

CleanRun On-Road Vehicle Emissions Monitoring

2016

Version: Final

January 2017

DER2014/000874

Document Control

Document Version History

Date	Author	Version	Approved by
Nov 2016	Scott Bainbridge Acting CleanRun Program Coordinator	Draft	Stuart Cowie, Director Strategic Policy and Programs
Dec 2016	As above	Draft	Sarah McEvoy, Executive Director Strategic Policy and Programs
12/01/2017	As above	Final	Jason Banks, Director General

Corporate File Information

File number and/or name	File owner or custodian	File location
DER2014/000874 CleanRun Program Administration	Hayley Rolfe, Acting Senior Policy Officer	Atrium Level 7

Produced and published by

Department of Environment Regulation 168 St Georges Terrace, Perth, Western Australia

January 2017

Copyright © State of Western Australia 2017

All material is the copyright of the State of Western Australia. Permission is not given for any commercial use or sale of this material. No part of the contents of the publication may be reproduced by any process, electronic or otherwise, distributed, adapted, broadcast, performed in public or communicated to the public without the written consent of the Department of Environment Regulation, except as permitted under the *Copyright Act 1968*.

Disclaimer

The information contained in this document is provided by the Department of Environment Regulation in good faith. However, there is no guarantee of the accuracy of the information contained in this document and it is the responsibility of users to make their own enquiries as to its accuracy, currency, relevance and correctness.

The State of Western Australia and Department of Environment Regulation and their servants and agents expressly disclaim liability, in negligence or otherwise, for any act or omission occurring in reliance on the information contained in this document, or for any incident or consequential loss or damage of such act or omission.

The State of Western Australia is committed to providing quality information and has made every attempt to ensure the accuracy, currency, reliability and correctness of the information contained in this document. However, changes in circumstances and legislation after the time of publication may impact on the correctness or quality of this information.

In addition the accuracy, currency, reliability and correctness of links or references to information sources referred to or provided by third parties is outside the control of the State of Western Australia and it is therefore the responsibility of the user to make their own decisions on information found on those external sites. Confirmation of any of the information provided in this document may be sought from the relevant originating bodies or the department providing the information; however, users of this material should verify all relevant representations, statements and information with their own professional advisers.

The State of Western Australia and Department of Environment Regulation reserve the right to amend the content of this document at any time without notice.

The information contained in this document is general. It does not constitute, and should be not relied on as, legal advice. The State of Western Australia recommends that users of this information seek advice from a qualified lawyer on the legal issues affecting them before relying on this information or acting on any legal matter.

Questions regarding this report should be directed to:

Department of Environment Regulation Locked Bag 33 Cloisters Square PERTH WA 6850 Phone: +61 8 6467 5000 Fax: +61 8 6467 5562 Email: <u>info@der.wa.gov.au</u> Web: www.der.wa.gov.au

Accessibility

This document is available in alternative formats and languages upon request.

Contents

Introduction	1
Equipment Used	4
Monitoring Equipment	4
Driver Feedback	5
Site Selection	6
Data Collection	7
RSD Deployment	7
RSD Data Capture	7
Vehicle Database Query	8
Results	9
Fleet Representativeness Assessment	9
Smart Sign Cut Point Review	12
Vehicle Speed Performance	13
Fuel Performance	15
Body Type Performance	17
Vehicle Weight Performance	20
Year of Manufacture Performance	23
Vehicle Aging	28
Emission Standards	28
Key Findings	29
Vehicle Speed	29
Fuel type	29
Body Type	29
Vehicle Weight	29
Year of Manufacture	30
Appendix A	31
Site Characteristics	31
Appendix B	37
Data Used for Fleet Representation Assessment	37
Appendix C	42
Smart Sign Cut Point Update	42
Appendix D	44
Statistical Data Tables	44

Introduction

The Department of Environment Regulation's (DER) CleanRun program operates an Accuscan 4600 Remote Sensing Device (RSD) that monitors the exhaust emissions of passing vehicles. The operation of this device forms part of DER's commitments to the National Environment Protection (Diesel Vehicle Emissions) Measure (Diesel NEPM) and the Perth Air Quality Management Plan (Perth AQMP).

DER deployed the RSD at six sites across the Perth metropolitan area in March and April 2016. Two days of monitoring was completed at each site.

Remote sensing of vehicle emissions provides DER with an efficient way to characterise the Perth vehicle fleet. The RSD is set up on a roadside and captures the emissions data of passing vehicles with no impact to traffic flow. Photographs capture the vehicle registration number, allowing vehicle registration information to be extracted from the Department of Transport (DoT) database.

Analysis of emissions data together with vehicle information allows DER to determine how vehicles are performing and how vehicle emission performance varies according to age, make, model and fuel type. This data can then be used to inform policy decisions on vehicle regulation.

Key Points – CleanRun On-Road Vehicle Emissions Monitoring

- Monitoring results extrapolated from the 2016 campaign showed petrol emissions continuing to decrease a trend in line with previous campaigns.
- An increased representation of diesel vehicles in the heavier ranges was noted in the latest results, compared to the 2009–10 campaign.
- Carbon monoxide (CO) emissions levels recorded during the campaign showed all vehicle body types and most weight ranges had improved since the 2009–10 campaign.
- Hydrocarbons (HC) emissions had also improved for all body vehicle types and most weight ranges since the 2009–10 campaign.
- Overall, most vehicle weight ranges demonstrated gradual improvement since the 2009–10 campaign.
- Results from the campaign showed emissions increased with speed the faster a vehicle travelled, the more it emitted.
- CO emissions were highest in petrol vehicles, while smoke emissions were highest in diesel vehicles.
- For petrol vehicles, CO, HC and nitrogen oxide (NO) emissions were observed to increase as they aged, while smoke emissions decreased with age.
- Most diesel vehicles had higher HC emissions than petrol vehicles.
- Petrol vehicles manufactured in 2006 or later were the lowest emitters for the fuel type.

- Diesel vehicles manufactured in 2007 or later were the lowest emitters for the fuel type.
- LPG vehicles were higher polluters than other vehicles (and likely to get worse as the LPG fleet ages).
- Station sedans, sedans and hatchbacks recorded the best emissions performance.
- Utility vehicles had the highest NO and smoke emissions.
- Lighter vehicles were more likely to be petrol powered, while heavier vehicles were mostly diesel.
- The lightest vehicles monitored (anything less than 1,000 kg) recorded consistently poor emissions performance compared to heavier vehicles.
- Emissions from the heaviest vehicles monitored (anything over 1,600 kg) continued to get worse, which appeared to be linked to the increasing representation of diesel engines in the weight range.
- Newer vehicle emission standards were shown to have less of an impact on reducing emissions than older standards.

Figure 1: RSD monitoring locations

Equipment Used

Monitoring Equipment

The RSD measures the following exhaust pollutants:

- carbon monoxide (CO) as a percentage of exhaust volume;
- nitrogen oxide (NO) as parts per million (ppm);
- hydrocarbons (HC) as parts per million (ppm); and
- particulates (UV smoke) as a percentage of exhaust opacity.

The RSD measures exhaust gases by sampling gas conditions in the air in front of a vehicle (taken as the ambient condition or baseline) before sampling the gas conditions at the rear of a vehicle. The difference between the two conditions represents the emissions of the vehicle.

The RSD source/detector is set up on a roadside to project light (infrared and ultra violet) across the road to a reflector cube (Figure 2). The light reflected back to the RSD is partly absorbed by the vehicle exhaust and allows emissions to be calculated.

Figure 2: Schematic diagram of the RSD monitoring equipment¹ (left) and RSD source/detector and reflector in operation² (right)

A sample is captured by the RSD when a vehicle passes the speed/accelerator bars triggering the source/detector to take the initial sample. To trigger sampling, vehicles must be under load when passing through the RSD, which is determined by calculating the vehicle specific power (VSP). VSP is calculated by the RSD using the vehicle acceleration, velocity and road gradient.

As the vehicle is leaving the speed/accelerator bars, it will break the RSD light beam. The RSD will record the 'front of vehicle' gas concentrations just before the light beam is broken. Once the vehicle passes though the RSD, the light beam is re-established and the RSD records 50 'rear of vehicle' samples over half a second (one every 10

¹ Bluett, J., Dey, K., Fisher, G. (2008) *Assessing Vehicle Air Pollution Emissions*. Prepared for the Department of the Environment, Water, Heritage and the Arts by the National Institute of Water and Atmospheric Research Ltd (New Zealand).

² Department of Environment Conservation (2011).

milliseconds). If enough samples are valid, the average is taken of all valid samples and logged.

Following the triggering of the RSD sample, a camera records the rear registration plate of the vehicle. This allows the vehicle specific data from the DoT database to be entered into the data log after the sampling.

If the sample VSP is positive and the RSD successfully measures the front and rear of vehicle gas conditions, the test is assigned a valid sample flag in the data log.

Driver Feedback

The CleanRun smart sign provides immediate feedback to the driver about the emissions performance of the vehicle. The display presents one of the three options:

The score that appears on the smart sign is the lowest from all tested emissions. If any substance is rated as POOR, the vehicle receives a POOR. Similarly, if any substance is rated FAIR, the vehicle gets a FAIR. Only if all measured substances receive a GOOD rating will the vehicle be rated as GOOD.

Cut points entered into the RSD are used to determine the GOOD, FAIR or POOR results of the vehicle and are based on the emissions performance of the vehicle fleet from the previous deployment.

The cut points for the 2016 campaign were based on two days of testing at Oats Street, Carlisle during the 2014 deployment – presented in Table 1.

Emission category	Good	Fair	Poor
Carbon monoxide (CO) %	<0.554	0.554–1.873	>1.873
Hydrocarbons (HC) ppm	<195	195–556	>556
Nitrogen oxide (NO) ppm	<1370	1370–2050	>2050
UV smoke (PM) %	<0.05	0.05–0.15	>0.15

Table 1: Smart sign cut points

Site Selection

The RSD requires specific conditions to operate effectively. An ideal monitoring location has the following characteristics:

- a single lane road;
- a median strip for equipment placement;
- a road gradient greater than two degrees (that is the road is sloped upwards);
- north-south alignment to minimise glare in number plate photographs;
- adequate verge space for equipment trailer, camera, and the smart sign; and
- traffic flow of between 300 and 1,000 cars per hour.

Other important considerations include selecting sampling sites that:

- are representative of Perth's vehicle fleet;
- provide for operator safety;
- do not negatively impact on traffic flow and driver safety; and
- avoid sprinkler and bin collection days in residential areas.

The sites selected for the 2016 campaign were a mix of repeat and new sites.

Anstruther Road, Oats Street and Prindiville Drive were selected to collect data at the same location over multiple years. Coode Street, Weaponess Road and Winterfold Road were new sites selected to improve the coverage of RSD sampling over the Perth metropolitan area.

Selected site characteristics are summarised in Appendix A.

Data Collection

RSD Deployment

The RSD was deployed two days a week over six consecutive weeks. Deployments were made on consecutive days of the week, either Tuesday and Wednesday, or Wednesday and Thursday.

The field teams had the equipment calibrated and operational by 7am most mornings. The RSD was re-calibrated between 10am and 11am depending on traffic conditions. Monitoring was completed around 2pm most days. This time range was sufficient to capture morning peak traffic as well as midday traffic movements.

A 40 kilometres per hour (km/h) speed limit and a traffic cone 'funnel' was established before the equipment to encourage vehicles to accelerate past the RSD source/detector unit.

RSD Data Capture

Each monitoring location performed differently as a result of local traffic flow and features of the site. Vehicles passing through must have both a positive VSP value and a valid gas sample taken for a sample to be accepted.

In addition to having a valid sample, each vehicle required a readable number plate in the photograph taken. Number plates were verified by the DoT vehicle database. Additional samples were lost because of transcription and readability errors.

Vehicle samples that met these checks were included in the analysis. Table 2 details data capture and attrition rates resulting from data validation checks at all sites.

Site	Total Samples	Valid VSP	Valid Gas	Valid Samples (Gas and VSP)	Valid Plates	Verified Plates
Anstruther Road		3458	2960	2785	2675	2554
1 and 2 March	3699	93.48%	80.02%	75.29%	72.32%	69.05%
Oats Street	5200	5256	4310	4232	3500	3328
9 and 10 March	5360	98.06%	80.41%	78.96%	65.30%	62.09%
Coode Street	4000	4552	3374	3318	2976	2890
15 and 16 March	4629	98.34%	72.89%	71.68%	64.29%	62.43%
Weaponess Road	7187	7075	5938	5846	5476	5252
22 and 23 March		98.44%	82.62%	81.34%	76.19%	73.08%
Winterfold Road	3797	3705	2929	2789	2730	2650
30 and 31 March		97.58%	77.14%	73.45%	71.90%	69.79%
Prindiville Drive	5053	4973	4108	4043	3779	3658
5 and 6 April		98.42%	81.30%	80.01%	74.79%	72.39%
Tatal	00705	29019	23619	23078	21136	20431
IOTAI	29725	97.62%	79.46%	77.64%	71.11%	68.73%

Table 2: Data capture and attrition rates

The high VSP capture rates at all locations show sites selected had conditions that encouraged vehicles to accelerate through the RSD. The lower VSP capture rate at Anstruther Road was attributed to the equipment set-up.

