaction below.

$$2Fe^{2+} + 0.5O_2 + 5H_2O \rightarrow 2Fe(OH)_3(s) + 4H^3$$

In the Murray study area iron concentrations ranged from 0.07 to 87 mg/L. In an investigation of the central Swan Coastal Plain, Yesertner (2009) noted that most samples recorded concentrations of less than 10 mg/L. In the Murray study area concentrations were quite varied, with nearly half having concentrations between 1 and 10 mg/L, and several much

higher. HS102B, located on the far eastern plain recorded a concentration of 87mg/L, more than 14 times the study area average concentration of 6 mg/L. This site also recorded the second highest TDS (4420 mg/L) and therefore this may be indicative of evapoconcentrated groundwater, however, HS97A also recorded a high iron concentration of 59 mg/L and had an TDS of just 240 mg/L. Excluding these two anomalous sites, the average concentration of iron in groundwater in the region is 4 mg/L. There does not appear to be a spatial relationship for iron concentration such as across the region, or between shallow and deep nested bores.

4.6 Nitrogen

Nitrogen in groundwater most commonly exists as either nitrate (NO₃⁻), ammoniacal nitrogen (NH₃/NH₄⁺), or dissolved organic nitrogen (DON). Nitrate is naturally occurring in the soil where it is a product of mineralisation and is then used for plant growth. However, in cultivated areas the concentration of nitrogen can be significantly above natural levels due to the application of fertilisers and manure from grazing animals. The additional nitrate and ammoniacal nitrogen is mainly sourced from animal wastes and fertilizers, while dissolved organic nitrogen is derived from the decay of vegetation and animal wastes. Nitrogen from urban and agricultural areas is leached from the upper soil profile into the groundwater from where it is transported into rivers, wetlands and estuaries where it can lead to excess algal growth, deoxygenating events and potentially trigger fish kills.

Total nitrogen (TN) is frequently used to sum the main nitrogen species into one figure for ease of reporting. As it is determined on an unfiltered sample it includes dissolved nitrogen and nitrogen bound to particles suspended in the water sample. Total nitrogen values ranged between 0.04 and 13 mg/L in the bore samples, with the latter, recorded at T564, an outlier in the data. The average for all groundwater sampling sites was 2.64 mg/L; for shallow bores it was 3.15 mg/L; and for deep bores 2.22mg/L; all significantly above the guideline trigger value of 1.2 mg/L for freshwater ecosystems in near-pristine condition (ANZECC & ARMCANZ 2000). The wetland surface water samples recorded TN values between 2.8 and 5.5 mg/L, with an average of 4.4 mg/L. Values of between 1-7 mg/L are not unexpected in areas used for cattle grazing or areas with remnant native Acacia species (Davidson 1995). Figure 4-5 illustrates that higher nitrogen values tend to be more concentrated in the Nambeelup region, in the central portion of the plain. This may be a feature of high nitrogen inputs for cattle grazing from fertilisers and nitrogen fixing pasture crops. The several locations with high concentrations of the nitrate and nitrite forms of nitrogen in the TN figure may pose a risk of oxidising PASS in the long term (see below). There may also be samples that contain a high percentage of nitrogen bound to particulate matter. The sample from HS100B recorded very high TN (12 mg/L), TP (3.7 mg/L) and iron (31 mg/L). There is no obvious cause for these values based on surface observations and they are in stark contrast to the much lower values in the corresponding deep nested bore HS100A.

Nitrate reduction and the coupled oxidation of sulfides is of considerable concern in areas where PASS and high nitrogen inputs are coincident. Nitrate reduction in groundwater can occur through the oxidation of dissolved Fe(II), H_2S and CH_4 (Appelo & Postma 2005). Nitrate reduction commonly occurs by reaction with organic matter, but may also be reduced by sulphides in oxygen limited environments, for example:

$$5\text{FeS}_2 + 14\text{NO}_3^- + 4\text{H}^+ \rightarrow 7\text{N}_2 + 5\text{Fe}^{+2} + 10\text{SO}_4^{-2} + 2\text{H}_2\text{O}$$

4.7 Phosphorus

In areas of remnant native vegetation on the Swan Coastal Plain, the concentration of phosphorus in groundwater is generally low (Yesertner 2009). In urban and agricultural areas phosphorus has been added through the use of fertilisers and animal waste (including human sewage). It usually occurs as phosphate (PO_4^{3-}), and is known to be an important nutrient stimulating algal growth in the rivers, wetlands and estuaries on the Swan Coastal Plain. Most phosphate species have poor solubility and bind to soil particles if suitable adsorption sites exit. Therefore an important factor affecting the concentration of phosphate is the phosphorus retention capacity of the soil. Typically Bassendean Sand has poor phosphorus retention capacity and therefore the phosphate is transported through the soil by groundwater with relative ease (Kelsey et al. 2010).

The average concentration of total phosphorus (TP) was 0.24 mg/L for all groundwater bores, significantly above guideline trigger values of 0.065 mg/L for freshwater ecosystems in near-pristine condition (ANZECC & ARMCANZ 2000). Similar to TN, TP represents the total of all phosphate including dissolved P and that absorbed to particles suspended in the sample. The highest concentration recorded was 3.7 mg/L at HS100B. Figure 4-6 illustrates that the higher TP values tended to be more concentrated in the Nambeelup region, in the central portion of the plain. The average concentration of TP in shallow bores was 59 percent higher than the average concentration in deeper Superficial Aquifer bores (0.27 mg/L versus 0.17 mg/L). This is potentially caused by gradual sorption of phosphorus to soil as groundwater percolates deeper into the Superficial Aquifer, as well as the gradual uptake of phosphorus as it percolates deeper through the root zone. For wetland sampling sites the TP concentration ranged between 0.037 mg/L and 0.62 mg/L, with an average of 0.30 mg/L, similar to the average concentration in the shallow groundwater.

4.8 Other metals and metalloids

Analyses of groundwater samples included testing for a range of metals and metalloids. Here these are compared to guideline values for the investigation of groundwater outlined in DEC (2010), specifically assessment values for long-term irrigation water quality (IWQ), freshwater aquatic ecosystems (FAE) and domestic non-potable water supply (DNPS). Table 4-2 lists the metals and metalloids determined and the number of sites that exceeded guideline values for the relevant assessment criteria.

Soluble aluminium exceeded the guideline values of 5 mg/L at two sites for IWQ and DNPS but at nearly all sites compared to FAE values. Chromium exceeded the FAE guideline value of 0.01 mg/L at most sites, with a peak value of 0.14 mg/L, however in most circumstances the concentration did not exceed the assessment values for IWQ or DNPS. Copper concentrations exceed the FAE guideline values in many locations but many of the values were at the limit of reporting, the highest value of 0.095 mg/L being recorded at T564. It did not exceed the guideline values for IWQ and DNPS. Iron exceeded guideline values at most sites for all assessment levels, although it is not uncommon for iron values to be greater than

3 mg/L in the Superficial Aquifer (see Section 4.5). Similar to copper, lead exceeded the FAE guideline values at most sites but did not exceed the IWQ and DNPS limits. Mercury did not exceed guideline values while manganese was found to exceed the IWQ limits at only one site. Nickel exceeded the guideline values for FAE at five sites and three sites for IWQ, but it did not exceed guideline value for DNPS. Zinc exceeded the FAE values of 0.008 mg/L at 25 sites, but again it did not exceed guideline values for IWQ and DNPS.

Arsenic, boron, cadmium, cobalt and selenium were below the guideline values at all sites where guideline values were available. In some cases the limit of reporting (LOR) was at the guideline value.

In situations where sample values are in excess of the assessment values listed in DEC (2010), care should be taken when abstracting these waters. Other water quality variables such as pH, hardness, redox potential and other components may influence whether the groundwater is considered fit for purpose.

Table 4-2 Number of sites exceeding recommended groundwater quality limits for metalsand metalloids (Limits from DEC 2010)

	Long-term	Number of sites	Aquatic		Domestic non-	•
Metal or Metalloid	Irrigation		Ecosystem	Number of sites exceeding	potable	Number of sites exceeding
	Limit ¹	exceeding	Limit ¹		groundwater ²	
	(mg/L)		(µg/L)		(mg/L)	
Aluminium (Al)	5	2 sites, max 11 mg/L	55	most sites	2	9 sites
Arsenic (As)	0.1	none	50	none	0.07	none
Boron (B)	0.5-6.0	none	No values	NA	40	none
Cadmium (Cd)	0.01	none	0.2	none (LOR 0.002 mg/L)	0.02	none
Chromium (Cr)	1.0	2 sites, max 0.14 mg/L	1	most sites (LOR is 0.005 mg/L)	0.05	4 sites
Cobalt (Co)	0.05	none	No values	NA	No values	NA
Copper (Cu)	0.2	none	1.4	40+ sites (LOR is 0.005 mg/L)	0.2	none
Iron (Fe)	1.0	most sites*	300	most sites*	3	28 sites, max. 87 mg/L
Lead (Pb)	2	none	3.4	40+ sites (LOR is 0.01 mg/L)	0.1	none
Manganese (Mn)	0.2	1 site, max 3.1 mg/L	No values	NA	5	none
Mercury (Hg)	0.002	none	0.06	none	0.01	none
Molybdenum (Mo)	0.01	2 sites, max 0.023 mg/L	No values	NA	0.5	none
Nickel (Ni)	0.02	3 sites, max 0.15 mg/L	15-150	5 sites	0.2	none
Selenium (Se)	0.02	none	5	none (LOR 0.005 mg/L)	0.1	none
Zinc (Zn)	2	none	8	25 sites	30	none

* Natural Superficial Aquifer groundwater commonly exceeds limit 1 mg/L, LOR = limit of reporting

1. ANZECC & ARMCANZ (2000) values reported in DEC (2010); 2. DoH (2006) values reported in DEC (2010)

4.9 Chloride ratios

Plotting major ions against chloride indicates the hydrochemical evolution of the groundwater, and relevant water – rock interaction. Figure 4-7a to 4-7e are plots of common major ions in groundwater plotted against chloride in units of milliequivialents per litre. The data is plotted against the conservative ion chloride to compensate for evapoconcentration of the water constituents. The blue line represents the seawater ratio of the respective ion/chloride combination.

The sodium to chloride (Na/Cl) ratio plots very close to the seawater ratio. This not only indicates that the groundwater recharge occurs from typical coastal rainfall, but also there is negligible dissolution of sodium rich minerals occurring in the aquifer that may be present.

Typical coastal rainfall recharge is also evidenced by the Br/Cl ratio which also deviates little from the seawater ratio.

The calcium to chloride ratio (Ca/Cl) deviates away from the seawater ratio indicating calcium enrichment. Previous studies have noted the sharp increase in the Ca/Cl ratio as groundwater flows from Bassendean Sand to Tamala Limestone (Yesertner 2009). Similarly as groundwater flows through the Ascot Formation it also dissolves carbonates mainly in the form of sea shells.

There are some samples that are enriched in potassium relative to chloride, most often in central parts of the study area. This may be the result of the weathering of K-feldspar in parts of the superficial and tertiary formations. It is known that microcline, a type of K-feldspar, is commonly found in the Rockingham Sand (Passmore 1970). Drilling undertaken for the *Murray hydrological studies* (Hall et al. 2010) also found traces of feldspar in varying amounts in the superficial formations and similarly in the Rockingham Sand, and therefore the enrichment of potassium relative to chloride may be a result of chemical weathering of K-feldspar.

The magnesium to chloride ratio (Mg/Cl) deviates little from the seawater ratio indicating there is little weathering of magnesium-rich minerals if present in the aquifer.

The mass ratio of chloride to sulfate (both in units of mg/L) was calculated and plotted in Figure 4-8. This illustrated elevated sulfate to chloride ratios in the Barragup Lake (PLI 3945) region, in wetland PLI 5724 and nearby groundwater bore HS99-1B. The source of the elevated sulfate could be fertilisers and other anthropogenic sources, or it may be the result of pyrite oxidation following disturbance of acid sulfate soil.

Multivariate analysis was used to explore trends in the major ion concentrations associated with screen depth in the Superficial Aquifer. With the exception of TDS values, principle component analysis (PCA) of major ion data showed that although variation between bores existed, there was no significant difference in bores screened less than 7 m bgl and bores screened greater than 7 m bgl (Figure 4-9). This indicates there is little change in the ratio of major ion in the vertical profile for a given location. Other multivariate analysis that included wetland chemistry also showed that the major ion composition of these waters was similar to the groundwater chemistry, which supports conclusions regarding their close interaction and the importance of groundwater levels to wetland levels (Hall et al. 2010c).

5 Discussion and conclusions

5.1 Acid sulfate soil risk assessment

The modelling identified that there were generally small increases or even decreases in risk of PASS exposure due to hydrological disturbance from drainage and development alone. However, it did identify increasing risk of PASS exposure with land development during drying climate combined with the use of garden bores in urban development. Note this study only assess the risk of watertable modification exposing potential acid sulfate soils, it does not assess the risks associated with short term activities such as de-watering during a developments construction phase, nor does it assess the volumes of acid that would be produced.

For scenarios S0, S11 and S15 the predictions from using AbMinGL and AAMinGL were compared. The results show that using the absolute minimum groundwater level for the modelling increased the number of extreme risk sites by 20% to 47% depending on the scenario. Risk management planning should assess whether maintaining AbMinGL above the level of potential acid sulfate soils during drought years is necessary.