The gas capture rate ranged between 83 and 72 per cent. The gas capture rate depended on a number of environmental factors such as wind, humidity and operating temperature. The Coode Street deployments were on significantly warmer and more humid days compared to other deployments. Deployments at Weaponess Road had mild weather and the site was more sheltered from winds. Equipment set up for the gas measurements is also a notable factor, with a large portion of the set-up time allocated to fine tuning the RSD alignment. Minor misalignments, unique to each site, likely influenced the gas capture rate.

The loss of samples from number plate readings varied across the sites. Anstruther Road and Winterfold Road lost 8.08 and 7.15 per cent, respectively, of valid samples as a result of unreadable plates. Oats Street suffered a 21.4 per cent loss of valid samples. The primary cause of number plate loss was glare. This issue was compounded at Oats Street due to the direction of the traffic relative to the morning sun and a tree canopy producing a sharp contrast of light over photographed number plates.

Vehicle Database Query

Valid number plate samples were compiled and queried using the DoT vehicle database. Samples with valid number plates had the following vehicle data fields from DoT added to the RSD measurements:

- Make;
- Model;
- Body type;
- Tare weight;
- Year of manufacture;
- Fuel type; and
- Suburb of registration.

These fields, in conjunction with the emission data collected by the RSD, were used to undertake a vehicle fleet health check and identify any vehicle groupings that were producing significant emissions relative to the rest of the fleet.

Results

Fleet Representativeness Assessment

A comparison was made between the sampled fleet and the Perth metropolitan fleet to assess how representative the sampled vehicle fleet was of the wider Perth vehicle fleet.

DoT provided and filtered vehicle data to meet the following criteria:

- vehicles registered to a postcode in the Perth metropolitan area;
- vehicles that combust fuel as their primary power source; and
- vehicles with a body type that can be sampled by the RSD.

The postcodes and body types used to filter the WA fleet data for comparison with the sample data are presented in Appendix B. Assessments of vehicle weight range, age, fuel type and body type are presented for all samples in Figure 3. Site specific comparisons of sampled vehicles to the Perth fleet are presented in Appendix A.

Figure 3: Sampled fleet vehicle data comparison to Perth fleet

Sampled vehicles had the same vehicle weight distribution as the Perth fleet. There were differences in the lower end of the scale, particularly around the 1,000 tonnes or less range. These differences were not considered significant.

Year of manufacture data shows the sampled fleet was slightly newer than the Perth fleet, with a notable discrepancy for pre-1975 vehicles. Several explanations exist for this but the most likely reasons are considered to be:

- Older vehicles registered by DoT but not active on the roads. Examples include recreational vehicles (that is, racing), vintage and classic cars.
- Older vehicles generally spend significantly less time on the road and travel far less compared to newer vehicles.³
- Sampling site selection:
 - Weaponess Road had substantially more vehicles represented in the mid-2000 or newer age groups. This was attributed to relative affluence of the area;
 - both 'commercial' sites (Anstruther Road and Prindiville Drive) were over-represented with 2010 and newer models. This was attributed to the proximity of several car sale yards in the vicinity of both sites; and
 - o no sites demonstrated a significant over-representation of older vehicles.

Based on the above, the differences between the sampled fleet and Perth fleet ages were not considered significant.

Fuel data shows samples proportionally under-represented petrol vehicles and overrepresented diesel vehicles. The differences were not considered significant.

Body type data show some proportional differences between 'station sedan' and 'sedan' body types. Overall, there were no significant differences in the sampled fleet body types compared to the Perth fleet body types.

The data show the sampled fleet had a similar weight and age range, as well as similar fuel and body types, to the wider Perth fleet. Sampling data were taken to be representative of the Perth fleet.

³ UniQuest (2014) *Australian Motor Vehicle Emission Inventory for the National Pollutant Inventory (NPI)*. Prepared for Department of Environment 2 August 2014: <u>www.npi.gov.au/system/files/resources/e8311456-8a41-4473-9fa1-d2f9994ff8da/files/australian-motor-vehicle-emissions-inventory-2014_0.pdf</u>.

Smart Sign Cut Point Review

The GOOD/FAIR/POOR metrics from the 2016 campaign are presented in Table 3.

Emission category	GOOD	FAIR	POOR
Carbon monoxide (CO) %	92.30%	5.85%	1.85%
Hydrocarbons (HC) ppm	94.45%	3.16%	2.38%
Nitrogen oxide (NO) ppm	92.72%	5.92%	1.36%
UV smoke (PM) %	77.69%	15.54%	6.77%
Totals	71.04%	19.01%	9.95%

Table 3: Current smart sign cut points – results for 2016

The GOOD/FAIR/POOR results for CO, HC and NO show reasonable consistency. The poorer results for smoke were attributed to a more stringent criterion in comparison to the other pollutants and the calibration of equipment varying from site to site.

As vehicle technology improves, average fleet emissions reduce over time. The smart sign cut points need to be reviewed and adjusted regularly to ensure vehicles with comparatively poor emissions receive appropriate feedback.

In reviewing the smart sign cut points, the following principles were considered:

- the percentile ranges considered for GOOD, FAIR and POOR ratings should appear reasonable;
- the number of drivers that see GOOD, FAIR and POOR ratings should reflect a vehicle's overall performance relative to the whole of fleet; and
- vehicle fuel type should be considered in setting criteria where significant differences in emissions exist (for example, smoke emissions from diesel versus petrol).

Alternative cut points have been considered for adoption, taking the above points into consideration (as detailed in Appendix C). The recommended cut points to be applied for future sampling are presented in Table 4.

Emission category	Good	Fair	Poor
Carbon monoxide (CO) %	<0.292	0.292-1.048	>1.048
Hydrocarbons (HC) ppm	<63	63–316	>316
Nitrogen oxide (NO) ppm	<840	840–1435	>1435
UV smoke (PM) %	<0.160	0.160-0.401	>0.401

Table 4: New smart sign cut points

Vehicle Speed Performance

The RSD setup had a speed control of 50 km/h. However, vehicles passing through were travelling at a range of speeds. The distribution of speed, presented in Figure 4, shows most vehicles were travelling between 30 and 45 km/h through the RSD. It also shows that 2009–10 had a similar speed distribution, albeit slightly faster. The 2014 sample speed range was more skewed towards the 30–40 km/h range and could be considered a 'slower' sample than 2009–10 and 2016 data.

Figure 4: Vehicle counts by speed

Emissions for CO, HC, NO and smoke are presented in Figure 5. Sampling data from the 2009–10 and 2014 RSD campaigns have been presented for comparative purposes. Statistical data are tabulated in Appendix D.

The overall trend observed was that emissions increased with speed. Significant differences in vehicle sample speeds between sampling campaigns limit comparisons in emissions data, for example if the sampling speed distribution is 'faster' than the norm then emissions will be skewed upwards.

As demonstrated in Figure 4, the 2016 vehicle speed sample data were comparable to 2009–10 data. Care was taken when comparing against the 2014 dataset as it was marginally 'slower' than 2009–10 and 2016 datasets.

CO, NO, HC and smoke emissions demonstrate the trend of increasing emissions as vehicle speed increases. For HC the trend is weak and only apparent in the 2014 and 2016 data.

The only exception to the increasing trend observed is the 0–20 km/h range of sampling for CO, HC and NO, which has higher median emissions compared to 20–25 km/h range. The exception is most visible in the 2014 and 2016 datasets.

■ 2009–10 ■ 2014 ■ 2016

■ 2009-10 ■ 2014 ■ 2016

Figure 5: Median emissions over time per vehicle speed⁴

⁴ Emissions data from 2014 for the 55–60 and 60+ km/h ranges were not included as there were insufficient samples available for each group (that is less than 100).

Fuel Performance

Emissions of all vehicles are statistically assessed in Figure 6. Sampling data from the 2009–10 and 2014 RSD campaigns are presented for comparison. The maximum values are not plotted due to extreme outlying data points disrupting the scale. The numerical data for the graphs are tabulated in Appendix D.

CO emissions are shown to be highest with petrol and liquid petroleum gas (LPG) vehicles. Sampling over the last three RSD campaigns show consistently decreasing emissions for petrol vehicles. LPG vehicles show decreasing emissions over time for the 95th, 90th and 70th percentile, but the median emissions data increased, suggesting that CO emissions from the bulk of LPG vehicles are getting worse over time.

HC emissions are shown to be highest for LPG vehicles. Petrol vehicles have higher emissions compared to diesel for the 99th, 95th and 90th percentile emitters, though the 70th percentile and median emissions data suggests that most diesel vehicles have higher hydrocarbon emissions. Petrol and diesel vehicles show decreasing emissions over time. LPG vehicles show a decreasing trend for higher emitters, but the 70th percentile and median data suggest the bulk of LPG vehicle HC emissions are getting worse over time.

NO emissions from petrol vehicles are more variable than those from diesel vehicles. While petrol vehicles show higher emissions in the 99th, 95th and 90th percentile ranges, the 70th percentile and median emission data show diesel vehicles are more significant producers of NO emissions than petrol vehicles. LPG vehicles show higher NO emissions than both diesel and petrol, with the median emissions data being comparable to diesel vehicles. The data also show NO emissions from LPG vehicles are getting worse over time.

Smoke emissions are dominated by diesel vehicles. The data show diesel vehicle emissions from the highest emitters are getting worse, while the lower percentiles are decreasing very slightly over time. Petrol and LPG smoke emissions are comparable and show a very small decreasing trend over time.

Figure 6: Emissions statistics over time per fuel type

Body Type Performance

The median emissions for the most common body types sampled (that is, greater than 100 valid samples during an RSD campaign) were compared over the three most recent monitoring campaigns.

For this assessment, the fuel type distribution of body types was considered as fuel type has a significant influence on emissions performance. The fuel type percentage breakdown for the most common body types sampled is presented in Figure 7.

Petrol is the dominant fuel type for several body types, particularly so for sedan, hatchback and coupe-style vehicles. Station sedans are petrol dominated, but with higher representation of diesel vehicles than the aforementioned body types. Diesel dominates the van truck and omnibus body types, and is similar to petrol for utility, table top, panel van and double cab body types.

Figure 7: Body type fuel type percentages

Emissions for CO, HC, NO and smoke are presented in Figure 8. Sampling data from the 2009–10 and 2014 RSD campaigns are presented for comparative purposes. Statistical data are tabulated in Appendix D.

Figure 8: Median emissions over time per body type

■ 2009-10 ■ 2014 ■ 2016

2009-10 2014 2016

CO emissions show all body types have improved since the 2009–10 sampling campaign. Coupe type vehicles show the worst performance for CO emissions. A review of the makes and models for 2016 sampled coupe body types found most were sports performance cars and likely to have larger engines. Engine size data were not included in the DoT dataset so the relationship between emissions and engine size could not be tested.

HC emissions have been improving for all body types since the 2009–10 sampling campaign. Body types with significant diesel populations have higher HC emissions compared to predominantly petrol body types. Double cabs have the highest HC emissions, with van trucks being comparable.

Body types with significant diesel populations have higher NO emissions compared to body types dominated by petrol. While some vehicle groups (coupes, vans and omnibuses) show improvement over time, emissions from most groups appear to only be marginally improving, or stable, over time. NO emissions from utility vehicles appear to be increasing over time. Van trucks, omnibuses and double cabs have the highest NO emissions, but have been improving since the 2009–10 campaign.

Body types with significant diesel populations have higher smoke emissions compared to body types dominated by petrol. Most vehicle groups show a decreasing trend over time, though utility vehicles show an increasing trend over time. Double cabs have the poorest performance for smoke emissions.

Vehicle Weight Performance

The heavier a vehicle, the more energy (fuel) is required to move it and keep it in motion, compared to a lighter vehicle.

The fuel type distribution of weight ranges were assessed as fuel type has a significant influence on emissions performance. The fuel type percentage breakdown for weight ranges considered in this assessment is presented in Figure 9.

Lighter vehicles are more likely to be petrol powered, while heavier vehicles are mostly diesel. There is also an increasing representation of diesel vehicles in the heavier weight ranges since the 2009–10 sampling campaign.

Figure 9: Vehicle weight range fuel type percentages

Emissions for CO, HC, NO and smoke are presented in Figure 10. Sampling data from the 2009–10 and 2014 RSD campaigns are presented for comparative purposes. Statistical data is tabulated in Appendix D.

The analysis concluded that the 'less than 1,000' kg vehicle weight range shows higher emissions for CO, HC and NO, as well as smoke to some extent. For NO and smoke, higher emissions were only observed from vehicles 1,700 kg and heavier. For CO and HC, vehicles less than 1,000 kg are the largest emission sources.