An important finding of this study has been that fill and urban development may reduce the effect of a drier climate on PASS exposure risk. By raising the land surface the results indicate that the minimum watertable level is raised slightly. This is due to the root depth of vegetation being raised relative to the pre-development scenario with matching climate, as well as through a small amount of additional recharge that may occur in an urban setting. However most of these scenarios assumed that there was no groundwater drawdown due to garden bores which potentially reverses this effect. A further assumption is that as the climate becomes drier root depth remains constant. In reality the roots may 'chase' water and grow deeper. This will in turn lead to lower AAMinGLs than used here.

The risk resulting from garden bore extraction was incorporated into scenario S40. The results of the modelling agree with previous research that has shown that garden bores lower AbMinGL by between 0.6 and 1.0 m. The reduced groundwater levels are closely matched to the area of the urban development (Hall 2010c), and therefore increases the risk of exposing shallow PASS in developed urban areas, potentially freeing metals to be cycled into the urban environment via shallow bores.

The historical wet climate scenario illustrated that there had been little change in risk between the 1945–1974 period and the 1978–2007 period. This is mainly due to the aquifer continuing to fill until the phreatic surface reaches the ground surface in many areas, thus indicating that decreased rainfall has largely resulted in decreased runoff and evaporation rather than a lower watertable. The seasonally over-spilling Superficial Aquifer may have effectively buffered the risk of reduced water levels in the past. Continuing declines in rainfall or increased extraction may remove this buffer, resulting in the summer drying cycle starting from a lower level and ending with lower minimum groundwater levels.

A drying climate is demonstrated to be an important factor increasing the risk of PASS oxidation. Scenario S27 shows a markedly higher risk profile than S0 with eight more extreme risk sites in the study area and a similar number of high risk sites. These numbers

illustrate that a drying climate may eventually result in actual acid sulfate soils, which may affect water quality in certain areas if not managed. Consideration may have to be given to the management and suitable uses of groundwater if climate change predictions are fulfilled.

A major limitation with the study has been the diminished sensitivity of the results due to the mean sea level rule explained in Section 2.2. The impact that this has on the results varies for each scenario. For example S0 AAMinGL had 103 sites with a modelled watertable height increased to 0.0 mAHD, compared to 132 sites for S27 AAMinGL. Because 103 sites are already set to 0.0 mAHD, this same number shows no reduction in water level across the two scenarios.

Further improvement in the calibration of the modelled seasonal minimum water levels would be ideal. However data shortfalls such as a lack of water level observations and plant root depth information mean this is difficult. The large model grid size in the groundwater model also causes errors in undulated areas. Local area models such as the wetland models constructed in Hall et al. (2010b) would improve model accuracy and may also allow smaller 90th percentiles to be used for risk classification.

Within the scope of this project we are confident this study illustrates the broad risks of how climate and land-use change may affect PASS oxidation as a result of watertable height modification. Local studies for development are still required as the scale of this study is not appropriate for understanding risks at the individual development scale.

5.2 Hydrochemistry

As part of the *Murray hydrological studies* a hydrochemistry survey of the Superficial Aquifer was completed over the period 2008 to 2009. The hydrochemistry investigation was undertaken to further understand groundwater hydrodynamics, determine regional patterns in groundwater quality, discuss probable water-rock interactions and identify potential acid sulfate soil issues. Understanding the water quality is particularly important for understanding the suitability of the groundwater for different purposes, and identifying potential environmental risks that reside within the groundwater. A total of 64 bores and 9 wetland sites were sampled for this study.

The groundwater is generally suitable for irrigation although in some areas use will be limited due to poor water quality. Salinity was less than 1500 mg/L in all but four locations, The hydrochemistry investigation identified two distinct water types, one dominated by silica weathering north of the Murray River, the other dominated by carbonate dissolution south of the Murray River. These reflect the aquifers the water is flowing through and indicate the waters south of the River Murray are more strongly buffered against acidification. pH was usually slightly acidic to neutral; however pH values of less than 4 around Greyhound Rd wetland PLI5032 may indicate that the groundwater is becoming affected by acid sulfate soil oxidation. Further investigation will be required to establish the cause of this acidity.
High average concentrations of iron in the order of 4-6 mg/L may reduce the number of suitable uses for groundwater due to the likelihood of clogging of irrigation systems and staining. High iron concentrations may also contribute to acidity under certain conditions and therefore care should be taken when using these waters.

High nutrient concentrations were evident in many bores, with the highest values being observed in the Nambeelup region. For both TP and TN the nutrient concentration in the wetlands and the nearby shallow Superficial Aquifer was closely related. Managing the water quality of wetlands will therefore require a holistic approach including management of the interacting shallow groundwater system. Where there are high levels of nutrient in the groundwater the mobilisation of these nutrients may become issue as the lithology and aquifer dynamics are disturbed.

There are some groundwater samples which exceed guideline concentration values for metals and metalloids. Most of the groundwater is suitable for irrigation and domestic non-potable use; however, the groundwater must be used appropriately to avoid potential adverse consequences. The analysis of major ion to chloride ratios indicates there are regional differences in the hydrochemistry, however PCA indicates there is little difference in the major ion composition between shallow and deep screened bores in the Superficial Aquifer.

In conclusion, if the Superficial Aquifer is developed as a water resource it must be recognised that there are areas which will have water quality which is unsuitable for certain uses. The data indicates interaction between the shallow Superficial Aquifer and wetlands, and therefore the management of water levels in the aquifer is also important for both minimising risks associated with the oxidation of acid sulfate soils and managing protected wetlands.

Figures

Figure 1-2: Proposed urban development areas in the Murray DWMP region.

Figure 2-1a: Wetlands and acid sulfate soil investigation sites located in the northern study area. Sites rated as extreme risk have been labelled.

Figure 2-1b: Wetlands and acid sulfate soil investigation sites located in the southern study area. Sites rated as extreme risk have been labelled.

Figure 2-2: Groundwater sampling locations.

Figure 3-1a: Scenario 0 AAMinGL PASS oxidation risk assessment. Soil risk map from Degens (2009).

Figure 3-1b: Scenario 0 AbMinGL PASS oxidation risk assessment. Soil risk map from Degens (2009).

Figure 3-2: Scenario 9 AAMinGL PASS oxidation risk assessment. Soil risk map from Degens (2009).

Figure 3-3a: Scenario 11 AAMinGL PASS oxidation risk assessment. Soil risk map from Degens (2009).

Figure 3-3b: Scenario 11 AbMinGL PASS oxidation risk assessment. Soil risk map from Degens (2009).

Figure 3-4a: Scenario 15 AAMinGL PASS oxidation risk assessment. Soil risk map from Degens (2009).

Figure 3-4b: Scenario 15 AbMinGL PASS oxidation risk assessment. Soil risk map from Degens (2009).

Figure 3-5: Scenario 27 AAMinGL PASS oxidation risk assessment. Soil risk map from Degens (2009).

Figure 3-6: Scenario 33 AAMinGL PASS oxidation risk assessment. Soil risk map from Degens (2009).

Figure 3-7: Scenario 36 AAMinGL PASS oxidation risk assessment. Soil risk map from Degens (2009).

Figure 3-8: Scenario 40 AAMinGL PASS oxidation risk assessment. Soil risk map from Degens (2009).

Figure 3-9: The difference in AAMinGLs resulting when garden bore abstraction is added to the model. Source: Hall et al. 2010c.

Figure 4-1: Groundwater total dissolved solids. Note TDS tends to be higher in the deeper (large circle) bores.

Figure 4-2: Groundwater pH as measured in the field. Note there is a general increase in pH from the north-east to south-west.

Figure 4-3: Groundwater bicarbonate – silica ratio. Note the significant separation types between north and south of the River Murray.

Figure 4-4: Groundwater hardness.

Figure 4-5: Groundwater total nitrogen concentration.

Figure 4-6: Groundwater total phosphorus concentration.

Figure 4-8: The chloride to sulfate ratio indicated that sulfate levels were elevated near Barragup Lake (PLI 3945) and wetland PLI 5724 in the centre of the study area.

Figure 4-9: Results of PCA when analysing major ions. '1' indicates bores screened less than 7 m bgl, '2' indicates bores screened greater than 7 m bgl.

Appendices

Appendix 1 Acid sulfate soil sampling sites used in study

Table A-1.1 Acid sulphate soil sampling sites (Pages 60 to 65).

Location	BORE ID		Northing	PASS	ShaPass
		Easting		(mbgl)*	(mAHD)
Lakes Road Pipeline	RBH1	384792	6403049	NSP	na
Lakes Road Pipeline	RBH2	384906	6403082	NSP	na
Lakes Road Pipeline	RBH3	385030	6403085	2	0.6
Lakes Road Pipeline	RBH4	385234	6403151	NSP	na
Lakes Road Pipeline	RBH5	385303	6403199	1	1.2
Lakes Road Pipeline	RBH6	385426	6403212	NSP	na
Lakes Road Pipeline	RBH7	385544	6403222	3	-0.8
Lakes Road Pipeline	RBH8	385665	6403232	NSP	na
Lakes Road Pipeline	RBH9	385790	6403237	NSP	na
Lakes Road Pipeline	RBH10	385816	6403100	NSP	na
Lakes Road Pipeline	RBH11	385811	6403028	NSP	na
Lakes Road Pipeline	RBH12	385809	6402918	NSP	na
Lakes Road Pipeline	RBH13	385809	6402793	NSP	na
Lakes Road Pipeline	RBH14	385796	6402677	NSP	na
Lakes Road Pipeline	RBH15	385790	6402546	NSP	na
Lakes Road Pipeline	RBH16	385906	6402513	2	0.5
Lakes Road Pipeline	RBH17	385977	6402500	2.5	0.5
Lakes Road Pipeline	RBH18	386093	6402456	3.5	-0.9
Lakes Road Pipeline	RBH19	386162	6402417	4.5	-1.0
Lakes Road Pipeline	RBH20	386239	6402464	NSP	na
Lakes Road Pipeline	RBH21	386315	6402553	NSP	na
Lakes Road Pipeline	RBH22	386371	6402610	NSP	na
Lakes Road Pipeline	RBH23	386437	6402681	NSP	na
Lakes Road Pipeline	RBH24	386510	6402750	NSP	na
Lakes Road Pipeline	RBH25	386548	6402792	NSP	na
Lakes Road Pipeline	RBH26	386630	6402876	NSP	na
Lakes Road Pipeline	RBH27	386704	6402950	NSP	na
Lakes Road Pipeline	RBH28	386779	6403029	NSP	na
Lakes Road Pipeline	RBH29	386835	6403087	NSP	na
Lakes Road Pipeline	RBH30	386902	6403150	NSP	na
Lakes Road Pipeline	RBH31	386964	6403215	1.5	3.0
Lakes Road Pipeline	RBH32	387018	6403270	NSP	na
Lakes Road Pipeline	RBH33	387079	6403339	NSP	na
Lakes Road Pipeline	RBH34	387152	6403316	2.5	0.3
Lakes Road Pipeline	RBH35	387232	6403278	NSP	na
Lakes Road Pipeline	RBH36	387329	6403237	NSP	na
Lakes Road Pipeline	RBH37	387409	6403179	NSP	na
Lakes Road Pipeline	RBH38	387473	6403102	4.5	0.1
Lakes Road Pipeline	RBH39	387527	6402996	NSP	na
Lakes Road Pipeline	RBH40	387558	6402903	NSP	na
Lakes Road Pipeline	RBH41	387558	6402816	NSP	na
Lakes Road Pipeline	RBH42	387618	6402744	NSP	na
Lakes Road Pipeline	RBH43	387665	6402658	NSP	na
Lakes Road Pipeline	RBH44	387731	6402578	4	-1.3

Location	BORE ID	Easting	Northing	PASS	ShaPass
				(mbgl)*	(mAHD)
Lakes Road Pipeline	RBH45	387843	6402500	3	0.7
Lakes Road Pipeline	RBH46	387901	6402459	1.5	2.3
Lakes Road Pipeline	RBH47	388029	6402391	NSP	na
Lakes Road Pipeline	RBH48	388116	6402359	NSP	na
Lakes Road Pipeline	RBH49	388234	6402273	1	3.0
Lakes Road Pipeline	RBH50	388334	6402305	3	1.4
Lakes Road Pipeline	RBH51	388425	6402300	2.5	2.7
Lakes Road Pipeline	RBH52	388557	6402300	NSP	na
Lakes Road Pipeline	RBH53	388657	6402300	5	0.5
Lakes Road Pipeline	RBH54	388757	6402295	3	1.9
Lakes Road Pipeline	RBH55	388857	6402319	3.5	1.7
Lakes Road Pipeline	RBH56	388957	6402298	3	2.8
Lakes Road Pipeline	RBH57	389096	6402302	4	2.5
Lakes Road Pipeline	RBH58	389196	6402303	NSP	na
Lakes Road Pipeline	RBH59	389296	6402303	2.5	4.8
Lakes Road Pipeline	RBH60	389396	6402302	NSP	na
Lakes Road Pipeline	RBH61	389496	6402303	3	4.3
Lakes Road Pipeline	RBH62	389596	6402304	NSP	na
Lakes Road Pipeline	RBH63	389696	6402302	2	5.4
Lakes Road Pipeline	RBH64	389796	6402303	NSP	na
Lakes Road Pipeline	RBH65	389896	6402305	2.5	7.4
Lakes Road Pipeline	RBH66	389911	6402308	NSP	na
Lakes Road Pipeline	RBH67	390011	6402307	NSP	na
Lakes Road Pipeline	RBH68	390111	6402297	3.5	7.2
Lakes Road Pipeline	RBH69	390211	6402306	3.5	8.4
Lakes Road Pipeline	RBH70	390311	6402316	NSP	na
Lakes Road Pipeline	RBH71	390417	6402284	1.5	11.2
Lakes Road Pipeline	RBH72	390517	6402289	2	10.9
Lakes Road Pipeline	RBH73	390617	6402289	5	8.7
Lakes Road Pipeline	RBH74	390717	6402280	5	8.7
Lakes Road Pipeline	RBH75	390817	6402291	5	10.2
Lakes Road Pipeline	RBH76	390929	6402287	NSP	na
Lakes Road Pipeline	RBH77	391029	6402286	NSP	na
Lakes Road Pipeline	RBH78	391129	6402287	1.5	12.6
Lakes Road Pipeline	RBH79	391229	6402293	2	12.3
Lakes Road Pipeline	RBH80	391329	6402276	5	11.0
Lakes Road Pipeline	RBH81	391424	6402292	1.5	15.3
Lakes Road Pipeline	RBH82	391324	6402314	3	13.1
Lakes Road Pipeline	RBH83	391425	6402314	5	11.9
Lakes Road Pipeline	RBH84	391519	6402312	NSP	na
Lakes Road Pipeline	RBH85	391605	6402317	NSP	na
Lakes Road Pipeline	RBH86	391709	6402319	2.5	11.6
Lakes Road Pipeline	RBH87	391802	6402328	NSP	na
Lakes Road Pipeline	RBH88	<u>391</u> 910	6402325	NSP	na