CO emissions were higher in the lighter vehicles in the fleet, while emissions decreased as vehicle weight increased. This is likely to be a result of the increasing prevalence of diesel vehicles in the heavier fleet which have lower CO emissions than petrol. CO emissions have improved in most weight ranges since the 2009–10 sampling campaign.

HC emissions were lowest in the 1,200–1,500 kg range and gradually increased as weight increased. There has been an overall improvement in nearly all weight ranges for HC emissions since the 2009–10 sampling campaign.

NO emissions were seen to increase as vehicle weight increased, though emissions from the 'greater than 2,400 kg range were significantly higher compared to lighter weight ranges. The 1,600–2,400 kg weight range shows emissions have been increasing since the 2009–10 sampling campaign.

Smoke emissions were higher in the heavier vehicles in the fleet. Similar to CO emissions, this was attributed to the increasing prevalence of diesel vehicles in the heavier fleet which had higher smoke emissions than petrol vehicles. Most vehicle weight ranges showed gradual improvement since the 2009–10 sampling campaign.

Year of Manufacture Performance

Year of manufacture is a proxy for vehicle technology. Vehicles in Australia are built in accordance with Australian Design Rules (ADRs), with a number of ADRs dedicated to emission standards for vehicles. Emission standards exist with respect to:

- vehicle weight (3.5 tonnes being the cut-off between 'light' and 'heavy' vehicles); and
- engine type (spark ignition or compression ignition).

Emission standards have been gradually tightened over the years with ADRs aligning with the European emission standards since the early 2000s.

RSD data can be used to assess the impact of changes to emission standards on vehicle emissions. The RSD equipment does not directly measure exhaust emissions, so direct comparison to ADR standards is not possible. Instead, step changes in the data should be apparent in years where improved emissions standards for a pollutant were introduced.

Emissions for light (equal to or less than 3.5 tonnes) petrol and diesel vehicles are presented in Figure 11 to Figure 14. The relevant ADR standard is overlain for reference.⁵ Sampling data from the 2009–10 and 2014 RSD campaigns are presented for comparative purposes. Statistical data are tabulated in Appendix D.

For petrol vehicles, there are insufficient samples of vehicles manufactured before 1995 (that is, less than 100 valid samples) across all three sampling periods. Similarly for diesel, only vehicles manufactured in 2004 and later had sufficient sample sizes to be assessed. LPG vehicles and heavy vehicles were not assessed due to insufficient sample size for all years of manufacture.

⁵ infrastructure.gov.au/roads/environment/files/Final Emission Limits for Light Vehicles Euro 2-Euro 6.pdf.

Figure 11: Median CO emissions over time per year of manufacture

■ 2009–10 ■ 2014 ■ 2016

Figure 12: Median HC emissions over time per year of manufacture

2009-10 2014 2016

Figure 13: Median NO emissions over time per year of manufacture

Figure 14: Median smoke emissions over time per year of manufacture

Vehicle Aging

For petrol vehicles, CO, HC and NO emissions are observed to increase as they age. This can be seen in the pattern of emissions increasing between each sampling campaign for most individual years of manufacture. Smoke emissions are observed to decrease as vehicles age.

Diesel vehicle data are more varied than petrol vehicle data. CO emissions from the 2016 sampling campaign are lower than 2009–10 and 2014 data for individual years of manufacture. HC data show improving emissions as vehicles age for most years of manufacture groups. Smoke data show minimal difference between 2009–10 data and 2016 data; however, the 2014 data shows each year group performing better compared to 2009–10 sampling. Only NO data show a trend of emissions increasing as a vehicle ages, albeit very weakly.

Emission Standards

All datasets show improvements in emissions between manufacturing years. This trend is less significant in recent years. While the trends can be easily seen for older years in Figure 11 to Figure 14, the data presented in Appendix D (Figure 15 and Figure 16) show the trends more clearly for newer models.

For petrol vehicles, the largest step change is noticeable in vehicles manufactured in 2006 or later. This coincides with the introduction of 'Euro 3' emission standards under ADR79/01. The data show a significant reduction of CO emissions despite CO emission standards not significantly changing under 'Euro 3'.

'Euro 4' emission standards for light petrol vehicles were introduced between 2008 and 2010 and effectively halved the permissible emissions. Sampling data suggest emissions improvements were not significantly realised during this time. Further investigation is required to explain this observation.

Emissions of HC from 2011 and newer petrol vehicles are below detection for most vehicles. This time period does not align with the introduction of newer emission standards.

For diesel vehicles, the biggest step change appears in 2007 or later vehicles, and coincides with the tail-end introduction of 'Euro 4' emission standards under ADR79/02. Similar to petrol, 'Euro 4' diesel permissible levels are effectively half those of 'Euro 3'. 'Euro 5' core emission standards for diesel vehicles were introduced in November 2013, though sampling data suggests these standards failed to make a discernible difference in diesel vehicle emissions.

Key Findings

Vehicle Speed

- Emissions were observed to be related to speed the faster a vehicle travelled, the more it emitted.
- Vehicles travelling 20 km/h or slower were observed to have unexpectedly high emissions. A review of the vehicle fuel types, body types, weights and year of manufacture data found no group was more or less represented in this speed range. The result is attributed to the way the RSD samples vehicles travelling at low speeds. Vehicles travelling at lower speeds are more likely to be operating in lower gears (with engines working harder to produce the same output compared to higher gears).
- Analysis of key variables (fuel type, body type, vehicle weight and year of manufacture) suggests that the 2014 dataset is not significantly different to the 2009–10 and 2016 datasets, and that the slower speed of vehicles in the 2014 dataset does not appear to affect the assessment of emission trends.

Fuel type

- CO emissions are an issue for petrol vehicles, while smoke emissions are an issue for diesel vehicles. NO emissions were prevalent from diesel vehicles, though poorly performing petrol vehicles had NO emissions comparable to poorly performing diesel vehicles. HC emissions were higher from poorly performing petrol vehicles than diesel vehicles. Most diesel vehicles had higher HC emissions than petrol vehicles.
- LPG vehicles had notably higher emissions than petrol and diesel vehicles. This is attributed to LPG vehicle engines not being optimised to burn LPG as a result of historic conversion from petrol, or from being a 'dual-fuel' vehicle – which is a common feature in the taxi fleet.
- LPG vehicle emissions appear to be getting worse over time rather than improving, as would be expected when older vehicles leave the fleet and are replaced with newer vehicles. Sampling data show significantly fewer LPG vehicles with a year of manufacture after 2011.

Body Type

- Of the most common body types sampled, station sedans, sedans and hatchbacks had the best emissions performance. Coupes also had good emissions performance for most pollutants compared to other major body types, though they had the worst CO emissions.
- Utility vehicles have increasing NO and uvSmoke emissions since the 2009–10 sampling campaign. The reasons for this are unclear.

Vehicle Weight

• The 'less than 1,000 kg' vehicle weight range shows significantly higher emissions for CO, HC and NO compared to other lighter weight ranges. For CO

and HC, the 'less than 1,000 kg' vehicle weight range produced the most emissions. A review of sample counts and other vehicle variables available (for example make/model and age) does not suggest a possible reason for this result. One hypothesis to test could be vehicle build quality, based on the assumption that the less than 1000kg range represents 'budget' vehicles lacking robust fuel efficiency or emission control technology.

- CO emissions were lower for heavier vehicles, while HC, NO and smoke emissions increased as vehicle weight increased. It is considered that this effect is primarily from the influence of the dominant fuel type in each weight range.
- Most vehicle weight groups show an improvement in emissions since the 2009– 10 sampling campaign. However, NO emissions in vehicles weighing between 1,600 kg and 2,400 kg have consistently increased over that time. This trend appears to be linked with the increasing diesel representation in these weight ranges since the 2009–10 sampling campaign.

Year of Manufacture

- It is expected that as a vehicle ages, its emissions will increase due to degradation of the engine and installed emission control technology. The data in some circumstances are not consistent with this expectation, most notably with smoke emissions from petrol vehicles. Factors like fuel quality improvements and road surface conditions may be influencing results.
- Newer vehicles had superior emission performance compared to older vehicles. However, the introduction of more stringent emission standards over time does not appear to consistently result in significant improvements in emissions when they come into effect. It is possible vehicles in the fleet are built to higher standards than required by law due to the vehicle also being sold in international markets with stricter emission standards. This may explain the gradual improvement from year to year rather than 'step change' improvements.

Appendix A

Site Characteristics

Appendix B

Data Used for Fleet Representation Assessment

				Posto	codes				
6000	6018	6033	6058	6073	6104	6147	6162	6180	6503
6003	6019	6034	6059	6074	6105	6148	6163	6181	6556
6004	6020	6035	6060	6076	6106	6149	6164	6182	6558
6005	6021	6036	6061	6077	6107	6150	6165	6207	6560
6006	6022	6037	6062	6078	6108	6151	6166	6208	6562
6007	6023	6038	6063	6079	6109	6152	6167	6209	6566
6008	6024	6041	6064	6081	6110	6153	6168	6210	6567
6009	6025	6050	6065	6082	6111	6154	6169	6211	
6010	6026	6051	6066	6083	6112	6155	6170	6213	
6011	6027	6052	6067	6084	6121	6156	6171	6214	
6012	6028	6053	6068	6090	6122	6157	6172	6215	
6014	6029	6054	6069	6100	6123	6158	6173	6302	
6015	6030	6055	6070	6101	6124	6159	6174	6390	
6016	6031	6056	6071	6102	6125	6160	6175	6501	
6017	6032	6057	6072	6103	6126	6161	6176	6502	

Table 5: Postcodes representing the Perth metro area

Table 6: Vehicle body types measurable by RSD

Measurable

Measurable
AMBULANCE
ARMOURED TRUCK
BIN CARRIER
BOX TOP
BUS TYPE
CONVERTIBLE
COUPE
DOUBLE CAB
FIRE TENDER
FLAT TOP
FORK LIFT TRUCK
GARBAGE WAGON
НАТСНВАСК
HEARSE

Measurable
INVITATION VEHICLE
JEEP
KITCHEN TRUCK
MOBILE CARAVAN
MOTOR WAGON
MOURNING COACH
MULTI-BODY TYPE
OMNIBUS
PANEL VAN
POST VINTAGE VEHICLE
REFRIGERATED VAN
ROAD SWEEPER
ROADSTER
SCHOOL BUS
SEDAN
STATION SEDAN
STATION WAGON
STREET ROD
STRETCH LIMOUSINE
TABLE TOP
THREE-WHEEL CAR
TOW TRUCK CL 1
TOW TRUCK CL 2
UTILITY
VAN TRUCK
VETERAN VEHICLE
VINTAGE VEHICLE
WORK VAN

Not Measurable

Not Measurable
BACK HOE
BEACH BUGGY
BITUMEN SPRAYER
BOAT TRAILER
BULLDOZER
CAMPER TRAILER
CAR CARRIER
CARAVAN

Not Measurable
CARAVAN SEMI-TRAILER
CARRIER
CEMENT AGITATOR
CHASSIS MOUNTED BIN
CONVERTER DOLLY
DOG TRAILER
DRILLING RIG
DUMP TRUCK
ELEVATING PLATFORM
ENDURO MOTOR CYCLE
EXCAVATOR
FARM/ENDURO BIKE
FIRE ENGINE
FORK LIFT
FRONT END LOADER
HOIST
HORSE FLOAT
INVALID WHEEL CHAIR
INVITATION MOTOR CYCLE
INVITATION SEMI-TRAILER
INVITATION SIDE CAR
INVITATION TRAILER
JINKER
KITCHEN TRAILER
LOW LOADER
MOBILE BATHROOM
MOBILE CRANE
MOBILE WORKSHOP
MOPED
MOTOR CYCLE
MOTOR TRICYCLE
OFF-ROAD 3 WHEEL VEHICLE
OFF-ROAD 4 WHEEL VEHICLE
OFF-ROAD AIR CUSHION
OFF-ROAD BEACH BUGGY
OFF-ROAD MOTOR CYCLE
OFF-ROAD OTHER BODY
PIG TRAILER
POLE TYPE JINKER
POST VINTAGE MOTOR CYCLE

Not Measurable
POST VINTAGE SIDE CAR
PRIME MOVER
QUAD MOTORCYCLE
REFRIGERATED TRAILER
ROAD GRADER
ROAD RAIL AMBULANCE
ROAD RAIL BUS TYPE
ROAD RAIL PANEL VAN
ROAD RAIL STATION SEDAN
ROAD RAIL STATION WAGON
ROAD RAIL TABLE TOP
ROAD RAIL UTILITY
ROAD ROLLER
SCOOTER
SCRAPER
SELF PROP HEADER
SEMI-TRAILER
SIDE CAR
SKID STEER LOADER
SPECIAL RECREATION
SPECIAL UTILITY
STOCK TRAILER
STOCK TRUCK
SUPER SPREADER
TANKER TRAILER
TIP TRUCK
TOOL CARRIER
TOOL TRUCK
TOW MOTOR
TOW TRUCK CL 3
TRACTOR
TRACTOR PLANT
TRAILER
TRAILER MOUNTED BIN
TRAILER PLANT
TRENCH DIGGER
TRUCK TANKER
TURRET TRUCK
VAN TRAILER
VEHICLE CARRIER

Not Measurable
VETERAN MOTOR CYCLE
VIBRATOR
VINTAGE MOTOR CYCLE
VINTAGE SIDE CAR
WATER TANK TRAC

Appendix C

Smart Sign Cut Point Update

The scenarios tested to update the Smart sign cut points are presented in Table 7.