Location	BORE ID		Northing	PASS	ShaPass
		Easting		(mbgl)*	(mAHD)
Lakes Road Pipeline	RBH89	392013	6402319	1.5	11.8
Lakes Road Pipeline	RBH90	392108	6402318	1.5	11.9
Lakes Road Pipeline	RBH91	392206	6402323	2.5	11.0
Lakes Road Pipeline	RBH92	392316	6402326	3	10.6
Lakes Road Pipeline	RBH93	392407	6402326	1	12.3
Lakes Road Pipeline	RBH94	392498	6402323	1.5	11.6
Lakes Road Pipeline	RBH95	392605	6402322	2.5	10.5
Lakes Road Pipeline	RBH96	392719	6402329	2.5	10.3
Lakes Road Pipeline	RBH97	392805	6402330	4.5	7.9
Lakes Road Pipeline	RBH98	392918	6402326	NSP	na
Lakes Road Pipeline	RBH99	392995	6402326	1.5	10.8
Lakes Road Pipeline	RBH100	393088	6402330	3.5	9.6
Monitoring Bore HS80-01	61410656	392386	6390900	4	5.1
Monitoring Bore HS80-2B	61410658	392253	6390391	3.7	4.3
Monitoring Bore HS80-3	61410659	392618	6390062	4.3	4.5
Monitoring Bore HS87-1B	61410661	386148	6396928	2.9	-1.3
Monitoring Bore HS87-2	61410662	385575	6396856	1.5	-0.1
Monitoring Bore HS87-3	61410663	386063	6396448	2.5	-0.3
Monitoring Bore HS96-1B	61410665	393129	6399417	2.8	9.8
Monitoring Bore HS96-2	61410666	393127	6399187	2.5	9.7
Monitoring Bore HS99-1B	61410668	394782	6400167	4.5	11.5
Monitoring Bore HS104-1B	61410670	390157	6402327	NSP	na
Monitoring Bore HS104-2A	61410671	389916	6402534	NSP	na
Monitoring Bore HS104-2B	61410672	389916	6402536	NSP	na
Monitoring Bore HS104-3A	61410673	390001	6401879	NSP	na
Monitoring Bore HS104-3B	61410674	390000	6401883	NSP	na
Monitoring Bore HS108-1B	61410676	392447	6402412	NSP	na
Monitoring Bore HS108-2A	61410677	392393	6403275	4	12.5
Monitoring Bore HS108-2B	61410678	392393	6403275	3.6	12.9
Monitoring Bore HS109-1	61410679	392144	6403710	5	14.5
Monitoring Bore HS109-2	61410680	392405	6403715	4.2	15.8
Monitoring Bore T560S	61410681	395653	6410202	3.4	18.2
Monitoring Bore T561	61410682	395155	6409168	4.1	17.6
Monitoring Bore T563	61410684	395010	6408838	4.4	17.3
Monitoring Bore T564	61410685	395549	6408873	2.7	18.1
CALM RESERVE AUSTIN BAY	ASS61300101	379090	6385686	4	-3.2
CALM RESERVE OFF CARRABUNGUP RD, AUSTIN BAY	ASS61300102	378456	6386906	0.4	0.3
CALM RESERVE OFF CARRABUNGUP RD, AUSTIN BAY	ASS61300103	378790	6386913	2.75	-1.1
FARM ENTRY AT AUSTIN BAY CARRABUNGUP RD	ASS61300104	378067	6387590	0.6	0.0
CALM CONSERVATION AREA, AUSTIN BAY	ASS61300201	380354	6386981	1	-0.3
CALM RESERVE BOGGY BAY	ASS61300202	380038	6388442	1.1	0.1
CALM RESERVE BOGGY BAY	ASS61300203	380032	6388179	0.7	0.4
CALM RESERVE BOGGY BAY	ASS61300204	380083	6387913	1.5	0.1
CALM RESERVE TRACK OFF CARRABUNGUP RD	ASS61300205	380124	6386958	1.5	0.8
Location	BORE ID	Easting	Northing	PASS	ShaPass
--	-------------	---------	----------	------------	------------
	45561200206	200020	6296065	(mbgl)*	(mAHD)
	ASS61200200	380138	6387373	5.1 0.7	-0.1
	ASS01300207	202200	6295101	0.7	0.5
	ASS61200401	201211	62024E0		-0.9
	ASS01300401	201700	6202260	2 25	
	ASS61200501	279542	6202070	1 5	-0.5
	ASS61200501	378856	6282611	1.5	-0.6
	ASS61200502	27012/	6383054	1.5	-0.0
	ASS61300503	379104	6383790	1.5	0.5
	ASS61200504	270652	6383790		0.0
	ASS61202201	383603	6386627	0.8	0.4
	ASS61202201	282/15	6386451		0.4
	ASS61/0270/	200420	6401019	26	0.4
	ASS61/02704	281208	6401581	2.0	-0.4
	ASS61402703	2001230	6400202	0.9	1.0
	ASS61400101	288222	6409303	5	-1.6
	ASS61400102	386831	6406301	0.6	-1.0
	ASS61400201	206750	6406450	1.2	-0.4
SERVENTINE RIVER RESERVE, ACCESS ROAD, STARLITTE	ASS61400202	386601	6406575	1.2	0.2
	ASS61400203	286640	6406697	2	0.2
	ASS61400204	207721	6405210	2.5	0.0
	ASS01400203	207020	6405310	1.2 2 E	-0.2
	ASS61400200	207000	6405220	2.5	-0.5
	ASS61400207	206224	6403005	2.5	-0.7
CALINI RESERVE, OFF WOODLAND FDE STAREHILL	ASS01400301	206264	6402943	2.4	0.1
	ASS01400302	206525	6402631	2.4 NCD	-0.9
	ASS01400303	206454	6402030	25	0.0
	ASS61400304	386160	6402773	2.5	-0.9
	ASS61400303	280518	6403600	4 15	77
	ASS61400401	200007	6402102	1.5	67.2
	ASS61400402	386066	6200/77	12	-07.2
	ASS61400501	206020	6200542	1.5 2	0.1
	ASS01400502	202257	6207905	0.75	0.0
	ASS61400001	202060	6207026	27	0.2
	ASS01400002	201000	6207500	3.2 2.0	0.4
	ASS01400003	286000	6207605	2.0	0.7
	ASS61400004	207200	6207005	2.4	-0.5
	ASS01400003	207/00	6207052	1	-0.7
	ASS01400000	207100	6207022	5 2 E	-0.1
	ASS01400007	20/100	6207510	5.5 7	-0.5
	ASS01400000	202020	6207001		0.0
	ASS61400009	201150	023/301	1 2	lid 0.0
	ASS61400701	204120	6306767	1.5	0.0
	ASS61400702	204223	6206541	1.9	0.4
POWER TRACK OFF RONLYN ROAD	ASS61400703	384030	6396541	1.2	0.6

-

				PASS	ShaPass
Location	BORE ID	Easting	Northing	(mbgl)*	(mAHD)
OFF FURNISSDALE ROAD	ASS61400704	384581	6396421	NSP	na
TONKIN DRIVE, NTH YUNDERUP	ASS61400801	385397	6395748	1.5	-0.4
JANNALI RD, WETLANDS	ASS61400802	385600	6396864	0.9	0.2
WILGIE CREEK OFF NTH YUNDERUP	ASS61400901	387214	6395304	2.5	-0.3
NTH YUNDERUP, CORREAS STREET	ASS61400902	388022	6395102	0.8	0.5
NTH YUNDERUP, WILGIE CREEK	ASS61400903	386393	6395544	2	-0.9
WETLANDS NTH YUNERUP ROAD	ASS61400904	386250	6394838	0.1	0.5
BANKSIA TCE EAST, STH YUNDERUP	ASS61401001	387485	6394746	0.2	1.2
YUNDERUP ROAD, YUNDERUP	ASS61401002	386309	6394134	1.2	0.2
SOUTH YUNDERUP MAIN DRAIN	ASS61401101	385362	6392949	0.2	0.6
SOUTH YUNDERUP NEAR MAIN DRAIN	ASS61401102	386138	6393216	1.1	0.0
OFF STH YUNDERUP RD, YUNDERUP	ASS61401103	387999	6393701	NSP	na
MURRAY WATER PROPERTY, STH YUNDERUP	ASS61401104	386953	6393530	1.8	-0.1
STH YUNDERUP RD, MURRAY WATERS	ASS61401105	387508	6393510	2	0.0
LEANDER WAY, YUNDERUP	ASS61401201	389204	6394445	2	0.1
LEANDER WAY, STH YUNDERUP	ASS61401202	389076	6394484	3	-1.1
CROWN LAND EAST OF RAVENSWOOD CARAVAN PARK	ASS61401301	389894	6393486	1.5	0.4
CROWN LAND EAST OF RAVENSWOOD CARAVAN PARK	ASS61401302	390037	6393444	2	0.1
CROWN LAND EAST OF RAVENSWOOD CARAVAN PARK	ASS61401303	390206	6393555	1	0.1
OLD SARUN LODGE	ASS61401401	392637	6392787	1.7	0.9
OLD SARUN LODGE	ASS61401402	392661	6392784	2.5	0.5
OLD SARUN LODGE, MURRAY RIVER BANK	ASS61401403	392986	6392699	2.2	1.6
OLD SARUN LODGE	ASS61401404	392837	6392725	3.3	-0.3
BENS ROAD, PINJARRA WEST	ASS61401501	387561	6392515	3	-1.4
OFF BENS ROAD, PINJARRA WEST	ASS61401502	387544	6392347	2.5	-0.5
OFF BENS ROAD, PINJARRA WEST	ASS61401503	387652	6392054	NSP	na
AUSTIN BAY RESERVE; 200M OF ESTURY	ASS61401601	385126	6391352	0.5	0.4
AUSTIN BAY RESERVE 700M E OF INLET	ASS61401602	385572	6391406	2	0.1
AUSTIN BAY RESERVE, EAST BOUNDARY	ASS61401603	386161	6391138	0.6	0.9
60M WEST OF CNR BEECHAN & PARKHILLS LANE	ASS61401604	387716	6390732	NSP	na
OFF GREENLANDS RD	ASS61401701	384866	6388307	NSP	na
OFF GREENLANDS RD, FAUNTLEROY DRAIN TRACK	ASS61401702	385197	6388127	NSP	na
ROGERS RD 100M FROM BLACK LAKE	ASS61400610	387448	6397905	1.7	0.0
ROGERS RD EAST	ASS61400611	387213	6397900	0.95	0.3
DUNKERTON RD SOUTH BARRAGUP	ASS61401901	386601	6398498	0.6	0.4
COODANUP BASE OF DUNE EAST SERPENTINE BANK	ASS61400612	383177	6397933	1	0.0
STAKEHILL NORTH EAST BANK	ASS61400208	387478	6405269	NSP	na
AMARILLO SERPENTINE BRIDGE NORTH BANK BACKSWAMP	ASS61400103	388295	6409466	0.6	-0.1
LAKE ON AMARILLO UPPER SERPENTINE WEST BANK	ASS61402401	388414	6411608	0.8	-0.8
STAKEHILL NORTH EAST BANK SERPENTINE	ASS61400209	387445	6405278	1.1	-1.2
STAKEHILL NORTH EAST BANK SERPENTINE BACKSWAMP	ASS61400210	387196	6405274	0.8	-0.5
SW AMARILLO WEST BANK SERPENTINE	ASS61402501	387281	6408273	0.3	0.8
WEST AMARILLO WEST BANK SERPENTINE	ASS61402601	387596	6408812	0.1	0.2
LOWER NAMBEELUP BROOK CROSSING, FIEGERTS RD NORTH	ASS61402101	388335	6400983	1.2	0.4

Location	BORE ID	Easting	Northing	PASS	ShaPass
				(mbgl)*	(mAHD)
LAKES RD LAKE GOEGERUP WEST	ASS61402102	384424	6401647	1.2	0.5
DUNKERTON RD NORTH LAKE GOEGERUP EAST	ASS61402103	386757	6401008	1.9	0.4
HOUGHAM RD BARRAGUP	ASS61400503	386736	6399551	1.3	-0.1
SOUTH YUNDERUP - MURRAY R. DRIVE BACKSWAMP	ASS61401106	388465	6393934	0.3	0.0
PEEL PARADE WEST BANK SERPENTINE MOUTH	ASS61400705	383432	6396449	0.6	0.4
WEST AMARILLO WEST BANK SERPENTINE #2	ASS61402602	387474	6408841	0.9	0.8
WETLAND EAST OF SOUTH YANGEDI RD NAMBEELUP	ASS61402001	394881	6402369	1.6	13.5
BLACK LAKE SOUTH END PINJARRA RD	ASS61402201	388359	6395738	2.3	0.2
NORTH OF BEECHAM RD SOUTH OF MURRAY FLOOD DRAIN	ASS61402301	386118	6392442	0.25	0.7
CROWN LAND EAST OF RAVENSWOOD CARAVAN PARK	ASS61401304	390361	6393597	NSP	na
WEST LAKE GOEGERUP	ASS61402104	384141	6401570	2.8	-2.3
PINJARRAH RD AND SOUTH YUNDERUP RD INTERSECTION	ASS61401107	389466	6393379	1.6	-1.1
DELTA CRESCENT, SOUTH YUNDERUP	ASS61401003	387755	6394231	1	2.1
BENS ROAD, PINJARRA WEST	ASS61401504	387549	6392697	0.5	0.8
CALM RESERVE AUSTIN BAY	ASS61300105	379650	6385901	0.5	0.0
CALM RESERVE AUSTIN BAY	ASS61300106	379221	6385687	0.25	0.4
CARRABUNGUP RD VERGE WETLAND	ASS61300208	381345	6386383	1.9	-1.6
PATTERSON RD, DANDALUP RIVER	None	395038	6394118	1.5	1.7
GULL RD TRACK	ASS61400211	388625	6406893	1.5	4.7
FIEGERTS RD WETLAND	ASS61402202	388463	6397360	1	0.5
Development site	SB04	390112	6394696	1.4	4.1
Development site	BH7	390045	6394236	1.5	2.8
Development site	MB5	388280	6393384	0.6	0.9
Development site	MB8	388140	6393209	2	-0.3
Development site	MLL-3	388306	6392917	0.8	1.1
Development site	MB13	388414	6392795	1.1	0.7
Development site	MLL-4	388308	6392770	0.9	1.0
Development site	MB16	388251	6392648	1	0.8
Development site	MLB-7	388504	6393460	2.6	-0.8
Development site	MLB-9	388076	6393466	2	0.0
Development site	MLF-13	388204	6393452	0.8	1.0
Development site	MB2	388225	6393782	1.8	-0.2
Development site	MLF-6	387940	6393701	2.8	-0.7
Development site	MLB-2	387827	6393580	0.1	1.8
Development site	MLB-3	387610	6393529	1.9	0.3
Development site	MLF-10	387380	6393300	2	-0.5
Development site	MLF-15	387034	6393606	2	0.0
Development site	MLF-16	386956	6393503	1	0.7
Development site	NBB5	389191	6401671	3	4.0
Development site	NBB6	388590	6401993	1	2.8

* NPS = no significant PASS material recorded

Appendix 2 Sampling bore details and analysis

Site		Sample	Commis ID	Easting	N a sthis s	Ground	Тор	Bottom	Field Cond	Field DO	Field	Lab	Lab	Acidity	002 0-002
Name	AWRC	Date	Sample ID	Easting	Northing	Level	Screen	Screen	Uncomp	ma/L	вΗ	рH	Comp	(CaCO3)	CO3-CaCO3
						(mAHD)	(m bgl)	(m bgl)	(µS/cm)	(mg/L)	P	P	(µS/cm)	(mg/L)	(mg/L)
HS91B	61410615	9/10/2008	24668043	386039	6397647	2.70	1.00	5.00	146	,	6.17	6.7	170	32	<1
HS91A	61410616	9/10/2008	24668044	386039	6397646	2.62	10.50	13.50	827		6.61	7.1	890	10	<1
HS92B	61410617	9/10/2008	24668041	388397	6399839	3.85	1.00	5.00	467	0.61	6.01	6.7	510	130	<1
HS92A	61410618	9/10/2008	24668042	388397	6399841	3.86	11.50	14.50	540		7.06	7.7	580	8	<1
HS97B	61410619	9/10/2008	24668038	389356	6401197	7.01	1.00	5.00	176		5.59	6.2	190	52	<1
HS97A	61410620	28/11/2008	24688075	389356	6401196	6.99	8.50	11.50	294		5.73	6.0	320	84	<1
HS79B	61410621	7/10/2008	24631165	389452	6390892	3.94	1.00	5.00	361	2.95	7.35	7.6	410	3	<1
HS79A	61410622	7/10/2008	24631166	389451	6390892	3.94	7.00	10.00	1653	2.27	7.33	7.7	1710	4	<1
HS88B	61410623	28/11/2008	24688072	390380	6395259	6.62	2.50	5.50	661		6.48	6.7	800	89	<1
HS88A	61410624	28/11/2008	24688074	390380	6395257	6.64	7.00	10.00	783		6.59	6.2	830	150	<1
HS93B	61410625	9/10/2008	24668039	390794	6398388	9.37	1.00	5.00	577	2.82	5.41	5.5	680	58	<1
HS93A	61410626	9/10/2008	24668040	390794	6398387	9.35	10.80	13.80	1680		6.01	6.7	1680	53	<1
HS105B	61410627	6/10/2008	24668411	391304	6402507	17.42	2.00	6.00	427	1.08	5.32	5.5	500	43	<1
HS105A	61410628	6/10/2008	24668412	391305	6402509	17.31	11.50	14.50	181	1.47	6.43	6.5	200	10	<1
HS98B	61410629	8/10/2008	24667465	392953	6400175	13.48	0.50	2.70	217	0.46	4.61	4.6	250	94	<1
HS98A	61410630	8/10/2008	24667466	392954	6400175	13.47	8.00	11.00	1020	1.09	5.67	5.8	1140	110	<1
HS76A	61410632	16/12/2008	24695983	393049	6384047	14.18	7.50	10.50	833	1.36	7.08	7.8	950	13	<1
HS99B	61410633	8/10/2008	24667467	393049	6384047	17.12	2.00	8.00	181	1.45	5.28	5.6	210	47	<1
HS99A	61410634	8/10/2008	24667469	394399	6400126	17.13	10.30	13.30	731	0.51	5.48	5.4	810	85	<1
HS106B	61410635	6/10/2008	24668413	394438	6402289	17.55	0.80	5.00	200		5.5	5.8	230	32	<1
HS106A	61410636	2/12/2008	24689508	394439	6402288	17.50	12.00	16.00	581		5.98	6.3	600	57	<1
HS89B	61410637	8/10/2008	24667472	394797	6395491	11.88	1.00	5.00	248	2.25	6.47	7.0	280	28	<1
HS89A	61410638	2/12/2008	24689511	394797	6395490	11.82	6.00	9.00	218		5.45	5.8	210	37	<1
HS94B	61410639	8/10/2008	24667471	394981	6397625	13.64	1.00	5.00	122		5.24	5.5	140	58	<1
HS94A	61410640	28/11/2008	24688076	394981	6397626	13.64	6.50	9.50	204		5.05	5.3	220	110	<1
HS100B	61410641	28/11/2008	24688077	396460	6399169	17.72	0.50	2.00	460		6.13	6.3	450	76	<1
HS100A	61410642	8/10/2008	24667470	396460	6399168	17.66	8.00	11.00	470	0.77	5.94	6.3	520	59	<1
HS101A	61410645	7/10/2008	24631160	398995	6399275	24.64	7.50	10.50	171	2.52	6.06	6.4	210	11	<1
HS95	61410647	16/12/2008	24695984	399265	6397114	21.44	6.00	9.00	10000	3.83	5.82	5.8	12200	110	<1
HS102B	61410648	2/12/2008	24689510	400723	6399284	27.14	1.10	5.10	6460		5.91	5.5	6980	160	<1
HS102A	61410649	7/10/2008	24631161	400724	6399285	27.14	6.50	9.50	1014	0.61	4.95	5.1	1120	69	<1
HS90	61410650	7/10/2008	24631164	401380	6394139	24.03	4.00	7.00	2750	4.04	4.47	4.5	2840	91	<1
T680B	61410651	2/12/2008	24689509	401550	6403825	35.98	1.00	4.00	161		6	6.3	170	9	<1
T680A	61410652	6/10/2008	24668415	401551	6403825	35.93	7.50	10.50	149		5.74	5.7	170	10	<1
HS103A	61410654	6/10/2008	24668416	403003	6401666	42.84	11.30	14.30	364		5.28	5.5	400	53	<1

Table A-2: Hydrochemistry sampling locations and analysis results (Pages 63 to 77)

Site		Samula				Ground	Ton	Bottom	Field Cond	Eiald DO	Field	Lah	l ab	Acidity	
Sile	AWRC	Sample	Sample ID	Fasting	Northing	Ground	Top	Bottom	Field Cond	Field DO	Field	Lab	Lap	Acidity	CO3-CaCO3
Name		Date				Level	Screen	Screen	Uncomp	mg/L	pН	pН	Comp	(CaCO3)	
						(mAHD)	(m bgl)	(m bgl)	(µS/cm)	(mg/L)			(µS/cm)	(mg/L)	(mg/L)
HS110	61410655	16/12/2008	24695985	403631	6402891	41.37	1.10	5.10	2750	3.73	5.53	5.6	750	91	<1
HS080-1	61410656	17/12/2009	25214144	392387	6390900	8.99	1.11	5.61	1394	2.81	6.56	7.2	1470	33	<1
HS080-2B	61410657	17/12/2009	25214245	392253	6390389	7.90	12.00	15.00	2170	1.76	7.76	7.7	2340	7	<1
HS080-2C	61410658	17/12/2009	25214244	392253	6390391	7.88	0.63	5.63	727	2.61	7.01	7.3	790	38	<1
HS080-3	61410659	17/12/2009	25214248	392619	6390063	8.63	2.51	5.51	1592	1.99	6.61	6.9	1620	26	<1
HS080-2A	61410660	17/12/2009	25214147	392253	6390387	7.88	25.50	28.50	1504	1.41	7.69	8.3	1520	3	<1
HS087-1	61410661	16/12/2009	25214240	386159	6396950	2.37	0.90	3.90	932	3.1	6.54	7.7	970	5	<1
HS087-2	61410662	16/12/2009	25214242	385576	6396856	1.39	0.51	3.51	340	2.18	6.4	7.5	370	6	<1
HS087-3	61410663	16/12/2009	25214241	386063	6396449	2.15	1.00	4.00	407	3.12	6.01	6.4	410	23	<1
HS096-1B	61410665	21/12/2009	25181018	393130	6399417	12.56	0.76	2.76	845	1.77	5.72	5.9	790	38	<1
HS099-1A	61410667	23/12/2009	25215693	394784	6400167	16.04	7.08	10.08	740	1.34	5.6	4.6			
HS099-1B	61410668	21/12/2009	25181016	394783	6400168	16.04	4.56	6.06	176.4	1.75	5.1	5.5	190	30	<1
HS104-1A	61410669	14/12/2009	25178902	390276	6402328	12.53	55.80	58.80	851	2.87	6.89	6.8	880	24	<1
HS104-1B	61410670	14/12/2009	25178901	390158	6402328	12.07	0.62	3.62	219	2.5	5.84	6.2	240	17	<1
HS104-2A	61410671	14/12/2009	25178900	389916	6402535	11.44	6.09	8.59	218	1.49	5.54	5.9	240	73	<1
HS104-2B	61410672	14/12/2009	25178899	389917	6402536	11.42	1.45	3.45	157.9	4.2	4.83	5.2	160	21	<1
HS104-3A	61410673	21/12/2009	25181020	389917	6402536	10.67	5.92	6.92	435	4.7	6.07	6.07	100	45	<1
HS104-3B	61410674	21/12/2009	25181019	390000	6401883	10.66	1.20	4.20	274	4.4	5.4	5.8	270	44	<1
HS108-1A	61410675	16/12/2009	25214234	392447	6402449	13.72	8.20	11.20	1954	2.28	6.04	6.6	2160	74	<1
HS108-1B	61410676	16/12/2009	25214233	392447	6402412	13.75	0.91	2.41	179.5	2.63	5.61	6.4	190	11	<1
HS108-2A	61410677	16/12/2009	25214237	392394	6403275	16.71	6.25	8.25	869	2.83	5.51	5.3	970	58	<1
HS108-2B	61410678	16/12/2009	25214235	392393	6403275	16.71	0.97	3.47	496	2.82	3.96	3.9	550	44	<1
HS109-1	61410679	16/12/2009	25214239	392144	6403711	19.79	2.49	5.49	521	1.73	4.74	4	610	51	<1
HS109-2	61410680	16/12/2009	25214139	392405	6403716	20.08	2.55	5.55	459	2.65	4.15	3.8	520	65	<1
T561	61410682	15/12/2009	25178906	395155	6409168	21.69	1.10	4.10	104.4	2.76	4.65	4.5	110	45	<1
HS097	61410683	14/12/2009	25178903	389357	6401202	7.26	62.00	68.00	971	2.76	6.47	6.6	1020	33	<1
T563	61410684	14/12/2009	25179014	395010	6408839	21.53	5.40	8.40	419	3.78	5.56	5.4	440	44	<1
T564	61410685	15/12/2009	25178907	395010	6408839	20.69	2.00	5.00	4450	2.34	6.32	6.4	4710	80	<1