Scenario 1 and 2 reflect cut points set through strict statistical criteria. The worst one per cent of emitters for a pollutant were assigned POOR, the next nine per cent were considered FAIR, and the remaining 90 per cent were GOOD. When applied to the 2016 dataset, only a limited number of vehicles received a POOR rating for both scenarios.

Scenario 3 and 4 criteria show over 50 per cent of vehicles received a FAIR rating. The GOOD and POOR rating varied between the two scenarios, but either option represents a significant divergence from the historic distribution of feedback from the smart sign.

Scenario 5 and 6 cut points were based on a more arbitrary percentile range compared to the other scenarios. However, these scenarios were focused on producing a GOOD/FAIR/POOR percentage distribution of 70/20/10. Without accounting for fuel type (scenario 5), diesel vehicles saw a 50/38/12 GOOD/FAIR/POOR percentage distribution. Accounting for fuel type (scenario 6) significantly improved this ratio, removing an unreasonable bias that diesel vehicles would experience driving through the RSD.

With respect to the three criteria outlined in the report for selecting cut points, the cut points from scenario 6 appear the most reasonable to apply for future sampling. The specific cut points are presented in the report (Table 4). Compared to the current cut points presented in Table 1, the CO, HC and NO cut points have been tightened, while the smoke cut points have been relaxed.

	9		
Emission category	GOOD	FAIR	POOR
Scenario 1: Cur	rent criteria (90% GO	OD, 9% FAIR, 1% P	00R)
Carbon monoxide (CO) %	90.00%	9.00%	1.00%
Hydrocarbons (HC) ppm	90.00%	9.00%	1.00%
Nitrogen oxide (NO) ppm	90.00%	9.00%	1.00%
UV smoke (PM) %	90.00%	9.00%	1.00%
Scenario 1 Totals	75.31%	21.21%	3.47%
Scenario 2: Current criteria (9 CO and HC,	0% GOOD, 9% FAIR, and diesel vehicle da	, 1% POOR) using pe ta for NO and uvSmo	etrol vehicle data for Ne
Carbon monoxide (CO) %	91.62%	7.41%	0.97%
Hydrocarbons (HC) ppm	90.37%	8.65%	0.98%
Nitrogen oxide (NO) ppm	92.07%	5.46%	2.47%
UV smoke (PM) %	96.91%	2.83%	0.26%
Scenario 2 Totals	81.50%	14.33%	4.17%
Scenario 3: 'Above averag	e = GOOD' criteria (8	50% GOOD, 40% FA	IR, 10% POOR)
Carbon monoxide (CO) %	50.00%	40.00%	10.00%
Hydrocarbons (HC) ppm	50.00%	40.00%	10.00%
Nitrogen oxide (NO) ppm	50.00%	40.00%	10.00%
UV smoke (PM) %	50.00%	40.00%	10.00%
Scenario 3 Totals	17.07%	58.25%	24.68%
Scenario 4: 'Above average = petrol vehicle data for C	= GOOD' criteria (50% O and HC, and diese	6 GOOD, 40% FAIR, I vehicle data for NO	10% POOR) using and uvSmoke
Carbon monoxide (CO) %	58.35%	33.27%	8.38%
Hydrocarbons (HC) ppm	45.04%	45.33%	9.63%
Nitrogen oxide (NO) ppm	72.82%	19.24%	7.93%
UV smoke (PM) %	82.87%	14.04%	3.09%
Scenario 4 Totals	29.70%	51.80%	18.50%
Scenario 5: 'Nuc	lged' criteria (88% GC	00D, 9% FAIR, 3% F	YOOR)
Carbon monoxide (CO) %	88.00%	9.00%	3.00%
Hydrocarbons (HC) ppm	88.00%	9.00%	3.00%
Nitrogen oxide (NO) ppm	88.00%	9.00%	3.00%
UV smoke (PM) %	88.00%	9.00%	3.00%
Scenario 5 Totals	70.98%	19.86%	9.15%
Scenario 6: 'Nudged' criteria (for CO and HC	(82% GOOD, 14% FA C, and diesel vehicle c	NR, 4% POOR) using lata for NO and uvSn	r petrol vehicle data noke
Carbon monoxide (CO) %	85.20%	11.27%	3.53%
Hydrocarbons (HC) ppm	81.84%	14.26%	3.90%
Nitrogen oxide (NO) ppm	88.19%	6.78%	5.03%
UV smoke (PM) %	93.97%	4.97%	1.06%
Scenario 6 Totals	69.92%	19.94%	10.14%

Table 7: Alternate smart sign cut points – results for 2016

Appendix D

Statistical Data Tables

	0-	–20 km/l	า	20)–25 km,	/h	25	5–30 km/	'n	30)–35 km/	'n	35	–40 km/	'n	4()–45 km/	′h	45	5–50 km/	'n	50)–55 km/	′h	55	i–60 km/	h	6	i0+ km/h	1
CO (%)	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016
Max	9.75	9.48	3.95	9.87	8.47	6.86	8.76	8.63	11.0	12.6	11.5	13.5	12.9	9.95	11.9	11.3	13.0	10.8	10.5	13.0	10.5	9.17	7.64	9.87	10.5		9.27	5.99		6.02
99th %ile	5.89	2.80	2.10	3.94	2.86	2.39	4.14	3.41	2.44	4.64	3.73	3.03	4.62	3.41	2.78	4.61	3.18	3.47	4.70	4.45	3.85	5.12	2.00	3.06	4.17		4.14	3.24		4.74
95th %ile	1.72	0.94	0.89	1.64	0.94	0.65	1.53	0.93	0.77	1.45	0.84	0.79	1.52	0.85	0.74	1.53	0.90	0.80	1.58	1.22	0.86	2.03	0.88	0.87	1.44		1.02	1.42		1.35
90th %ile	0.78	0.58	0.58	0.83	0.47	0.33	0.73	0.50	0.41	0.72	0.44	0.44	0.70	0.45	0.43	0.74	0.49	0.47	0.69	0.54	0.48	0.79	0.50	0.45	0.60		0.48	0.71		0.53
70th %ile	0.16	0.10	0.13	0.17	0.07	0.05	0.15	0.09	0.07	0.15	0.08	0.08	0.15	0.09	0.09	0.15	0.10	0.11	0.14	0.11	0.10	0.17	0.14	0.10	0.12		0.10	0.21		0.10
Median	0.04	0.02	0.03	0.04	0.02	0.01	0.04	0.02	0.02	0.04	0.02	0.02	0.04	0.03	0.02	0.04	0.03	0.03	0.04	0.03	0.03	0.05	0.04	0.03	0.04		0.02	0.05		0.03
														Line	ar trend	s														
99th %ile	-	1.89839		-	0.77445		-	0.85368		-	0.80213		-	0.91980		-	0.57089		-	0.42831		-	1.02999							
95th %ile	-	0.41316		-	0.49617		-	0.38149		-	0.33383		-	0.39156		-	0.36480		-	0.35953		-	0.57846							
90th %ile	-	0.09842		-	0.24777	,	-	0.15747		-	0.14003		-	0.13802		-	0.13412		-	0.10411		-	0.16613							
70th %ile	-	0.01909		-	0.06016		-	0.04068		-	0.03295		-	0.02787		-	0.02128		-	0.01791		-	0.03224							
Median	<u>າກ</u> -0.00390 -0.01420				-	0.00900		-	0.00900		-	0.00865		-	0.00770		-	0.00693		-	0.00878									

Table 8: CO emissions statistics by vehicle speed

Table 9: HC emissions statistics by vehicle speed

	C)–20 km/	′h	2	0–25 km	/h	2	5–30 km	/h	3	0–35 km	/h	3	5–40 km	/h	4	0–45 km	/h	4	5–50 km	/h	50	0–55 km	/h	5	5–60 km	/h		60+ km/ł	h
HC (ppm)	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016
Max	15795	3170	10709	67987	3246	7306	5685	2698	10036	28617	40270	10544	19228	22962	3554	8897	3836	33977	7891	26116	8024	27982	893	4385	11732		2607	1092		758
99th %ile	1739	1071	707	1491	823	557	1031	818	750	1313	732	657	1158	673	630	1069	658	600	838	705	631	1045	421	602	828		668	667		371
95th %ile	620	412	408	517	322	251	497	350	262	470	303	269	439	268	259	413	259	277	377	248	254	393	176	230	314		324	399		216
90th %ile	351	218	212	342	182	114	300	192	126	289	147	136	266	143	130	258	140	139	234	143	148	246	108	138	190		176	220		123
70th %ile	70.2	52.9	43.1	71.6	40.0	26.5	66.9	39.9	30.2	61.5	36.9	30.1	57.1	35.4	31.4	55.0	35.3	33.3	52.7	34.0	35.2	53.7	43.5	35.4	50.8		36.0	60.9		32.6
Median	21.6	16.7	15.6	20.1	11.7	8.35	21.6	13.8	9.55	19.7	12.8	8.35	18.7	11.9	9.11	18.0	10.9	10.8	19.4	12.5	11.3	20.8	15.5	12.4	16.8		16.1	18.9		15.7
														Line	ar trend	s														
99th %ile	-5	515.9703	39	-4	467.0743	37	-	140.8862	23		327.6903	39	-2	264.2431	1	-2	234.6629	93		103.4683	37	-2	221.3136	8						
95th %ile	-1	105.7082	25	-^	133.1135	58	-140.88623			-	100.6134	11	-	90.0806	1	-	68.1979	5	-	61.2876	2		81.2772	9						
90th %ile	-	69.4637	0	-^	113.8103	37	-	87.1235	1	-	76.2760	5	-	68.0481	5	-	59.7164	2	-	42.8935	6	÷	54.0597	2						
70th %ile	-	13.5497	6	-	22.5303	7	-	-18.37363			15.7345	9	-	12.8369	9	_	10.8580	7		-8.75116	6	-	-9.10799)						
Median		-2.97395	5		-5.88910)		-6.03440)		-5.68313	3		-4.80630)		-3.58678	3		-4.07513	3		-4.21638	3						

	C)–20 km/	'n	20	0–25 km	/h	2	5–30 km	/h	30	0–35 km	/h	3	5–40 km	/h	4	0–45 km	/h	4	5–50 km	/h	5	0–55 km	/h	5	5–60 km	/h	(60+ km/h	'n
(ppm)	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016
Max	4562	3349	3542	7682	5488	3452	5218	4642	5142	6987	5778	4748	9022	5232	4817	5086	6251	5037	6844	4929	4326	6844	3379	4711	4753		4247	3990		4313
99th %ile	2938	2702	1984	2842	2421	2215	3007	2398	2476	3006	2615	2405	3151	2741	2705	3200	2969	3053	3290	2713	2653	3221	2996	3012	3359		3067	3285		3892
95th %ile	1615	1755	1311	1781	1421	1014	1798	1499	1212	1897	1468	1359	1923	1456	1501	2046	1652	1648	2049	1562	1537	2163	1346	1615	2045		1848	2143		1613
90th %ile	1178	1235	792	1258	895	642	1202	1010	810	1276	945	930	1300	964	1027	1387	1038	1096	1420	1111	1060	1437	1080	999	1435		1080	1698		1040
70th %ile	349	394	193	365	234	145	348	268	191	398	271	245	392	265	287	420	323	324	468	326	320	495	437	356	432		352	592		348
Median	87.3	103	53.4	77.3	60.9	37.1	85.1	81.0	53.4	91.8	82.2	70.8	99.1	85.5	84.4	111	104	104	127	113	113	141	135	126	127		122	228		132
														Line	ear trend	s														
99th %ile	-4	477.0905	58	-9	313.7095	57	-2	265.2597	' 2	-3	300.3782	27	-2	222.9403	34	-	73.5944	6		318.6282	26	-1	04.3693	80						
95th %ile	-1	151.8563	30	-9	13.70957 -265.25972 33.37645 -292.87440		-2	269.0294	8	-2	211.1078	32	-1	198.8501	10	-2	255.9616	68	-2	273.9479	90									
90th %ile	-1	193.2556	69	-9	308.0022	27	-1	196.0574	12	-1	172.8907	7	-1	36.6133	30	-1	145.3275	55	_^	180.1017	75	-2	218.7571	8						
70th %ile	-	77.9094	2	-1	-110.15047 -78.25632			2	-	76.3395	6	-	52.2500	5	-	48.0677	0	-	73.9911	4	-	69.4430	9							
Median	-	16.9676	0	-110.15047 -78.25632 -20.11360 -15.86120			0	-	10.4894	0		-7.32335	5		-3.42928	3		-6.81520)		-7.33460)								