Site		Sample	Committee ID	F actions	N and him or	Ground	Тор	Bottom	Field Cond	Field DO	Field	Lab	Lab	Acidity	001 0-001
Name	AWRC	Date	Sample ID	Easting	Northing	Level	Screen	Screen	Uncomp	mg/L	pН	pН	Comp	(CaCO3)	CO3-CaCO3
						(mAHD)	(m bgl)	(m bgl)	(µS/cm)	(mg/L)			(µS/cm)	(mg/L)	(mg/L)
Wetlands															
PLI7046	6140970	10/11/2009	25115002	395418	6409264				537	1.58	6.95	6.39	610		
PLI5032	6140972	10/11/2009	25114999	392184.8	6403517.1				712	2.67	4.16	4.16	800		
PLI5033	6140973	10/11/2009	25115000	392044.8	6402342.4				737	2.96	5.91	5.91	830		
PLI5033	6140973	10/11/2009	25115001	392044.8	6402342.4				737	2.96	5.91	5.91	830		
PLI4835N	6140974	10/11/2009	25114998	389930.0	6402387.1				238	0.82	6.31	6.31	280		
PLI4835S	6140975	10/11/2009	25115005	390012.6	6402214.1				381	1.57	7.19	7.19	410		
PLI5180	6140976	10/11/2009	25115004	393135.0	6399362.9				1014	1.34	5.54	5.54	1100		
PLI5724	6140977	10/11/2009	25115003	394528.4	6399839.4				2260	3.09	5.54	6.09	2380		
PLI5056	6140978	10/11/2009	25115006	392625.5	6390281.6				1482	3.09	6.09	6.91	1560		
PLI3945	6140979	10/11/2009	25115007	386016.6	6397022.2				17070	10.2	9.47	9.47	15700		

Site																	
	AWRC	HCO3-CaCO3	AI	AI	As	в	Br	Ca	Ca	Cd	CI	Co	Cr	Cu	F	Fe	Hg
Name		(mg/l.)	ool (mail)	tot (mal.)	(ma/l.)	(ma/l)	(ma/l.)	ool (mg/l)	tot (mg/l)	(ma/l.)	(mg/l)	((ma/l.)	(m a/l)	ool (mal.)	(ma/l.)	(
11004.0	C1410C1E	(mg/L)	SOI (Mg/L)	tot (mgL)	(mg/L)	(mg/L)	(mg/L)	sol (mg/L)	tot (mg/L)	(mg/L)	(mg/L)	(µg/L)	(mg/L)	(mg/L)	sol (mgL)	(mg/L)	(µg/L)
HS91B	61410615	38	0.410	8.3	0.005	0.034	0.180	7.0	9.0	< 0.002	20.0	0.005	0.013	0.005	0.20	6.10	<0.0001
HS91A	61410616	53	0.007	1.1	0.005	0.190	0.440	7.0	8.0	< 0.002	150.0	0.005	0.005	0.005	0.20	6.80	<0.0001
HS92B	61410617	140	1.100	3.4	0.005	0.017	0.510	22.0	26.0	< 0.002	60.0	0.005	0.005	0.005	0.30	9.50	<0.0001
HS92A	61410618	130	0.270	10.0	0.005	0.077	0.410	7.0	10.0	< 0.002	100.0	0.005	0.017	0.006	0.20	2.50	<0.0001
HS97B	61410619	19	1.000	3.2	0.005	0.043	0.460	2.0	2.0	< 0.002	40.0	0.005	0.005	0.005	0.20	3.20	<0.0001
HS97A	61410620	32	1.600	5.0	0.005	0.010	0.580	2.0	3.0	<0.002	70.0	0.005	0.009	0.005	0.20	59.00	<0.0001
HS79B	61410621	120	0.450	8.5	0.005	0.120	0.270	7.0	10.0	<0.002	40.0	0.005	0.010	0.005	0.70	1.70	<0.0001
HS79A	61410622	360	0.031	7.4	0.005	0.035	1.200	62.0	65.0	<0.002	380.0	0.005	0.039	0.005	0.20	5.00	<0.0001
HS88B	61410623	150	0.940	3.4	0.005	0.029	0.480	43.0	48.0	<0.002	160.0	0.005	0.006	0.005	0.20	3.40	<0.0001
HS88A	61410624	91	4.500	7.1	0.005	0.025	0.600	16.0	17.0	<0.002	190.0	0.005	0.007	0.005	0.20	9.40	<0.0001
HS93B	61410625	16	0.720	1.6	0.005	0.039	0.370	18.0	19.0	<0.002	170.0	0.005	0.005	0.005	0.20	0.55	<0.0001
HS93A	61410626	53	0.700	3.3	0.005	0.026	1.200	16.0	21.0	<0.002	480.0	0.005	0.017	0.005	0.20	4.60	<0.0001
HS105B	61410627	15	0.660	7.8	0.005	0.021	0.460	3.0	3.0	<0.002	120.0	0.005	0.010	0.005	0.20	5.20	<0.0001
HS105A	61410628	40	0.390	5.4	0.005	0.021	0.100	22.0	27.0	<0.002	20.0	0.005	0.007	0.005	0.20	0.50	<0.0001
HS98B	61410629	2	0.370	0.5	0.005	0.022	0.180	8.0	9.0	<0.002	60.0	0.005	0.005	0.005	0.20	0.72	<0.0001
HS98A	61410630	34	2.000	11.0	0.005	0.026	0.920	6.0	10.0	< 0.002	320.0	0.005	0.007	0.005	0.20	7.00	<0.0001
HS76A	61410632	230	0.005	1.6	0.005	0.047	0.570	90.0	94.0	< 0.002	160.0	0.005	0.008	0.005	0.20	1.90	<0.0001
HS99B	61410633	10	1.300	4.0	0.005	0.010	0.110	2.0	2.0	< 0.002		0.005	0.005	0.005	0.20	0.68	< 0.0001
HS99A	61410634	14	1.400	20.0	0.005	0.012	0.710	6.0	7.0	<0.002		0.005	0.005	0.005	0.20	7.00	< 0.0001
HS106B	61410635	22	1.500	2.5	0.005	0.020	0.210	4.0	4.0	< 0.002	40.0	0.005	0.005	0.005	0.20	1.70	< 0.0001
HS106A	61410636	52	1.800	4.8	0.005	0.038	0.510	2.0	4.0	< 0.002	150.0	0.005	0.005	0.005	0.20	5.80	< 0.0001
HS89B	61410637	70	0.095	20.0	0.005	0.034	0.090	32.0	36.0	< 0.002	30.0	0.005	0.005	0.005	0.20	1.20	< 0.0001
HS89A	61410638	18	2.000	3.2	0.005	0.010	0.150	2.0	3.0	< 0.002	40.0	0.005	0.005	0.005	0.20	4.20	< 0.0001
HS94B	61410639	10	0.730	4.2	0.005	0.014	0.110	5.0	5.0	< 0.002	30.0	0.005	0.005	0.005	0.20	1.50	< 0.0001
HS94A	61410640	10	11.000	17.0	0.005	0.010	0.270	1.0	1.0	< 0.002	50.0	0.014	0.015	0.006	0.20	13.00	< 0.0001
HS100B	61410641	59	4.300	27.0	0.005	0.033	0.300	11.0	11.0	< 0.002	90.0	0.009	0.020	0.006	0.40	31.00	< 0.0001
HS100A	61410642	50	0.750	7.3	0.005	0.010	1.000	1.0	2.0	< 0.002	100.0	0.005	0.005	0.005	0.20	1.50	< 0.0001
HS101A	61410645	17	0.036	9.8	0.005	0.010	0.160	3.0	4.0	< 0.002	40.0	0.005	0.005	0.005	0.20	1.20	< 0.0001
HS95	61410647	23	0.160	2.5	0.005	0.044	9.600	41.0	41.0	< 0.002	4000.0	0.040	0.006	0.008	0.20	11.00	< 0.0001
HS102B	61410648	16	0.068	0.5	0.005	0.010	5.900	11.0	11.0	< 0.002	2200.0	0.005	0.005	0.005	0.20	87.00	< 0.0001
HS102A	61410649	10	0.069	0.2	0.005	0.011	0.990	2.0	2.0	< 0.002	310.0	0.005	0.005	0.005	0.20	0.69	< 0.0001
HS90	61410650	1	0.240	4.9	0.005	0.021	2.400	5.0	5.0	< 0.002	720.0	0.007	0.005	0.017	0.20	5.50	< 0.0001
T680B	61410651	12	0.024	0.4	0.005	0.010	0.100	4.0	5.0	< 0.002		0.005	0.005	0.005	0.20	0.07	< 0.0001
T680A	61410652	6	0.240	6.1	0.005	0.010	0.110	1.0	1.0	< 0.002		0.005	0.005	0.005	0.20	0.50	< 0.0001
HS103A	61410654	16	0.025	1.4	0.005	0.014	0.260	1.0	2.0	< 0.002	100.0	0.005	0.005	0.005	0.20	1.20	<0.0000

Site			A1	A1	A a	Б	D.,	6.	6.	64	<u></u>	6.0	<u></u>	<u></u>	-	Fa	LL en
Name	AWRC	HCO3-CaCO3	AI	AI	As	в	Br	Ca	Ca	Ca	CI	Co	Cr	Cu	F	ге	нg
		(mg/L)	sol (mg/L)	tot (mgL)	(mg/L)	(mg/L)	(mg/L)	sol (mg/L)	tot (mg/L)	(mg/L)	(mg/L)	(µg/L)	(mg/L)	(mg/L)	sol (mgL)	(mg/L)	(µg/L)
HS110	61410655	11	0.028	1.4	0.005	0.026	0.810	2.0	4.0	< 0.002	180.0	0.005	0.005	0.005	0.20	4.10	< 0.0001
HS080-1	61410656	240	0.18	0.26	< 0.005	0.057	0.61	130	130	< 0.002	280	< 0.005	< 0.005	< 0.005	< 0.2	11.00	< 0.0001
HS080-2B	61410657	1	0.59	3.2	0.016	0.036	1.8	41	67	< 0.002	550	< 0.005	0.035	0.009	0.23	0.14	< 0.0001
HS080-2C	61410658	340	0.95	3.3	<0.005	0.03	0.07	38	70	<0.002	30	< 0.005	0.01	0.058	0.22	0.22	<0.0001
HS080-3	61410659	74	3.8	7.3	0.01	0.035	1.2	11	13	<0.002	410	< 0.005	0.011	0.014	<0.2	0.81	0.0004
HS080-2A	61410660	220	0.02	0.096	< 0.005	0.046	1	63	63	< 0.002	350		< 0.005	< 0.005	<0.2	0.75	< 0.0001
HS087-1	61410661	76	5.1	8.1	0.007	0.26	1	8	10	<0.002	160	< 0.005	<0.005	<0.005	<0.2	18.00	<0.0001
HS087-2	61410662	53	0.39	0.59	0.024	0.034	0.18	32	43	<0.002	60	< 0.005	0.005	0.005	<0.2	0.87	< 0.0001
HS087-3	61410663	35	1.7	1.7	0.016	0.14	0.38	11	11	< 0.002	80	0.19	0.006	<0.005	<0.2	8.10	<0.0001
HS096-1B	61410665	23	0.64	0.95	< 0.005	0.035	0.72	7	7	< 0.002	210	< 0.005	< 0.005	< 0.005	<0.2	0.94	< 0.0001
HS099-1A	61410667																
HS099-1B	61410668	7	0.89	1.3	<0.005	0.014	0.11	2	3	< 0.002	30		< 0.005	<0.005	<0.2	0.31	< 0.0001
HS104-1A	61410669	110	0.12	2.3	<0.005	0.016	0.41	9	9	< 0.002	190		0.007	0.011	0.25	8.60	< 0.0001
HS104-1B	61410670	21	0.21	0.61	<0.005	0.033	0.15	9	9	< 0.002	40		< 0.005	< 0.005	<0.2	0.29	< 0.0001
HS104-2A	61410671	39	1.7	5.8	<0.005	0.027	0.29	4	4	< 0.002	40		0.01	< 0.005	<0.2	2.00	< 0.0001
HS104-2B	61410672	5	0.35	0.52	<0.005	0.02	0.13	4	4	<0.002	30		< 0.005	<0.005	<0.2	0.33	< 0.0001
HS104-3A	61410673	67	2.8	8.8	0.007	0.032	0.55	12	20	<0.002	80		0.022	0.005	<0.2	1.10	< 0.0001
HS104-3B	61410674	16	0.25	0.43	<0.005	0.03	0.27	8	9	< 0.002	60		< 0.005	< 0.005	<0.2	0.37	< 0.0001
HS108-1A	61410675	160	3.4	5.1	0.019	0.04	1.4	8	11	<0.002	560		0.032	0.013	<0.2	5.10	< 0.0001
HS108-1B	61410676	19	0.35	0.5	< 0.005	0.033	0.14	13	13	< 0.002	30		< 0.005	< 0.005	0.84	0.22	< 0.0001
HS108-2A	61410677	13	4	6.8	0.008	0.033	0.79	2	6	< 0.002	250		0.012	0.02	<0.2	0.32	< 0.0001
HS108-2B	61410678	1	0.86	0.93	<0.005	0.031	0.36	3	4	<0.002	120		< 0.005	<0.005	<0.2	0.76	< 0.0001
HS109-1	61410679	1	0.6	0.65	<0.005	0.024	0.54	1	3	< 0.002	150		<0.005	<0.005	<0.2	6.50	< 0.0001
HS109-2	61410680	1	1	1.4	<0.005	0.023	0.24	4	6	<0.002	110		<0.005	<0.005	<0.2	2.60	<0.0001
T561	61410682	1	0.75	2.4	<0.005	< 0.01	0.07	4	4	<0.002	20		<0.005	<0.005	<0.2	0.23	< 0.0001
HS097	61410683	83	0.065	0.29	< 0.005	0.022	0.6	10	10	< 0.002	230		0.008	< 0.005	<0.2	7.50	< 0.0001
T563	61410684	8	0.46	25	< 0.005	< 0.01	0.36	4	4	< 0.002	120		0.025	< 0.005	<0.2	2.90	< 0.0001
T564	61410685	140	1.5	70	0.011	0.034	3	16	16	< 0.002	1400		0.13	0.095	0.32	7.80	< 0.0001