Table 10: NO emissions statistics by vehicle speed

Table 11: uvSmoke emissions statistics by vehicle speed

	C)–20 km/	′h	2	0–25 km	/h	2	5–30 km	/h	3	0–35 km	/h	3	5–40 km	ı/h	4	0–45 km	/h	4	5–50 km	/h	5	0–55 km	/h	5	5–60 km	/h	(60+ km/ł	h
uvSmoke	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016
Max	1.12	3.56	0.91	1.66	0.98	2.26	3.57	1.48	3.16	2.32	2.11	2.00	3.85	2.43	2.37	2.01	1.26	4.11	2.43	1.21	1.59	4.24	2.11	5.26	1.11		1.79	5.99		0.56
99th %ile	0.44	0.47	0.27	0.48	0.39	0.36	0.47	0.38	0.33	0.44	0.49	0.36	0.43	0.36	0.43	0.45	0.38	0.43	0.43	0.46	0.49	0.44	0.37	0.51	0.45		0.55	3.24		0.36
95th %ile	0.21	0.18	0.16	0.21	0.17	0.16	0.22	0.18	0.16	0.22	0.20	0.16	0.22	0.18	0.19	0.21	0.20	0.19	0.23	0.18	0.18	0.23	0.19	0.22	0.22		0.25	1.42		0.21
90th %ile	0.16	0.12	0.11	0.15	0.11	0.10	0.15	0.12	0.10	0.15	0.13	0.11	0.16	0.12	0.12	0.15	0.12	0.12	0.16	0.12	0.12	0.17	0.16	0.14	0.16		0.19	0.71		0.12
70th %ile	0.05	0.04	0.03	0.05	0.04	0.02	0.05	0.04	0.03	0.05	0.04	0.03	0.05	0.04	0.03	0.05	0.04	0.04	0.06	0.04	0.04	0.06	0.05	0.05	0.06		0.05	0.21		0.06
Median	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.01	0.03	0.02	0.02	0.03	0.02	0.02	0.03	0.02	0.02	0.03	0.02	0.02	0.03	0.03	0.02	0.03		0.03	0.05		0.03
														Line	ear trend	้ร														
99th %ile		-0.08635	5		-0.05618	3		-0.06747	7		-0.03689)		0.00363	3		-0.01216	6		0.02732			0.03337	,						
95th %ile		-0.02401	1		-0.02630)		-0.03361			-0.03257	,		-0.01692	2		-0.00982	2		-0.02083	3		-0.00525	5						
90th %ile		-0.02272	2		-0.02703	3		-0.02353	3		-0.02176	5		-0.01994	1		-0.01693	3		-0.01717	7		-0.01555	5						
70th %ile		-0.01151	1	-0.01072 -0.01011				-0.00815	5		-0.00761	1		-0.00630)		-0.00795	5		-0.00684	1									
Median		-0.00413	3	-0.01072 -0.01011 -0.00570 -0.00515			5		-0.00455	5		-0.00420)		-0.00350)		-0.00433	3		-0.00380)								

		Petrol			Diesel			LPG	
CO (%)	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016
Max	12.9	13.0	13.5	9.17	5.14	5.73	11.5	10.4	10.8
99th %ile	4.60	3.59	3.14	0.42	0.46	0.32	7.87	7.49	8.13
95th %ile	1.66	1.05	0.88	0.13	0.09	0.07	4.62	4.29	4.13
90th %ile	0.81	0.57	0.52	0.07	0.05	0.04	2.85	2.68	2.64
70th %ile	0.20	0.14	0.14	0.03	0.01	0.01	0.50	0.36	0.43
Median	0.06	0.04	0.04	0.01	0.01	<0.01	0.10	0.10	0.11
				Linear ti	rends				
99th %ile		-0.72684			-0.05186			0.12790	
95th %ile		-0.39037			-0.02635			-0.24214	
90th %ile		-0.14539			-0.01896			-0.10301	
70th %ile		-0.03180			-0.00755			-0.03348	
Median		-0.00845			-0.00290			0.00570	

Table 12: CO emissions statistics by fuel type

Table 13: HC emissions statistics by fuel type

		Petrol			Diesel			LPG	
(ppm)	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016
Max	67987	40270	33977	5662	3285	10709	23305	5475	10544
99th %ile	1109	814	663	528	357	375	3271	3165	2408
95th %ile	453	314	273	235	147	133	800	680	653
90th %ile	279	164	143	147	93.0	84.1	536	475	487
70th %ile	51.7	31.5	28.2	59.1	41.6	34.7	231	224	245
Median	13.9	7.91	6.17	33.3	22.1	18.0	88.5	93.1	93.4
				Linear tr	rends				
99th %ile	-2	223.1417	3	-	76.4987 <i>^</i>	l	-4	431.4949	3
95th %ile	-	90.34966	6	-	50.86326	6	-	73.78545	5
90th %ile	-	68.13375	5	-	31.43696	6	-	24.61502	2
70th %ile	_	11.79282	2	-	12.20402	2		6.89392	
Median		-3.84580			-7.62135			2.48085	

		Petrol			Diesel			LPG	
NO (ppm)	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016
Max	6987	5232	5142	6844	4138	3736	9022	6251	4605
99th %ile	3167	2697	2656	2184	2089	2027	4240	4702	4211
95th %ile	1998	1472	1396	1533	1383	1367	2668	2755	3114
90th %ile	1296	848	780	1245	1095	1116	2095	2144	2360
70th %ile	286	153	140	667	548	573	777	799	985
Median	62.3	44.4	40.6	396	310	317	224	195	310
				Linear tr	rends				
99th %ile	-2	255.6045	5	-	78.50804	1	-	14.52497	7
95th %ile	-3	300.8820	5	-	82.86073	3	2	23.2257	5
90th %ile	-2	258.0559	4	-	64.43100)	1	32.7300	C
70th %ile	-	73.02724	1	-	46.80450)	1	03.9131	7
Median	_	10.85885	5	_	39.93170)		43.23425	

Table 14: NO emissions statistics by fuel type

Table 15: uvSmoke emissions statistics by fuel type

		Petrol			Diesel			LPG	
uvSmoke	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016
Max	3.57	1.51	2.91	4.24	3.56	5.26	0.92	1.00	0.38
99th %ile	0.33	0.26	0.24	0.76	0.77	0.87	0.28	0.29	0.21
95th %ile	0.18	0.13	0.10	0.39	0.33	0.35	0.14	0.15	0.13
90th %ile	0.11	0.06	0.05	0.29	0.22	0.23	0.09	0.08	0.08
70th %ile	0.04	0.02	0.02	0.15	0.11	0.11	0.04	0.03	0.03
Median	0.02	0.01	0.01	0.10	0.07	0.07	0.02	0.02	0.02
				Linear tr	rends				
99th %ile		-0.04203			0.05755			-0.03681	
95th %ile		-0.03679			-0.02199			-0.00666	
90th %ile		-0.03029			-0.02631			-0.00659	
70th %ile		-0.00700			-0.01922			-0.00378	
Median		-0.00435			-0.01608			-0.00285	

Table 16: CO emissions statistics by body type

	STAT	TION SE	DAN		SEDAN		HA	TCHBA	СК		UTILITY	,	TA	ABLE TO)P	P	ANEL VA	N		COUPE		VA	N TRUC	CK	0	MNIBU	S	DO	UBLE C	AB
CO (%)	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009- 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016
Max	9.21	8.59	13.18	12.92	13.03	11.95	10.64	11.15	10.21	9.84	8.63	9.87	11.33	11.47	13.46	11.45	10.54	10.07	9.75	13.00	5.75	8.69	8.98	6.02	2.03	0.74	0.38	7.91	4.06	4.08
99th %ile	3.94	2.46	2.26	4.57	3.85	3.17	4.24	2.25	1.83	4.21	2.18	3.80	5.09	4.26	4.26	6.24	7.03	5.85	6.58	5.86	4.23	4.08	2.24	5.28	0.20	0.22	0.27	4.96	2.70	3.80
95th %ile	1.16	0.75	0.65	1.56	1.02	0.85	1.37	0.71	0.65	1.48	0.81	0.90	1.82	1.12	0.98	2.93	2.15	2.10	3.28	2.39	1.24	1.01	0.45	0.44	0.05	0.05	0.05	2.07	1.45	1.70
90th %ile	0.58	0.41	0.36	0.76	0.55	0.51	0.61	0.41	0.41	0.65	0.35	0.39	0.83	0.55	0.46	1.54	1.01	0.78	1.73	0.99	0.92	0.43	0.25	0.18	0.04	0.04	0.03	1.14	0.76	0.89
70th %ile	0.10	0.07	0.07	0.21	0.14	0.14	0.15	0.12	0.11	0.10	0.04	0.03	0.11	0.06	0.05	0.21	0.11	0.06	0.51	0.21	0.22	0.10	0.04	0.03	0.02	0.02	0.01	0.27	0.12	0.13
Median	0.03	0.02	0.02	0.06	0.04	0.04	0.05	0.04	0.03	0.02	0.01	0.01	0.03	0.02	0.01	0.04	0.02	0.01	0.15	0.06	0.06	0.04	0.02	0.01	0.01	0.01	0.01	0.08	0.03	0.02
														Line	ear trend	s														
99th %ile	-	0.84122	2	-	0.69835		-	-1.20472	2		-0.20802	2	-	0.41108	3		-0.19737	•	-	1.17617		().59842		(0.03266		-	0.58002	2
95th %ile	-	-0.25362 -0.35390 -0.36011				-0.28863	3	-	0.42291			-0.41487		-	1.01913		-	0.28772		-	0.00026	;	-	0.18668	3					
90th %ile	-	0.10797	7		0.12273			-0.09893	3		-0.12912	2	-	0.18638	3		-0.37874		-	0.40308		-	0.12363		-	0.00429		-	0.12679)
70th %ile	-0.01644 -0.03404 -0.02353				3		-0.03179)	-	0.02932	2		-0.07462		-	0.14295		-	0.03356	;	-	0.00066	5	-	0.06739	•				
Median	-	-0.00550 -0.01075 -0.00713			3		-0.00680)	-	0.00985	5		-0.01435		-	0.04635		-	0.01500		-	0.00150)	-	0.02745	5				

Table 17: HC emissions statistics by body type

	STA	TION SE	DAN	SEDAN			HA	АТСНВА	СК		UTILITY		T	ABLE TO)P	P	ANEL VA	۹N		COUPE		VA	AN TRUC	СК	C	OMNIBU	S	DC	UBLE C	AB
(ppm)	2009 -10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 10	2014	2016	2009 10	2014	2016
Max	13232	9741	10544	67987	28822	3414	27982	40270	10036	23305	4423	7306	20715	7293	8024	19228	12576	10709	28617	3242	5086	2593	26116	33977	3106	479	456	3110	1028	8792
99th %ile	856	555	509	1108	823	628	967	612	533	932	663	774	1489	946	1048	1712	980	1105	3301	2097	3460	1567	791	719	618	365	270	1778	898	816
95th %ile	365	235	194	453	354	296	426	188	189	403	263	303	504	328	361	572	417	364	815	911	631	427	314	332	268	155	98	468	355	385
90th %ile	219	124	95.9	286	188	167	208	93.6	90.7	255	155	170	326	205	212	356	270	239	574	396	438	280	227	161	228	122	64.1	340	300	269
70th %ile	43.6	30.1	27.0	57.0	34.9	30.1	33.8	25.0	25.0	63.0	48.2	47.6	95.8	58.6	50.7	109	60.9	49.5	206	59.7	57.8	129	55.3	62.0	82.2	83.8	24.5	134	89.0	96.4
Median	14.2	10.8	8.17	17.1	9.51	7.46	9.74	6.16	5.09	26.8	23.8	20.7	34.5	24.1	20.8	41.3	25.1	20.7	44.7	10.8	11.9	56.9	24.8	28.2	59.9	60.3	15.9	57.3	43.7	30.6
														Line	ear trend	s														
99th %ile	-1	173.2867	' 4	-2	239.8530)3	-2	217.0896	60	-	78.5853	2	-2	220.5137	73	Ŷ	303.3883	31		79.25898	3	-4	123.7982	21	-1	173.5725	54	-4	481.0738	37
95th %ile	-	85.2238	1	-	78.6690	9	-1	118.4898	32	-	50.3675	2	-	71.6547	6	-^	104.2546	62	-	91.6359	8	-	47.2496	1	-	84.9251	6	-	41.6906	3
90th %ile	-	61.7850	7	-	59.4125	5	-	58.4456	0	-	42.3083	5	-	56.8375	6	-	58.6290	1	-	68.1889	6	-	59.7998	5	-	81.8232	1	1	35.1120	7
70th %ile		-8.31023	3	-	13.4843	4		-4.40897	7		-7.70005	5	-	22.5434	8	-	29.8567	1	-	74.1714	6	-	33.5488	7	-	28.8723	1	-	19.0057	4
Median		-3.03745	5		-4.81580)		-2.32198	3		-3.08395	5		-6.86268	3	-	10.3293	5	-	16.3853	5	-	14.3064	5	-	22.0285	5	-	13.3615	3