Site	AWRC	HCO3-CaCO3	ΔI	ΔΙ	Δ٩	в	Br	Ca	Ca	Cd	CI	Co	Cr	Cu	F	F۵	На
Name	/		74	7.4	713	2	2.	04	04	ou	01		01	ou	•	10	
		(mg/L)	sol (mg/L)	tot (mgL)	(mg/L)	(mg/L)	(mg/L)	sol (mg/L)	tot (mg/L)	(mg/L)	(mg/L)	(µg/L)	(mg/L)	(mg/L)	sol (mgL)	(mg/L)	(µg/L)
Wetlands																	
PLI7046	6140970	36		0.16			0.58	9			150				0.24	1.7	
PLI5032	6140972	<1		1.9			0.59	4			200				<0.2	2.7	
PLI5033	6140973	22		1.4			0.74	19			220				<0.2	3.4	
PLI5033	6140973	24		1.5			0.76	19			220				< 0.2	3.4	
PLI4835N	6140974	25		0.39			0.3	11			60				<0.2	0.82	
PLI4835S	6140975	74		0.26			0.29	27			80				<0.2	0.81	
PLI5180	6140976	23		1.2			1.1	12			290				<0.2	2.1	
PLI5724	6140977	24		1.3			1.4	37			530				<0.2	3	
PLI5056	6140978	68		0.55			1.1	18			430				<0.2	1.7	
PLI3945	6140979	220		0.023			16.	110			5500				0.75	0.022	

Site										_		_		TDS	
Name	AWRC	K	Mg	Mn	Mn	Мо	Na	Ni	Pb	Se	SiO2	Zn	SO_4	(Evap)	TSS
		(ma/L)	(mg/L)	sol (mg/L)	Tot (mgL)	(mg/L)	(mg/L)	(ma/L)	(µg/L)	(mg/L)	(ma/L)	(ma/L)	(mg/L)	(mg/L)	(mg/L)
HS91B	61410615	2.0	4.0	0.420	0.470	0.005	20.0	0.005	0.017	0.005	8.6	0.005	5.0	130	<u>, , , , , , , , , , , , , , , , , , , </u>
HS91A	61410616	19.0	18.0	0.430	0.440	0.005	130.0	0.005	0.010	0.005	15.0	0.005	130.0	480	
HS92B	61410617	8.0	24.0	0.110	0.110	0.005	50.0	0.005	0.010	0.005	19.0	0.005	10.0	470	
HS92A	61410618	3.0	11.0	0.180	0.230	0.005	100.0	0.005	0.011	0.005	21.0	0.005	6.0	380	
HS97B	61410619	6.0	5.0	0.079	0.082	0.005	20.0	0.005	0.010	0.005	7.7	0.005	5.0	130	
HS97A	61410620	5.0	6.0	0.023	0.028	0.005	40.0	0.005	0.028	0.005	11.0	0.006	5.0	240	
HS79B	61410621	1.0	5.0	0.008	0.030	0.005	80.0	0.005	0.010	0.005	13.0	0.005	17.0	360	
HS79A	61410622	2.0	25.0	0.062	0.120	0.005	260.0	0.005	0.010	0.005	20.0	0.006	55.0	910	
HS88B	61410623	10.0	19.0	0.140	0.160	0.005	80.0	0.005	0.010	0.005	12.0	0.022	22.0	600	
HS88A	61410624	4.0	17.0	0.028	0.035	0.005	140.0	0.005	0.036	0.005	11.0	0.005	9.0	800	
HS93B	61410625	6.0	9.0	0.018	0.018	0.005	100.0	0.005	0.010	0.005	9.2	0.005	5.0	570	
HS93A	61410626	6.0	29.0	0.360	0.390	0.005	270.0	0.005	0.010	0.005	22.0	0.015	18.0	1040	
HS105B	61410627	4.0	8.0	0.160	0.170	0.005	60.0	0.005	0.010	0.005	15.0	0.005	5.0	190	
HS105A	61410628	1.0	3.0	0.025	0.026	0.005	10.0	0.005	0.010	0.005	9.8	0.005	7.0	320	
HS98B	61410629	7.0	4.0	0.100	0.100	0.005	30.0	0.005	0.010	0.005	6.0	0.005	5.0	290	
HS98A	61410630	7.0	22.0	0.410	0.410	0.005	170.0	0.005	0.010	0.005	13.0	0.006	7.0	1130	
HS76A	61410632	3.0	13.0	0.084	0.120	0.005	90.0	0.005	0.012	0.005	18.0	0.055	41.0	530	
HS99B	61410633	2.0	5.0	0.054	0.054	0.005	30.0	0.005	0.010	0.005	6.2	0.005		180	
HS99A	61410634	4.0	18.0	0.590	0.590	0.005	120.0	0.006	0.010	0.005	11.0	0.006		670	
HS106B	61410635	1.0	3.0	0.130	0.130	0.005	40.0	0.005	0.010	0.005	12.0	0.005	6.0	230	
HS106A	61410636	4.0	9.0	0.270	0.310	0.005	110.0	0.005	0.022	0.005	20.0	0.010	5.0	950	
HS89B	61410637	4.0	6.0	0.140	0.140	0.005	10.0	0.005	0.010	0.005	8.3	0.005	5.0	190	
HS89A	61410638	3.0	3.0	0.027	0.029	0.005	40.0	0.005	0.020	0.005	12.0	0.010	5.0	440	
HS94B	61410639	2.0	3.0	0.120	0.120	0.005	20.0	0.005	0.010	0.005	4.5	0.005	5.0	160	
HS94A	61410640	2.0	4.0	0.210	0.290	0.005	30.0	0.013	0.130	0.005	12.0	0.016	5.0	390	
HS100B	61410641	31.0	5.0	0.150	0.210	0.005	40.0	0.012	0.030	0.005	8.4	0.018	9.0	470	
HS100A	61410642	2.0	7.0	0.120	0.120	0.005	60.0	0.005	0.010	0.005	16.0	0.005	32.0	610	
HS101A	61410645	1.0	4.0	0.030	0.046	0.005	30.0	0.007	0.010	0.005	15.0	0.008	11.0	140	
HS95	61410647	3.0	420.0	3.100	3.100	0.005	2200.0	0.069	0.021	0.005	86.0	0.078	890.0	8080	
HS102B	61410648	5.0	190.0	0.014	3.000	0.005	1200.0	0.005	0.010	0.005	16.0	0.017	480.0	4420	
HS102A	61410649	5.0	25.0	0.077	0.077	0.005	170.0	0.005	0.010	0.005	31.0	0.005	24.0	590	
HS90	61410650	2.0	31.0	0.190	0.190	0.005	550.0	0.006	0.010	0.005	100.0	0.007	310.0	1880	
T680B	61410651	2.0	4.0	0.009	0.009	0.005	20.0	0.005	0.010	0.005	4.0	0.005		90	
T680A	61410652	1.0	2.0	0.003	0.003	0.005	30.0	0.005	0.010	0.005	18.0	0.005		80	
HS103A	61410654	4.0	8.0	0.027	0.030	0.005	60.0	0.005	0.010	0.005	44.0	0.012	5.0	230	

Water Science Technical Series, report no. 30

Site														TDS	
	AWRC	ĸ	Mg	Mn	Mn	Мо	Na	Ni	Pb	Se	SiO2	Zn	SO_4		TSS
Name														(Evap)	
		(mg/L)	(mg/L)	sol (mg/L)	Tot (mgL)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
HS110	61410655	1.0	3.0	0.030	0.340	0.005	140.0	0.009	0.010	0.005	110.0	0.018	46.0	480	
HS080-1	61410656	11	22	0.37	0.37	<0.005	130	< 0.005	<0.01	<0.005	12	0.07	49	920	22
HS080-2B	61410657	3	30	0.026	0.063	0.011	390	< 0.005	0.02	<0.005	16	0.015	60	1250	535
HS080-2C	61410658	1	19	0.005	0.05	<0.005	110	0.011	0.034	<0.005	13	0.1	16	440	1930
HS080-3	61410659	3	30	0.91	1.1	<0.005	280	0.019	0.057	< 0.005	14	0.013	67	940	653
HS080-2A	61410660	6	33	0.04	0.046	0.005	200	< 0.005	<0.01	< 0.005	20	<0.005	15	850	6
HS087-1	61410661	18	14	0.11	0.11	< 0.005	150	< 0.005	0.012	< 0.005	12	0.007	99	530	184
HS087-2	61410662	2	4	0.092	0.09	0.023	30	0.009	< 0.01	< 0.005	6.1	0.009	28	210	56
HS087-3	61410663	3	11	0.023	0.023	<0.005	50	< 0.005	<0.01	< 0.005	15	0.005	13	320	10
HS096-1B	61410665	4	19	0.011	0.011	<0.005	120	< 0.005	<0.01	< 0.005	7.4	<0.005	5	630	6
HS099-1A	61410667														
HS099-1B	61410668	1	3	< 0.001	0.006	<0.005	30	0.038	<0.01	<0.005	5.9	<0.005	17	160	10
HS104-1A	61410669	17	9	0.14	0.15	< 0.005	140	< 0.005	< 0.01	< 0.005	21	0.013	10	460	94
HS104-1B	61410670	1	3	0.013	0.014	<0.005	30	< 0.005	<0.01	<0.005	9	<0.005	13	180	15
HS104-2A	61410671	3	8	0.11	0.13	< 0.005	30	< 0.005	0.011	< 0.005	13	0.006	5	350	273
HS104-2B	61410672	2	4	0.013	0.016	<0.005	20	< 0.005	<0.01	< 0.005	6.4	0.006	8	170	16
HS104-3A	61410673	4	8	0.39	0.52	<0.005	50	< 0.005	0.043	<0.005	8.8	0.009	5	330	1520
HS104-3B	61410674	2	6	0.019	0.02	<0.005	30	< 0.005	< 0.01	< 0.005	5.9	0.006	9	190	33
HS108-1A	61410675	3	40	0.058	0.06	<0.005	370	0.011	<0.01	<0.005	21	0.01	9	1710	16
HS108-1B	61410676	2	3	0.002	0.002	< 0.005	20	< 0.005	< 0.01	< 0.005	11	< 0.005	5	180	32
HS108-2A	61410677	4	19	0.005	0.006	< 0.005	150	0.006	0.032	< 0.005	14	0.02	7	740	1010
HS108-2B	61410678	4	11	0.002	0.002	< 0.005	70	< 0.005	<0.01	< 0.005	9.4	<0.005	11	460	19
HS109-1	61410679	14	13	0.052	0.052	< 0.005	70	< 0.005	<0.01	< 0.005	10	<0.005	12	400	24
HS109-2	61410680	3	13	0.03	0.031	<0.005	60	< 0.005	<0.01	<0.005	8.8	<0.005	23	440	40
T561	61410682	1	2	0.003	0.003	< 0.005	10	< 0.005	<0.01	< 0.005	6.8	0.007	5	120	1670
HS097	61410683	13	20	0.16	0.16	< 0.005	150	< 0.005	< 0.01	< 0.005	23	< 0.005	15	600	5
T563	61410684	3	9	0.039	0.048	< 0.005	60	< 0.005	0.059	< 0.005	9.1	0.006	5	250	1870
T564	61410685	2	150	0.093	0.14	0.009	770	0.15	0.32	< 0.005	30	0.77	140	3050	10700

Site	AWRC	к	Mg	Mn	Mn	Мо	Na	Ni	Pb	Se	SiO2	Zn	SO_4	TDS	TSS
Name		((Tab (as al)	((((//)	(((((⊏vap)	(
		(mg/L)	(mg/L)	soi (mg/L)	Tot (mgL)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Wetlands															
PLI7046	6140970	6	10	0.13			90				44		5		36
PLI5032	6140972	9	14	0.009			120				18		8		31
PLI5033	6140973	7	17	0.027			130				17		5		56
PLI5033	6140973	7	16	0.027			120				17		5		53
PLI4835N	6140974	3	6	0.017			40				4.2		5		8
PLI4835S	6140975	4	8	0.016			40				12		5		8
PLI5180	6140976	7	25	0.037			170				13		8		26
PLI5724	6140977	14	84	0.045			340				14		350		<1
PLI5056	6140978	14	23	0.009			260				3.9		16		28
PLI3945	6140979	150	290	0.03			3100				2.6		1000		5