 Table 18: NO emissions statistics by body type

	STA	TION SE	DAN		SEDAN		HA	TCHBA	СК		UTILITY		T/	ABLE TC)P	P	ANEL VA	٨N		COUPE		VA	AN TRU	СК	C	MNIBUS	S	DO	UBLE C	AB
(ppm)	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016												
Max	6844	4929	4464	6044	5488	4711	4531	5035	4570	5983	6251	4326	6844	3752	4228	6987	5778	5142	4322	3349	2790	4573	3386	3854	9022	3672	3188	4562	3446	3604
99th %ile	3119	2542	2455	2955	2802	2651	2809	2101	2200	3167	2602	2808	3517	3209	3024	3899	3614	3804	3361	3042	2318	3403	3002	2315	5282	3016	2705	3313	2570	2973
95th %ile	1834	1359	1304	1814	1493	1377	1612	1005	1033	1826	1457	1458	2276	2052	1943	2633	2121	2229	2399	1754	1617	2086	2117	1612	2396	2473	1457	2500	1940	2537
90th %ile	1142	888	871	1187	857	808	974	570	583	1258	937	1011	1660	1362	1404	2030	1550	1649	1772	1137	1062	1704	1591	1455	1816	2113	1258	2094	1398	2027
70th %ile	328	258	232	296	188	174	195	126	119	380	353	382	668	601	655	818	710	794	633	250	249	1133	869	850	1393	1429	667	955	638	730
Median	84.9	86.4	70.5	70.2	52.5	50.7	54.1	41.4	39.6	129	170	186	319	285	318	419	359	399	146	63.0	55.9	707	536	511	1210	1144	424	508	379	462
														Line	ar trend	s														
99th %ile	-3	332.2230)2	_^	151.9773	5	-3	304.6999)7	-1	179.4550	3	-2	46.2658	8	-	47.9850	2	-{	521.8771	6	-5	543.9126	68	-1:	288.580 [,]	13	-1	69.9510)5
95th %ile	-2	265.0478	38	-2	218.5734	.3	-2	289.4960)3	-1	183.6585	0	-1	66.9388	8	-2	202.0579	90		390.9407	75	-2	236.9620	00	-4	69.1699	3		18.55492	2
90th %ile	-1	135.3145	50	_^	189.3773	6	-1	195.6451	6	-1	123.8878	0	-1	27.7626	5	-*	190.5472	20		354.9753	30	-1	24.3785	55	-2	279.1353	5	-:	33.42830	0
70th %ile	-	48.2252	4	-	61.1626	1	-	38.0279	9		1.08449			-6.51440	1	-	12.0338	9	-^	192.1606	65	-1	41.2998	30	-3	63.1321	4	-1	12.4450)2
Median		-7.19930)		-9.74693			-7.22225	5		28.74945	5		-0.58760		_	10.0869	0	-	44.8711	0	-	97.7480	0	-3	92.5870	0	-:	22.91363	3

Table 19: uvSmoke emissions statistics by body type

	STA	TION SE	DAN	SEDAN			HA	TCHBA	СК		UTILITY	,	Т	ABLE TO)P	P	ANEL VA	۹N		COUPE		V	AN TRU	CK	C	OMNIBU	S	DC	OUBLE C	CAB
uvSmoke	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016
Max	3.57	3.56	2.90	3.85	2.11	1.13	1.42	1.23	1.01	1.78	1.34	2.37	4.24	1.39	2.06	2.32	1.51	5.26	1.37	0.69	0.81	1.45	1.20	2.91	0.60	0.28	1.81	2.48	1.54	4.11
99th %ile	0.39	0.39	0.41	0.32	0.26	0.23	0.29	0.25	0.21	0.46	0.62	0.81	0.66	0.67	0.66	0.64	0.53	0.62	0.59	0.47	0.52	0.71	0.65	0.64	0.42	0.22	0.29	0.70	0.58	1.16
95th %ile	0.21	0.18	0.17	0.16	0.11	0.10	0.13	0.08	0.07	0.25	0.31	0.32	0.33	0.24	0.30	0.33	0.27	0.30	0.29	0.26	0.22	0.44	0.37	0.41	0.28	0.13	0.18	0.33	0.36	0.42
90th %ile	0.15	0.12	0.11	0.09	0.06	0.06	0.07	0.04	0.04	0.18	0.20	0.22	0.23	0.18	0.19	0.24	0.21	0.20	0.22	0.20	0.16	0.31	0.22	0.24	0.20	0.12	0.14	0.24	0.27	0.23
70th %ile	0.05	0.04	0.03	0.03	0.03	0.02	0.03	0.02	0.02	0.09	0.09	0.10	0.12	0.09	0.10	0.14	0.09	0.08	0.06	0.04	0.04	0.16	0.08	0.09	0.11	0.09	0.08	0.14	0.13	0.12
Median	0.03	0.02	0.02	0.02	0.01	0.01	0.02	0.01	0.01	0.05	0.05	0.06	0.06	0.05	0.05	0.07	0.04	0.04	0.03	0.02	0.02	0.09	0.05	0.04	0.08	0.06	0.05	0.08	0.07	0.07
														Line	ear trend	s														
99th %ile		0.00909)		-0.04355	5		-0.03745	5		0.17438	3		-0.00015	5		-0.00762	2		-0.03497	7		-0.03881			-0.06916	6		0.23379)
95th %ile		-0.01659	9		-0.02580)		-0.02978	3		0.03174	Ļ		-0.01511	l		-0.01692	2		-0.03543	3		-0.01665	5		-0.04952	2		0.04592	2
90th %ile		-0.01675	5		-0.01825	5		-0.01190)		0.01739)		-0.02062	2		-0.01797	7		-0.03485	5		-0.03431			-0.03273	3		-0.00762	2
70th %ile		-0.00908	3		-0.00445	5		-0.00360)		0.00527	,		-0.01047	7		-0.02608	3		-0.01313	3		-0.03634	Ļ		-0.01221	l		-0.00798	3
Median		-0.00555	5		-0.00295	5		-0.00270)		0.00635	5		-0.00400)		-0.01465	5		-0.00475	5		-0.02258	3		-0.01553	3		-0.00603	3