Site		N (sum sol ox)	N (tot kjel)	NH3-N/NH4-	NO2-N	NO3-N	N (6-4) (TN	D (4-4) (TD	PO4-P (sol	
Name	AWRC	{NOx-N, TON}	{TKN}	N (sol)	(sol)	(sol)	N (tot) { I N, pTN}	P (tot) {TP, pTP}	react) (SRP,	Hardness
Name		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Calculated
HS91B	61410615	0.024	0.510	0.066	0.010		0.53	0.027	0.014	38.9
HS91A	61410616	0.015	0.520	0.340	0.010		0.54	0.013	0.005	94.1
HS92B	61410617	0.071	5.000	1.100	0.010		5.00	0.062	0.019	163.7
HS92A	61410618	0.038	1.300	0.160	0.010		1.30	0.130	0.067	70.3
HS97B	61410619	0.023	1.700	0.500	0.010		1.80	0.052	0.013	25.6
HS97A	61410620	0.011	2.000	0.680	0.010		2.00	0.062	0.038	32.2
HS79B	61410621	2.500	0.310	0.055	0.024		2.80	0.087	0.005	45.6
HS79A	61410622	0.021	0.210	0.120	0.010		0.23	0.380	0.005	265.2
HS88B	61410623	0.013	4.800	0.940	0.010		4.80	0.630	0.340	198.1
HS88A	61410624	0.036	5.400	0.770	0.010		5.40	0.270	0.250	112.4
HS93B	61410625	0.081	3.200	0.310	0.010		3.30	0.033	0.015	84.5
HS93A	61410626	0.066	1.700	0.470	0.010		1.80	0.140	0.075	171.8
HS105B	61410627	0.038	1.400	0.720	0.010		1.40	0.063	0.014	40.4
HS105A	61410628	5.300	1.900	0.044	0.038		7.20	0.058	0.018	79.8
HS98B	61410629	0.058	3.700	0.640	0.010		3.80	0.560	0.430	38.9
HS98A	61410630	0.087	3.400	0.820	0.010		3.40	0.390	0.330	115.5
HS76A	61410632	0.012	0.280	0.010	0.010		0.29	0.035	0.005	288.2
HS99B	61410633	1.200	0.960	0.083	0.010		2.20	0.044	0.005	25.6
HS99A	61410634	0.069	2.200	0.450	0.010		2.30	0.320	0.005	91.6
HS106B	61410635	0.078	1.800	0.190	0.010		1.90	0.024	0.008	22.3
HS106A	61410636	0.076	3.000	0.620	0.010		3.10	0.074	0.058	47.0
HS89B	61410637	1.500	1.600	0.300	0.010		3.10	0.680	0.600	114.6
HS89A	61410638	0.069	3.100	0.530	0.010		3.20	0.730	0.620	19.8
HS94B	61410639	0.020	2.200	0.460	0.010		2.20	0.036	0.005	24.8
HS94A	61410640	0.026	3.000	1.300	0.010		3.00	0.052	0.026	19.0
HS100B	61410641	0.040	12.000	6.000	0.010		12.00	3.700	1.900	48.1
HS100A	61410642	0.044	0.440	0.140	0.010		0.48	0.024	0.005	33.8
HS101A	61410645	0.640	0.320	0.054	0.016		0.96	0.100	0.006	26.5
HS95	61410647	0.019	0.760	0.210	0.012		0.78	0.030	0.005	1831.4
HS102B	61410648	0.013	0.460	0.300	0.011		0.47	0.005	0.005	809.7
HS102A	61410649	0.010	0.041	0.020	0.010		0.05	0.012	0.005	107.9
HS90	61410650	0.032	0.081	0.077	0.010		0.11	0.021	0.005	140.1
T680B	61410651	3.500	0.390	0.013	0.010		3.90	0.016	0.012	29.0
T680A	61410652	0.058	0.036	0.019	0.010		0.09	0.013	0.005	10.7
HS103A	61410654	0.023	0.049	0.037	0.010		0.07	0.016	0.005	37.9

Site		N (sum sol ox)	N (tot kjel)	NH3-N/NH4-	NO2-N	NO3-N	N (tot) (TN	P (tot) (TP	PO4-P (sol	
Name	AWRC	{NOx-N, TON}	{TKN}	N (sol)	(sol)	(sol)	pTN}	pTP}	react) {SRP, FRP}	Hardness
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Calculated
HS110	61410655	0.011	0.180	0.042	0.010		0.19	0.029	0.005	22.3
HS080-1	61410656	4.000		0.540	0.160		5.10	0.012	<0.005	415.2
HS080-2B	61410657	0.055		0.130	< 0.01		1.50	0.320	0.021	290.8
HS080-2C	61410658	0.069		0.061	< 0.01		2.50	0.170	<0.005	253.0
HS080-3	61410659	0.042		0.120	< 0.01		1.60	0.150	0.017	156.0
HS080-2A	61410660	0.015		0.130	< 0.01		0.25	0.065	0.044	293.2
HS087-1	61410661	0.081		0.310	< 0.01		0.65	0.020	0.008	82.6
HS087-2	61410662	0.790		0.140	< 0.01		1.60	0.140	0.065	123.8
HS087-3	61410663	0.012		0.220	< 0.01		1.70	0.023	<0.005	72.8
HS096-1B	61410665	0.057		0.470	< 0.01		3.30	0.260	0.210	95.7
HS099-1A	61410667						1.60	0.170		
HS099-1B	61410668	0.840		0.076	< 0.01		1.70	0.017	0.005	19.8
HS104-1A	61410669	0.034		0.460	< 0.01		0.72	0.330	0.210	59.5
HS104-1B	61410670	2.200		0.077	< 0.01		3.00	0.150	0.130	34.8
HS104-2A	61410671	0.021		2.300	< 0.01		5.20	0.370	0.290	42.9
HS104-2B	61410672	1.300		0.860	< 0.01		3.80	0.210	0.160	26.5
HS104-3A	61410673	0.010		0.600	< 0.01		3.50	0.170	0.012	82.9
HS104-3B	61410674	1.600		0.160	< 0.01		3.00	0.120	0.089	47.2
HS108-1A	61410675	0.068		0.930	< 0.01		6.20	0.370	0.240	192.1
HS108-1B	61410676	< 0.01		1.100	< 0.01		2.90	0.780	0.660	44.8
HS108-2A	61410677	0.110		0.570	< 0.01		0.88	0.029	0.028	93.2
HS108-2B	61410678	0.180		0.340	< 0.01		2.90	0.023	0.009	55.3
HS109-1	61410679	0.070		0.850	< 0.01		2.70	0.800	0.680	61.0
HS109-2	61410680	0.096		0.450	< 0.01		3.60	0.044	0.016	68.5
T561	61410682	0.200		0.360	< 0.01		2.30	0.220	0.160	18.2
HS097	61410683	0.030		0.460	< 0.01		0.91	0.030	0.030	107.3
T563	61410684	< 0.01		0.290	< 0.01		1.50	0.089	0.005	47.0
T564	61410685	0.042		0.530	< 0.01		13.00	0.270	0.026	657.5

Site Name	AWRC	к	Mg	Mn	Mn	Мо	Na	Ni	Pb	Se	SiO2	Zn	\mathbf{SO}_4	TDS (Evap)	TSS
		(mg/L)	(mg/L)	sol (mg/L)	Tot (mgL)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Wetlands															
PLI7046	6140970	6	10	0.13			90				44		5		36
PLI5032	6140972	9	14	0.009			120				18		8		31
PLI5033	6140973	7	17	0.027			130				17		5		56
PLI5033	6140973	7	16	0.027			120				17		5		53
PLI4835N	6140974	3	6	0.017			40				4.2		5		8
PLI4835S	6140975	4	8	0.016			40				12		5		8
PLI5180	6140976	7	25	0.037			170				13		8		26
PLI5724	6140977	14	84	0.045			340				14		350		<1
PLI5056	6140978	14	23	0.009			260				3.9		16		28
PLI3945	6140979	150	290	0.03			3100				2.6		1000		5

Site	A)4/2-0	N (sum sol ox)	N (tot kjel)	NH3-N/NH4-	NO2-N	NO3-N	N (tot) {TN.	P (tot) {TP.	PO4-P (sol	Understein
Name	AWRC	{NUX-N, TUN}	{1KN}	N (SOI)	(SOI)	(\$01)	pTN}	pTP}	FRP	Hardness
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Calculated
HS91B	61410615	0.024	0.510	0.066	0.010		0.53	0.027	0.014	38.9
HS91A	61410616	0.015	0.520	0.340	0.010		0.54	0.013	0.005	94.1
HS92B	61410617	0.071	5.000	1.100	0.010		5.00	0.062	0.019	163.7
HS92A	61410618	0.038	1.300	0.160	0.010		1.30	0.130	0.067	70.3
HS97B	61410619	0.023	1.700	0.500	0.010		1.80	0.052	0.013	25.6
HS97A	61410620	0.011	2.000	0.680	0.010		2.00	0.062	0.038	32.2
HS79B	61410621	2.500	0.310	0.055	0.024		2.80	0.087	0.005	45.6
HS79A	61410622	0.021	0.210	0.120	0.010		0.23	0.380	0.005	265.2
HS88B	61410623	0.013	4.800	0.940	0.010		4.80	0.630	0.340	198.1
HS88A	61410624	0.036	5.400	0.770	0.010		5.40	0.270	0.250	112.4
HS93B	61410625	0.081	3.200	0.310	0.010		3.30	0.033	0.015	84.5
HS93A	61410626	0.066	1.700	0.470	0.010		1.80	0.140	0.075	171.8
HS105B	61410627	0.038	1.400	0.720	0.010		1.40	0.063	0.014	40.4
HS105A	61410628	5.300	1.900	0.044	0.038		7.20	0.058	0.018	79.8
HS98B	61410629	0.058	3.700	0.640	0.010		3.80	0.560	0.430	38.9
HS98A	61410630	0.087	3.400	0.820	0.010		3.40	0.390	0.330	115.5
HS76A	61410632	0.012	0.280	0.010	0.010		0.29	0.035	0.005	288.2
HS99B	61410633	1.200	0.960	0.083	0.010		2.20	0.044	0.005	25.6
HS99A	61410634	0.069	2.200	0.450	0.010		2.30	0.320	0.005	91.6
HS106B	61410635	0.078	1.800	0.190	0.010		1.90	0.024	0.008	22.3
HS106A	61410636	0.076	3.000	0.620	0.010		3.10	0.074	0.058	47.0
HS89B	61410637	1.500	1.600	0.300	0.010		3.10	0.680	0.600	114.6
HS89A	61410638	0.069	3.100	0.530	0.010		3.20	0.730	0.620	19.8
HS94B	61410639	0.020	2.200	0.460	0.010		2.20	0.036	0.005	24.8
HS94A	61410640	0.026	3.000	1.300	0.010		3.00	0.052	0.026	19.0
HS100B	61410641	0.040	12.000	6.000	0.010		12.00	3.700	1.900	48.1
HS100A	61410642	0.044	0.440	0.140	0.010		0.48	0.024	0.005	33.8
HS101A	61410645	0.640	0.320	0.054	0.016		0.96	0.100	0.006	26.5
HS95	61410647	0.019	0.760	0.210	0.012		0.78	0.030	0.005	1831.4
HS102B	61410648	0.013	0.460	0.300	0.011		0.47	0.005	0.005	809.7
HS102A	61410649	0.010	0.041	0.020	0.010		0.05	0.012	0.005	107.9
HS90	61410650	0.032	0.081	0.077	0.010		0.11	0.021	0.005	140.1
T680B	61410651	3.500	0.390	0.013	0.010		3.90	0.016	0.012	29.0
T680A	61410652	0.058	0.036	0.019	0.010		0.09	0.013	0.005	10.7
HS103A	61410654	0.023	0.049	0.037	0.010		0.07	0.016	0.005	37.9