	Less	than 1,0	00 kg	1,00	00–1,100) kg	1,1(00–1,200) kg	1,20	00–1,300) kg	1,30	00–1,400) kg	1,40	00–1,500) kg	1,50	00–1,60	0 kg	1,60	00–1,700) kg
CO (%)	2009 -10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016
Max	12.92	13.00	10.21	10.64	8.42	11.95	12.62	11.15	9.05	11.45	11.47	9.45	11.05	13.03	13.18	10.46	9.18	11.04	9.99	9.01	13.46	8.56	10.20	7.79
99th %ile	6.72	5.23	5.41	4.81	3.64	1.72	4.23	3.12	2.28	5.03	4.45	3.05	5.09	4.77	3.92	5.65	3.94	4.08	4.14	3.73	2.62	3.57	3.26	2.95
95th %ile	3.59	2.61	2.25	1.52	1.07	0.71	1.82	1.07	0.79	2.00	0.94	0.75	2.08	1.14	0.87	1.88	1.07	1.04	1.15	0.86	0.77	0.96	0.93	0.96
90th %ile	2.31	1.23	1.16	0.72	0.56	0.47	0.85	0.58	0.47	1.00	0.51	0.43	1.02	0.62	0.55	0.88	0.51	0.49	0.61	0.45	0.45	0.50	0.54	0.51
70th %ile	0.51	0.35	0.34	0.22	0.20	0.17	0.22	0.18	0.16	0.21	0.11	0.09	0.28	0.17	0.18	0.19	0.10	0.10	0.12	0.09	0.10	0.09	0.10	0.09
Median	0.21	0.13	0.13	0.08	0.08	0.05	0.07	0.07	0.06	0.05	0.03	0.02	0.10	0.05	0.05	0.05	0.03	0.02	0.04	0.03	0.03	0.03	0.03	0.02
											Linea	ar trends	\$											
99th %ile	-	0.65625	5	-	1.54650		-	0.97674	•	-	0.98916		-	0.58232	2		0.78470)		0.75641	1		-0.31312	2
95th %ile	-	0.67070)	-	0.40844	-	-	0.51261		-	0.62386		-	0.60126	6	-	0.41877	7		-0.19224	1		-0.00104	1
90th %ile	-	0.57783	3	-	0.12483	6	-	0.18994		-	0.28641		-	0.23449)	-	0.19440)		-0.08040)		0.00295	
70th %ile	-	0.08552	2	-	0.02313	5	-	0.03386	;	-	0.06250		-	0.04784	<u>ا</u>	-	0.04348	3		-0.01456	6		-0.00279)
Median	-	0.04083	3	-	0.01248	5	-	0.00568	5	-	0.01495		-	0.02268	3	-	0.01048	3		-0.00658	3		-0.00158	3
	1 70	00–1.800) ka	1.80	00-1.900) kg	1,90	00-2,000) kg	2,00	00–2,100	kg	2,10	00–2,200) kg	2,20	00–2,300) kg	2,30	00-2,40	0 kg	More	than 2,4	00 kg
	.,		- 3	.,	, ,																			
CO (%)	2009 -10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 10	2014	2016
CO (%) Max	2009 -10 7.23	2014 5.31	2016 9.87	2009 -10 5.93	2014 8.49	2016 4.79	2009 -10 8.40	2014 10.38	2016 5.18	2009 -10 8.96	2014 7.49	2016 7.21	2009 -10 8.77	2014 5.37	2016 2.36	2009 -10 6.63	2014 5.18	2016 4.47	2009 -10 11.33	2014 2.32	2016 2.67	2009 -10 6.35	2014 5.14	2016 2.87
CO (%) Max 99th %ile	2009 -10 7.23 2.84	2014 5.31 2.53	2016 9.87 2.67	2009 -10 5.93 2.63	2014 8.49 1.28	2016 4.79 1.59	2009 -10 8.40 3.60	2014 10.38 1.84	2016 5.18 1.08	2009 -10 8.96 2.95	2014 7.49 1.79	2016 7.21 3.42	2009 -10 8.77 4.96	2014 5.37 1.31	2016 2.36 0.69	2009 -10 6.63 4.47	2014 5.18 2.97	2016 4.47 2.14	2009 -10 11.33 2.89	2014 2.32 1.11	2016 2.67 1.25	2009 -10 6.35 0.95	2014 5.14 1.50	2016 2.87 0.47
CO (%) Max 99th %ile 95th %ile	2009 -10 7.23 2.84 0.98	2014 5.31 2.53 0.83	2016 9.87 2.67 0.75	2009 -10 5.93 2.63 0.54	2014 8.49 1.28 0.39	2016 4.79 1.59 0.51	2009 -10 8.40 3.60 0.76	2014 10.38 1.84 0.55	2016 5.18 1.08 0.34	2009 -10 8.96 2.95 0.86	2014 7.49 1.79 0.58	2016 7.21 3.42 0.67	2009 -10 8.77 4.96 0.88	2014 5.37 1.31 0.47	2016 2.36 0.69 0.17	2009 -10 6.63 4.47 2.36	2014 5.18 2.97 0.87	2016 4.47 2.14 0.13	2009 -10 11.33 2.89 0.47	2014 2.32 1.11 0.22	2016 2.67 1.25 0.17	2009 -10 6.35 0.95 0.19	2014 5.14 1.50 0.13	2016 2.87 0.47 0.12
CO (%) Max 99th %ile 95th %ile 90th %ile	2009 -10 7.23 2.84 0.98 0.46	2014 5.31 2.53 0.83 0.41	2016 9.87 2.67 0.75 0.41	2009 -10 5.93 2.63 0.54 0.22	2014 8.49 1.28 0.39 0.19	2016 4.79 1.59 0.51 0.25	2009 -10 8.40 3.60 0.76 0.29	2014 10.38 1.84 0.55 0.20	2016 5.18 1.08 0.34 0.15	2009 -10 8.96 2.95 0.86 0.39	2014 7.49 1.79 0.58 0.31	2016 7.21 3.42 0.67 0.36	2009 -10 8.77 4.96 0.88 0.26	2014 5.37 1.31 0.47 0.12	2016 2.36 0.69 0.17 0.07	2009 -10 6.63 4.47 2.36 1.16	2014 5.18 2.97 0.87 0.22	2016 4.47 2.14 0.13 0.04	2009 -10 11.33 2.89 0.47 0.14	2014 2.32 1.11 0.22 0.08	2016 2.67 1.25 0.17 0.07	2009 -10 6.35 0.95 0.19 0.11	2014 5.14 1.50 0.13 0.06	2016 2.87 0.47 0.12 0.06
CO (%) Max 99th %ile 95th %ile 90th %ile 70th %ile	2009 -10 7.23 2.84 0.98 0.46 0.07	2014 5.31 2.53 0.83 0.41 0.07	2016 9.87 2.67 0.75 0.41 0.05	2009 -10 5.93 2.63 0.54 0.22 0.03	2014 8.49 1.28 0.39 0.19 0.03	2016 4.79 1.59 0.51 0.25 0.03	2009 -10 8.40 3.60 0.76 0.29 0.04	2014 10.38 1.84 0.55 0.20 0.03	2016 5.18 1.08 0.34 0.15 0.02	2009 -10 8.96 2.95 0.86 0.39 0.07	2014 7.49 1.79 0.58 0.31 0.05	2016 7.21 3.42 0.67 0.36 0.03	2009 -10 8.77 4.96 0.88 0.26 0.04	2014 5.37 1.31 0.47 0.12 0.02	2016 2.36 0.69 0.17 0.07 0.01	2009 -10 6.63 4.47 2.36 1.16 0.04	2014 5.18 2.97 0.87 0.22 0.02	2016 4.47 2.14 0.13 0.04 0.01	2009 -10 11.33 2.89 0.47 0.14 0.03	2014 2.32 1.11 0.22 0.08 0.02	2016 2.67 1.25 0.17 0.07 0.01	2009 -10 6.35 0.95 0.19 0.11 0.04	2014 5.14 1.50 0.13 0.06 0.02	2016 2.87 0.47 0.12 0.06 0.02
CO (%) Max 99th %ile 95th %ile 90th %ile 70th %ile Median	2009 -10 7.23 2.84 0.98 0.46 0.07 0.02	2014 5.31 2.53 0.83 0.41 0.07 0.02	2016 9.87 2.67 0.75 0.41 0.05 0.01	2009 -10 5.93 2.63 0.54 0.22 0.03 0.01	2014 8.49 1.28 0.39 0.19 0.03 0.01	2016 4.79 1.59 0.51 0.25 0.03 0.01	2009 -10 8.40 3.60 0.76 0.29 0.04 0.01	2014 10.38 1.84 0.55 0.20 0.03 0.01	2016 5.18 1.08 0.34 0.15 0.02 0.01	2009 -10 8.96 2.95 0.86 0.39 0.07 0.02	2014 7.49 1.79 0.58 0.31 0.05 0.01	2016 7.21 3.42 0.67 0.36 0.03 0.01	2009 -10 8.77 4.96 0.88 0.26 0.04 0.01	2014 5.37 1.31 0.47 0.12 0.02 0.01	2016 2.36 0.69 0.17 0.07 0.01 <0.01	2009 -10 6.63 4.47 2.36 1.16 0.04 0.02	2014 5.18 2.97 0.87 0.22 0.02 0.01	2016 4.47 2.14 0.13 0.04 0.01 0.01	2009 -10 11.33 2.89 0.47 0.14 0.03 0.01	2014 2.32 1.11 0.22 0.08 0.02 0.01	2016 2.67 1.25 0.17 0.07 0.01 <0.01	2009 -10 6.35 0.95 0.19 0.11 0.04 0.02	2014 5.14 1.50 0.13 0.06 0.02 0.01	2016 2.87 0.47 0.12 0.06 0.02 0.01
CO (%) Max 99th %ile 95th %ile 90th %ile 70th %ile Median	2009 -10 7.23 2.84 0.98 0.46 0.07 0.02	2014 5.31 2.53 0.83 0.41 0.07 0.02	2016 9.87 2.67 0.75 0.41 0.05 0.01	2009 -10 5.93 2.63 0.54 0.22 0.03 0.01	2014 8.49 1.28 0.39 0.19 0.03 0.01	2016 4.79 1.59 0.51 0.25 0.03 0.01	2009 -10 8.40 3.60 0.76 0.29 0.04 0.01	2014 10.38 1.84 0.55 0.20 0.03 0.01	2016 5.18 1.08 0.34 0.15 0.02 0.01	2009 -10 8.96 2.95 0.86 0.39 0.07 0.02	2014 7.49 1.79 0.58 0.31 0.05 0.01 <i>Linea</i>	2016 7.21 3.42 0.67 0.36 0.03 0.01 ar trends	2009 -10 8.77 4.96 0.88 0.26 0.04 0.01	2014 5.37 1.31 0.47 0.12 0.02 0.01	2016 2.36 0.69 0.17 0.07 0.01 <0.01	2009 -10 6.63 4.47 2.36 1.16 0.04 0.02	2014 5.18 2.97 0.87 0.22 0.02 0.01	2016 4.47 2.14 0.13 0.04 0.01 0.01	2009 -10 11.33 2.89 0.47 0.14 0.03 0.01	2014 2.32 1.11 0.22 0.08 0.02 0.01	2016 2.67 1.25 0.17 0.07 0.01 <0.01	2009 -10 6.35 0.95 0.19 0.11 0.04 0.02	2014 5.14 1.50 0.13 0.06 0.02 0.01	2016 2.87 0.47 0.12 0.06 0.02 0.01
CO (%) Max 99th %ile 95th %ile 90th %ile 70th %ile Median 99th %ile	2009 -10 7.23 2.84 0.98 0.46 0.07 0.02	2014 5.31 2.53 0.83 0.41 0.07 0.02	2016 9.87 2.67 0.75 0.41 0.05 0.01	2009 -10 5.93 2.63 0.54 0.22 0.03 0.01	2014 8.49 1.28 0.39 0.19 0.03 0.01	2016 4.79 1.59 0.51 0.25 0.03 0.01	2009 -10 8.40 3.60 0.76 0.29 0.04 0.01	2014 10.38 1.84 0.55 0.20 0.03 0.01	2016 5.18 1.08 0.34 0.15 0.02 0.01	2009 -10 8.96 2.95 0.86 0.39 0.07 0.02	2014 7.49 1.79 0.58 0.31 0.05 0.01 <i>Linea</i> 0.23847	2016 7.21 3.42 0.67 0.36 0.03 0.01 ar trends	2009 -10 8.77 4.96 0.88 0.26 0.04 0.01	2014 5.37 1.31 0.47 0.12 0.02 0.01 2.13736	2016 2.36 0.69 0.17 0.07 0.01 <0.01	2009 -10 6.63 4.47 2.36 1.16 0.04 0.02	2014 5.18 2.97 0.87 0.22 0.02 0.01 -1.16898	2016 4.47 2.14 0.13 0.04 0.01 0.01	2009 -10 11.33 2.89 0.47 0.14 0.03 0.01	2014 2.32 1.11 0.22 0.08 0.02 0.01	2016 2.67 1.25 0.17 0.07 0.01 <0.01	2009 -10 6.35 0.95 0.19 0.11 0.04 0.02	2014 5.14 1.50 0.13 0.06 0.02 0.01	2016 2.87 0.47 0.12 0.06 0.02 0.01
CO (%) Max 99th %ile 95th %ile 90th %ile 70th %ile Median 99th %ile 95th %ile	2009 -10 7.23 2.84 0.98 0.46 0.07 0.02	2014 5.31 2.53 0.83 0.41 0.07 0.02 -0.08402 -0.11701	2016 9.87 2.67 0.75 0.41 0.05 0.01	2009 -10 5.93 2.63 0.54 0.22 0.03 0.01	2014 8.49 1.28 0.39 0.19 0.03 0.01 0.052414 0.01325	2016 4.79 1.59 0.51 0.25 0.03 0.01	2009 -10 8.40 3.60 0.76 0.29 0.04 0.01	2014 10.38 1.84 0.55 0.20 0.03 0.01 1.25919 0.21053	2016 5.18 1.08 0.34 0.15 0.02 0.01	2009 -10 8.96 2.95 0.86 0.39 0.07 0.02	2014 7.49 1.79 0.58 0.31 0.05 0.01 <i>Linea</i> 0.23847 0.09924	2016 7.21 3.42 0.67 0.36 0.03 0.01 ar trends	2009 -10 8.77 4.96 0.88 0.26 0.04 0.01	2014 5.37 1.31 0.47 0.12 0.02 0.01 2.13736 0.35488	2016 2.36 0.69 0.17 0.07 0.01 <0.01	2009 -10 6.63 4.47 2.36 1.16 0.04 0.02	2014 5.18 2.97 0.87 0.22 0.02 0.01 1.16898 -1.11433	2016 4.47 2.14 0.13 0.04 0.01 0.01	2009 -10 11.33 2.89 0.47 0.14 0.03 0.01	2014 2.32 1.11 0.22 0.08 0.02 0.01	2016 2.67 1.25 0.17 0.07 0.01 <0.01	2009 -10 6.35 0.95 0.19 0.11 0.04 0.02	2014 5.14 1.50 0.13 0.06 0.02 0.01 -0.23933 -0.03771	2016 2.87 0.47 0.12 0.06 0.02 0.01
CO (%) Max 99th %ile 95th %ile 90th %ile 70th %ile Median 99th %ile 95th %ile 90th %ile	2009 -10 7.23 2.84 0.98 0.46 0.07 0.02	2014 5.31 2.53 0.83 0.41 0.07 0.02 -0.08402 -0.11701 -0.02075	2016 9.87 2.67 0.75 0.41 0.05 0.01	2009 -10 5.93 2.63 0.54 0.22 0.03 0.01	2014 8.49 1.28 0.39 0.19 0.03 0.01 0.52414 0.01325 0.01384	2016 4.79 1.59 0.51 0.25 0.03 0.01	2009 -10 8.40 3.60 0.76 0.29 0.04 0.01 	2014 10.38 1.84 0.55 0.20 0.03 0.01 0.21053 0.21053 0.07050	2016 5.18 1.08 0.34 0.15 0.02 0.01	2009 -10 8.96 2.95 0.86 0.39 0.07 0.02	2014 7.49 1.79 0.58 0.31 0.05 0.01 <i>Linea</i> 0.23847 0.09924	2016 7.21 3.42 0.67 0.36 0.03 0.01 ar trends	2009 -10 8.77 4.96 0.88 0.26 0.04 0.01 5	2014 5.37 1.31 0.47 0.12 0.02 0.01 2.13736 0.35488 0.09739	2016 2.36 0.69 0.17 0.07 0.01 <0.01 <0.01	2009 -10 6.63 4.47 2.36 1.16 0.04 0.02	2014 5.18 2.97 0.87 0.22 0.02 0.01 1.16898 1.11433 0.55698	2016 4.47 2.14 0.13 0.04 0.01 0.01	2009 -10 11.33 2.89 0.47 0.14 0.03 0.01	2014 2.32 1.11 0.22 0.08 0.02 0.01 -0.82127 -0.14994 -0.03430	2016 2.67 1.25 0.17 0.07 0.01 <0.01	2009 -10 6.35 0.95 0.19 0.11 0.04 0.02	2014 5.14 1.50 0.13 0.06 0.02 0.01 -0.23933 -0.03771 -0.02484	2016 2.87 0.47 0.12 0.06 0.02 0.01
CO (%) Max 99th %ile 95th %ile 90th %ile 70th %ile 99th %ile 95th %ile 90th %ile	2009 -10 7.23 2.84 0.98 0.46 0.07 0.02	2014 5.31 2.53 0.83 0.41 0.07 0.02 0.08402 0.11701 -0.02075 -0.00845	2016 9.87 2.67 0.75 0.41 0.05 0.01	2009 -10 5.93 2.63 0.54 0.22 0.03 0.01 -	2014 8.49 1.28 0.39 0.19 0.03 0.01 0.52414 0.01325 0.01384 0.00063	2016 4.79 1.59 0.51 0.25 0.03 0.01	2009 -10 8.40 3.60 0.76 0.29 0.04 0.01 - - - - - - - - - - - - -	2014 10.38 1.84 0.55 0.20 0.03 0.01 0.21053 0.07050 0.00810	2016 5.18 1.08 0.34 0.15 0.02 0.01	2009 -10 8.96 2.95 0.86 0.39 0.07 0.02	2014 7.49 1.79 0.58 0.31 0.05 0.01 <i>Linea</i> 0.23847 0.09924 0.01366 0.01762	2016 7.21 3.42 0.67 0.36 0.03 0.01 ar trends	2009 -10 8.77 4.96 0.88 0.26 0.04 0.01 5 	2014 5.37 1.31 0.47 0.12 0.02 0.01 2.13736 0.35488 0.09739 0.01464	2016 2.36 0.69 0.17 0.07 0.01 <0.01 <0.01	2009 -10 6.63 4.47 2.36 1.16 0.04 0.02	2014 5.18 2.97 0.87 0.22 0.02 0.01 1.16898 0.55698 0.01470	2016 4.47 2.14 0.13 0.04 0.01 0.01 0.01	2009 -10 11.33 2.89 0.47 0.14 0.03 0.01	2014 2.32 1.11 0.22 0.08 0.02 0.01 -0.82127 -0.14994 -0.03430 -0.00746	2016 2.67 1.25 0.17 0.07 0.01 <0.01 <0.01	2009 -10 6.35 0.95 0.19 0.11 0.04 0.02	2014 5.14 1.50 0.13 0.06 0.02 0.01 -0.23933 -0.03771 -0.02484 -0.01199	2016 2.87 0.47 0.12 0.06 0.02 0.01 3 4 3