Site		N (sum sol ox)	N (tot kjel)	NH3-N/NH4-	NO2-N	NO3-N	N (tot) (TN.	P (tot) (TP.	PO4-P (sol	
Name	AWRC	{NOX-N, ION}	{ KN}	N (SOI)	(SOI)	(sol)	pTN}	pTP}	react) (SRP, FRP}	Hardness
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Calculated
HS110	61410655	0.011	0.180	0.042	0.010		0.19	0.029	0.005	22.3
HS080-1	61410656	4.000		0.540	0.160		5.10	0.012	<0.005	415.2
HS080-2B	61410657	0.055		0.130	< 0.01		1.50	0.320	0.021	290.8
HS080-2C	61410658	0.069		0.061	< 0.01		2.50	0.170	<0.005	253.0
HS080-3	61410659	0.042		0.120	< 0.01		1.60	0.150	0.017	156.0
HS080-2A	61410660	0.015		0.130	< 0.01		0.25	0.065	0.044	293.2
HS087-1	61410661	0.081		0.310	< 0.01		0.65	0.020	0.008	82.6
HS087-2	61410662	0.790		0.140	< 0.01		1.60	0.140	0.065	123.8
HS087-3	61410663	0.012		0.220	< 0.01		1.70	0.023	<0.005	72.8
HS096-1B	61410665	0.057		0.470	< 0.01		3.30	0.260	0.210	95.7
HS099-1A	61410667						1.60	0.170		
HS099-1B	61410668	0.840		0.076	< 0.01		1.70	0.017	0.005	19.8
HS104-1A	61410669	0.034		0.460	< 0.01		0.72	0.330	0.210	59.5
HS104-1B	61410670	2.200		0.077	< 0.01		3.00	0.150	0.130	34.8
HS104-2A	61410671	0.021		2.300	< 0.01		5.20	0.370	0.290	42.9
HS104-2B	61410672	1.300		0.860	< 0.01		3.80	0.210	0.160	26.5
HS104-3A	61410673	0.010		0.600	< 0.01		3.50	0.170	0.012	82.9
HS104-3B	61410674	1.600		0.160	< 0.01		3.00	0.120	0.089	47.2
HS108-1A	61410675	0.068		0.930	< 0.01		6.20	0.370	0.240	192.1
HS108-1B	61410676	< 0.01		1.100	< 0.01		2.90	0.780	0.660	44.8
HS108-2A	61410677	0.110		0.570	< 0.01		0.88	0.029	0.028	93.2
HS108-2B	61410678	0.180		0.340	< 0.01		2.90	0.023	0.009	55.3
HS109-1	61410679	0.070		0.850	< 0.01		2.70	0.800	0.680	61.0
HS109-2	61410680	0.096		0.450	< 0.01		3.60	0.044	0.016	68.5
T561	61410682	0.200		0.360	< 0.01		2.30	0.220	0.160	18.2
HS097	61410683	0.030		0.460	< 0.01		0.91	0.030	0.030	107.3
T563	61410684	< 0.01		0.290	< 0.01		1.50	0.089	0.005	47.0
T564	61410685	0.042		0.530	< 0.01		13.00	0.270	0.026	657.5

Site Name	AWRC	N (sum sol ox) {NOx-N, TON}	N (tot kjel) {TKN}	NH3-N/NH4- N (sol)	NO2-N (sol)	NO3-N (sol)	N (tot) {TN, pTN}	P (tot) {TP, pTP}	PO4-P (sol react) {SRP, FRP}	Hardness
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Calculated
Wetlands										
PLI7046	6140970	0.097	4.5	0.094	< 0.01	0.096	4.6	0.620	0.35	63.6
PLI5032	6140972	0.098	5	0.19	< 0.01	0.095	5.1	0.037	0.025	67.6
PLI5033	6140973	0.12	5.4	0.19	0.01	0.11	5.5	0.300	0.2	117.4
PLI5033	6140973	0.13	5.2	0.19	< 0.01	0.12	5.3	0.310	0.2	113.3
PLI4835N	6140974	0.11	3.2	0.071	< 0.01	0.11	3.3	0.200	0.11	52.2
PLI4835S	6140975	0.12	2.6	0.066	< 0.01	0.12	2.8	0.095	0.033	100.4
PLI5180	6140976	0.12	5	0.2	< 0.01	0.12	5.2	0.520	0.36	132.9
PLI5724	6140977	0.14	3.8	0.15	< 0.01	0.14	3.9	0.097	0.062	438.2
PLI5056	6140978	0.15	3.6	0.047	< 0.01	0.14	3.7	0.610	0.35	139.6
PLI3945	6140979	0.062	4.2	0.026	< 0.01	0.058	4.2	0.180	0.041	1468.5

Appendix 3 Laboratory analytes

Table A- 3: Laboratory analytes measured
--

Analyte Group	Analyte	Special Instructions						
	Unfiltered, 1L plastic							
	Acidity as CaCO ₃	WL 197, LOR 1 mg/L						
	Alkalinity	WL 122, LOR 1 mg/L						
	Bicarbonate HCO ₃	WL 122, LOR 1 mg/L						
	Carbonate CO ₃	WL 122, LOR 1 mg/L						
Total Parameters	Total nitrogen (TN)	WI 239, I OB 0.025 mg/l						
	Total phosphorus (TP)	WL 239, LOR 0.005 mg/L						
	Total dissolved solids (TDS)	WL 123, LOR 10 mg/L						
	Total suspended solids (TSS)	WL 126, LOR 1 mg/L						
	рН	WL 120						
	Conductivity at 25°C	WL 121 1 mS/m						
	Filtered 250	ml						
	Ammonia (NH ₃ -N)	WL 239, LOR 0.0010 mg/L						
	Nitrite (NO ₂ -N)	WL 239, LOR 0.01 mg/L						
	NO ₂ -N + NO ₃ -N (NOx-N) {TON}	WL 239, LOR 0.01 mg/L						
	Soluble reactive phosphorus (SRP)	WL 239, LOR 0.01 mg/L						
Dissolved Parameters		WL 119, LOR 5 mg/L as SO_4						
	Sulfate (SO ₄)	2 mg/L as SO ₄ -S						
	Fluoride (F)	WL 128, LOR 0.2 mg/L						
	Chloride (Cl)	WL 119, LOR 10 mg/L						
	Silica (SiO ₂)	WL 239, LOR 0.002 mg/L as SiO2						
	Bromide (Br)	WL 119, LOR 0.01 mg/L						
	Filtered 125 mL, acid	l preserve						
	Iron (Fe)	WL 272, LOR 0.005 mg/L						
	Magnesium (Mg)	WL 125, LOR 1 mg/L						
Dissolved Metals	Sodium (Na)	WL 125, LOR 10 mg/L						
	Potassium (K)	WL 125, LOR 1 mg/L						
	Aluminium (Al)	WL 272, LOR 0.005 mg/L						
	Calcium (Ca)	WL 125, LOR 1 mg/L						
	Manganese (Mn)	WL 272, LOR 0.001 mg/L						
	Unfiltered, 125 mL, ai	cd preserve						
	Aluminium (Al)	WL 272, LOR 0.005 mg/L						
	Arsenic (As)	WL 272, LOR 0.005 mg/L						
	Boron (B)	WL 272, LOR 0.02 mg/L						
	Cadmium (Cd)	WL 272, LOR 0.002 mg/L						
	Calcium (Ca)	WL 272, LOR 1 mg/L						
	Chromium (Cr)	WL 272, LOR 0.005 mg/L						
	Cobalt (Co)	WL 272, LOR 0.005 mg/L						
Total Parameters	Copper (Cu)	WL 272, LOR 0.005 mg/L						
	Iron (Fe)	WL 272, LOR 0.005 mg/L						
	Lead (Pb)	WL 272, LOR 0.01 mg/L						
	Manganese (Mn)	WL 272, LOR 0.001 mg/L						
	IVIERCURY (Hg)	WL 41, LOR 0.0001 mg/L						
	Iviolypdenum (Ivio)	VVL 272, LOR 0.005 mg/L						
		VVL 272, LOK 0.005 mg/L						
	Selenium (Se)	WL 272, LOR 0.005 mg/L						
	Zinc (Zn)	VVL 272, LOK 0.005 mg/L						

LOR = Limit of reporting

Table A- 4: Laboratory measurement method

WL 272 USEPA 200.7, 200.8
WL 42 USEPA 200.7, 200.8
WL 121 Conductivity meter (APHA 2510B)
WL 120 pH meter (APHA 4500)
WL 126 Gravimetry (APHA 2540C)
WL 128 Ion selective electrode (APHA 4500-F-C)
WL 239 Autoanalyser method based on APHA
WL 119 Ion chromatography
WL 197 Titration (APHA 2310B)
WL 122 Titration (APHA 2320B)
WL 240 (APHA 5310)

WL 125 AAS (APHA 311B,D)

Glossary

AAMinGL	average annual minimum groundwater level
mAHD	metres Australian height datum, which is equivalent to: mean sea level (MSL) + 0.026 m, low water mark Fremantle (LWMF) + 0.756 m.
DAFWA	Department of Agriculture and Food Western Australia
DWMP	Murray drainage and water management plan
LiDAR	light distance and ranging
m BGL	metres below ground level
AbMinGL	absolute minimum water level
MSL	mean sea level
PASS	potential acid sulfate soil. Naturally occurring, these are soils containing significant quantities of reduced sulfur (pyrite and other sulfides). When these soils are disturbed the reduced sulfur is oxidised resulting in the release of acidity and often toxic metals
pHf	field pH
pHfox	pH after oxidation with a strong oxidising agent
S _{CR}	chromium reducible sulphur
ShaPass	shallow PASS – the minimum depth to PASS in a core measurement (used in Appendix 1).
SPOCAS	suspension peroxide oxidation combined acidity and sulfur

References and further reading

- Ahern, CR, Sullivan, LA & McElnea, AE 2004, 'Laboratory methods guidelines 2004 acid sulfate soils', *Queensland acid sulfate soil technical manual*, Department of Natural Resources, Mines and Energy, Indooroopilly, Queensland.
- Appelo, CAJ, and Postma, D 2005, "Geochemistry, groundwater and pollution." AA Balkema Publishers, Leiden.
- Australian and New Zealand Environment Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand 2000, *Australia and New Zealand guidelines for fresh and marine water quality*, vol 1, Australian and New Zealand Environment Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand
- DAFWA 2002, Soil-landscape map database, Department of Agriculture and Food, Western Australia
- Davidson, WA 1984, A flow-net analysis of the unconfined groundwater in the superficial formations of the southern Perth area, Western Australia, Record 1984/9, Western Australia Geological Survey, Perth.
- Davidson, WA 1995, *Hydrogeology and groundwater resources of the Perth region Western Australia*, Bulletin 142, Geological Survey of Western Australia and the Department of Minerals and Energy, Perth.
- Deeney, AC 1989, Geology and groundwater resources of the superficial formations between Pinjarra and Bunbury, Perth Basin, Report 26, pp. 31–57, Geological Survey of Western Australia
- Degens, DP 2009, Acid sulfate soil survey of superficial geological sediments adjacent to the Peel–Harvey Estuary, Department of Environment and Conservation, Western Australia.
- Department of Environment and Conservation 2009, *Identification of acid sulfate soils and acidic landscapes*, Contaminated Sites Branch, Department of Environment and Conservation, Western Australia
- Department of Environment and Conservation 2010, Assessment levels for soil, sediment and water, Version 4 revision 1, Department of Environment and Conservation, Western Australia
- Department of Environment and Resource Management 2009, *Identifying acid sulfate soils*, available at: http://www.derm.qld.gov.au/factsheets/pdf/land/l61.pdf.
- Douglas & Partners 2007, Report on preliminary acid sulfate soil investigation and acid sulfate soil and dewatering management plan, Lot 9001 Lloyd Avenue Ravenswood, prepared for Clough Property Ravenswood Pty Ltd.
- Hall, J 2010, Water quality management in water sensitive urban design developments: Analysis of the Bartram Road catchment, Water Science Branch technical series no. WST 22, Department of Water, Western Australia.

- Hall, J, Kretschmer, P, Quinton, B & Marillier, B 2010a, *Murray hydrological studies: Surface water, groundwater and environmental water, conceptual model report*, Water Science Branch technical series no. WST 16, Department of Water, Western Australia.
- ——2010b, Murray hydrological studies: surface water, groundwater and environmental water, model construction and calibration report, Water Science Branch technical series no. WST 25, Department of Water, Western Australia.
- ——2010c, Murray hydrological studies: surface water, groundwater and environmental water. Land use, drainage and climate change scenarios, Water Science Branch technical series no. WST 26, Department of Water, Western Australia.
- Hounslow, A 1995, *Water Quality Data Analysis and Interpretation,* CRC Press, Boca Raton, USA
- JDA Consultant Hydrologists 2009, Lot 530 Lakes Road Nambeelup, preliminary acid sulfate soil investigation.
- Kelsey, P, Hall, H, Kitsios, A, Quinton, B, Shakya, D 2010, *Hydrologic and nutrient modelling* of the Swan-Canning coastal catchments, Department of Water, Western Australia
- Kirby, CS and Cravotta, CA(III) 2005, 'Net alkalinity and net acidity 1: Theoretical considerations', *Applied Geochemistry*, 20, pp. 1920-1940.
- Latham, NP, Grant, IJC, Lyons, D, McElnea, AE & Ahern CR 2002, 'Peroxide of selfneutralising soils', *Proceedings of Fifth International Acid Sulfate Soil Conference*, pp. 25-30, eds LA Sullivan, BCT Macdonald, A Keene) Addendum pp. 20-21, Tweed Shire Council: Murwillumbah, New South Wales.
- McElnea, AE, Ahern, CR & Menzies, NW 2002, 'Improvements to peroxide oxidation methods for analysing sulfur in acid sulfate soil', *Australian Journal of Soil Research*, 40, pp. 1115– 32.
- National Environment Protection Council 1999, *Guideline on the investigation levels for soil and groundwater*, Schedule B1, Australia
- RPS Bowman Bishaw Gorham 2006, Austin Cove Development Phase 1 South Yunderup acid sulfate soils and dewatering management plan, prepared for Satterley Property Group.
- Sinclair Knight Mertz 2008, CW01413 Mandurah Lakes Road 1400S Link to HSTM Acid sulfate soil investigation and dewatering management plan
- Western Australian Planning Commission 2009, South Metropolitan and Peel Sub-Regional Structure Plan, WAPC, June 2009
- Yesertner, C 2009, Hydrogeochemical Assessment of Superficial Aquifers Perth Metropolitan Area, Hydrogeological Report series HR279, Department of Water, Western Australia.

Looking after all our water needs

Department of Water 168 St Georges Terrace, Perth, Western Australia PO Box K822 Perth Western Australia 6842 Phone: (08) 6364 7600 Fax: (08) 6364 7601 www.water.wa.gov.au

5944 30 0111