Table 20: CO emissions statistics by weight range

	Less	than 1,0	00 kg	1,00)0–1,100) kg	1,1()0–1,200) kg	1,20	00–1,300) kg	1,30	00–1,400) kg	1,40	00–1,500) kg	1,50	00–1,600) kg	1,60	00–1,700) kg
(ppm)	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016
Max	67987	40270	10036	28617	2658	4124	9291	2698	4183	16660	28822	33977	8897	9741	8792	11732	12576	10709	23305	2455	1693	20715	22962	10544
99th %ile	2329	1509	1395	1070	882	556	1608	849	490	1578	815	565	1220	964	746	1003	740	675	834	666	571	741	673	670
95th %ile	859	658	638	445	350	260	482	293	216	547	269	231	511	370	301	439	328	325	363	285	265	299	298	265
90th %ile	603	476	454	278	179	145	317	138	111	339	128	89.7	338	176	140	287	173	180	239	163	147	169	165	151
70th %ile	205	93.3	105	55.5	48.6	42.6	54.5	39.3	32.9	49.1	25.4	20.2	74.7	28.2	26.5	59.6	26.0	22.5	54.8	32.2	26.6	41.0	37.1	35.8
Median	67.3	31.1	31.0	16.8	15.5	12.1	15.1	11.3	9.89	13.2	4.20	4.46	19.0	7.94	5.97	15.3	5.17	3.55	16.9	9.04	7.34	15.1	12.9	11.1
											Line	ar trends	6						1			1		
99th %ile	-4	67.1597	7	-2	56.9529	3	-5	58.8246	8	-5	06.6961	8	-2	36.9669)2	-1	63.9482	29	-1	31.6255	50	-;	35.6758 [°]	1
95th %ile	-1	10.6541	6	-!	92.29804	4	-1	32.9065	53	-1	58.0009	8	-1	04.8949	96		56.7222	3		48.9863	3	-	17.27376	6
90th %ile	-7	74.1496	7	-(66.3967	3	-1	02.8447	' 9	-1	24.6720)5	-9	99.2268	2		53.6649	8		46.2853	0	-	9.00778	3
70th %ile	-{	50.1345	ô	-	6.47222		-'	10.7851	7	-'	14.4839	8	-2	24.0773	2	-'	18.5783	5	-	14.0862	8	-	2.58551	
Median	- '	18.1788	C	-	2.35463		-	2.59625	5	-	4.38698	3	-	6.53213	3	-	-5.85288	3		4.75925	5	-	2.01265	5
HC	1,70	00–1,800) kg	1,80	00–1,900) kg	1,90)0–2,000) kg	2,00	00–2,100) kg	2,10)0–2,200) kg	2,20	00–2,300) kg	2,30	00–2,400) kg	More	than 2,4	00 kg
HC (ppm)	1,70 2009 –10	00–1,800 2014) kg 2016	1,80 2009 –10	00–1,900 2014) kg 2016	1,90 2009 –10	00–2,000 2014) kg 2016	2,00 2009 –10	00–2,100 2014) kg 2016	2,10 2009 –10	00–2,200 2014) kg 2016	2,20 2009 –10	00–2,300 2014) kg 2016	2,30 2009 –10	00–2,400 2014) kg 2016	More 2009 -10	than 2,4 2014	00 kg 2016
HC (ppm) Max	1,70 2009 -10 6589	00–1,800 2014 <u>3242</u>) kg 2016 8024	1,80 2009 -10 5662	00–1,900 2014 5475) kg 2016 7306	1,90 2009 -10 13343	00–2,000 2014 4888) kg 2016 1462	2,00 2009 -10 13232	00–2,100 2014 <u>3131</u>) kg 2016 1454	2,10 2009 -10 3259	00–2,200 2014 936) kg 2016 1905	2,20 2009 -10 3643	00–2,300 2014 814) kg 2016 4385	2,30 2009 –10 1527	00–2,400 2014 493) kg 2016 <u>330</u>	More 2009 –10 3637	than 2,4 2014 3285	00 kg 2016 1505
HC (ppm) Max 99th %ile	1,70 2009 -10 6589 652	00–1,800 2014 3242 547) kg 2016 8024 676	1,80 2009 -10 5662 566	00–1,900 2014 5475 428) kg 2016 7306 473	1,90 2009 -10 13343 880	00–2,000 2014 4888 571) kg 2016 1462 350	2,00 2009 -10 13232 788	00–2,100 2014 3131 451) kg 2016 1454 526	2,10 2009 -10 3259 670	00–2,200 2014 936 415) kg 2016 1905 470	2,20 2009 -10 3643 612	00–2,300 2014 814 433) kg 2016 4385 356	2,30 2009 -10 1527 590	00–2,400 2014 493 316	0 kg 2016 330 256	More 2009 –10 3637 773	than 2,4 2014 3285 450	00 kg 2016 1505 436
HC (ppm) Max 99th %ile 95th %ile	1,70 2009 –10 6589 652 280	00–1,800 2014 3242 547 242) kg 2016 8024 676 239	1,80 2009 -10 5662 566 241	00–1,900 2014 5475 428 172) kg 2016 7306 473 177	1,90 2009 -10 13343 880 319	00–2,000 2014 4888 571 221) kg 2016 1462 350 136	2,00 2009 -10 13232 788 343	00–2,100 2014 3131 451 234) kg 2016 1454 526 225	2,10 2009 -10 3259 670 317	00–2,200 2014 936 415 182) kg 2016 1905 470 140	2,20 2009 -10 3643 612 355	00–2,300 2014 814 433 259) kg 2016 4385 356 147	2,30 2009 -10 1527 590 205	00–2,400 2014 493 316 149) kg 2016 330 256 127	More 2009 -10 3637 773 330	than 2,4 2014 3285 450 202	00 kg 2016 1505 436 200
HC (ppm) Max 99th %ile 95th %ile 90th %ile	1,70 2009 -10 6589 652 280 175	00–1,800 2014 3242 547 242 159) kg 2016 8024 676 239 140	1,80 2009 -10 5662 566 241 124	00–1,900 2014 5475 428 172 87.0) kg 2016 7306 473 177 88.7	1,90 2009 -10 13343 880 319 167	00–2,000 2014 4888 571 221 123) kg 2016 1462 350 136 90.6	2,00 2009 -10 13232 788 343 232	00–2,100 2014 3131 451 234 132) kg 2016 1454 526 225 125	2,10 2009 -10 3259 670 317 159	00–2,200 2014 936 415 182 87.5) kg 2016 1905 470 140 77.5	2,20 2009 -10 3643 612 355 239	00–2,300 2014 814 433 259 157) kg 2016 4385 356 147 76.0	2,30 2009 -10 1527 590 205 108	00-2,400 2014 493 316 149 81.0	0 kg 2016 330 256 127 70.9	More 2009 -10 3637 773 330 237	than 2,4 2014 3285 450 202 139	00 kg 2016 1505 436 200 93.8
HC (ppm) Max 99th %ile 95th %ile 90th %ile 70th %ile	1,70 2009 -10 6589 652 280 175 48.3	00–1,800 2014 3242 547 242 159 43.9) kg 2016 8024 676 239 140 36.0	1,80 2009 -10 5662 566 241 124 37.0	00–1,900 2014 5475 428 172 87.0 31.3) kg 2016 7306 473 177 88.7 28.2	1,90 2009 -10 13343 880 319 167 48.8	00–2,000 2014 4888 571 221 123 37.6) kg 2016 1462 350 136 90.6 34.9	2,00 2009 -10 13232 788 343 232 57.1	00–2,100 2014 3131 451 234 132 41.5) kg 2016 1454 526 225 125 38.5	2,10 2009 -10 3259 670 317 159 55.8	00–2,200 2014 936 415 182 87.5 30.8) kg 2016 1905 470 140 77.5 26.8	2,20 2009 -10 3643 612 355 239 61.3	00–2,300 2014 814 433 259 157 40.6) kg 2016 4385 356 147 76.0 30.1	2,30 2009 -10 1527 590 205 108 33.8	00–2,400 2014 493 316 149 81.0 39.3) kg 2016 330 256 127 70.9 32.0	More 2009 -10 3637 773 330 237 87.1	than 2,4 2014 3285 450 202 139 58.0	00 kg 2016 1505 436 200 93.8 36.7
HC (ppm) Max 99th %ile 95th %ile 90th %ile 70th %ile Median	1,70 2009 -10 6589 652 280 175 48.3 19.6	00–1,800 2014 3242 547 242 159 43.9 17.7) kg 2016 8024 676 239 140 36.0 12.0	1,80 2009 -10 5662 566 241 124 37.0 12.5	00–1,900 2014 5475 428 172 87.0 31.3 11.3) kg 2016 7306 473 177 88.7 28.2 9.29	1,90 2009 -10 13343 880 319 167 48.8 20.6	00–2,000 2014 4888 571 221 123 37.6 16.8	kg 2016 1462 350 136 90.6 34.9 14.9	2,00 2009 -10 13232 788 343 232 57.1 25.1	00–2,100 2014 3131 451 234 132 41.5 19.0) kg 2016 1454 526 225 125 38.5 16.7	2,10 2009 -10 3259 670 317 159 55.8 23.6	00–2,200 2014 936 415 182 87.5 30.8 15.6) kg 2016 1905 470 140 77.5 26.8 12.1	2,20 2009 -10 3643 612 355 239 61.3 24.4	00–2,300 2014 814 433 259 157 40.6 17.5) kg 2016 4385 356 147 76.0 30.1 13.0	2,30 2009 -10 1527 590 205 108 33.8 16.5	00–2,400 2014 493 316 149 81.0 39.3 21.6) kg 2016 330 256 127 70.9 32.0 18.8	More 2009 -10 3637 773 330 237 87.1 47.8	than 2,4 2014 3285 450 202 139 58.0 31.0	00 kg 2016 1505 436 200 93.8 36.7 21.7
HC (ppm) Max 99th %ile 95th %ile 90th %ile 70th %ile Median	1,70 2009 -10 6589 652 280 175 48.3 19.6	00–1,800 2014 3242 547 242 159 43.9 17.7) kg 2016 8024 676 239 140 36.0 12.0	1,80 2009 -10 5662 566 241 124 37.0 12.5	00–1,900 2014 5475 428 172 87.0 31.3 11.3) kg 2016 7306 473 177 88.7 28.2 9.29	1,90 2009 -10 13343 880 319 167 48.8 20.6	00–2,000 2014 4888 571 221 123 37.6 16.8	0 kg 2016 1462 350 136 90.6 34.9 14.9	2,00 2009 -10 13232 788 343 232 57.1 25.1	00–2,100 2014 3131 451 234 132 41.5 19.0 <i>Line</i>) kg 2016 1454 526 225 125 38.5 16.7 ar trends	2,10 2009 -10 3259 670 317 159 55.8 23.6 5	00-2,200 2014 936 415 182 87.5 30.8 15.6) kg 2016 1905 470 140 77.5 26.8 12.1	2,20 2009 -10 3643 612 355 239 61.3 24.4	00-2,300 2014 814 433 259 157 40.6 17.5	kg 2016 4385 356 147 76.0 30.1 13.0	2,30 2009 -10 1527 590 205 108 33.8 16.5	00-2,400 2014 493 316 149 81.0 39.3 21.6	0 kg 2016 330 256 127 70.9 32.0 18.8	More 2009 -10 3637 773 330 237 87.1 47.8	than 2,4 2014 3285 450 202 139 58.0 31.0	00 kg 2016 1505 436 200 93.8 36.7 21.7
HC (ppm) Max 99th %ile 95th %ile 90th %ile 70th %ile Median 99th %ile	1,70 2009 -10 6589 652 280 175 48.3 19.6	00–1,800 2014 3242 547 242 159 43.9 17.7 2.35861	kg 2016 8024 676 239 140 36.0 12.0	1,80 2009 -10 5662 566 241 124 37.0 12.5	00-1,900 2014 5475 428 172 87.0 31.3 11.3 46.6629) kg 2016 7306 473 177 88.7 28.2 9.29 9.29	1,90 2009 -10 13343 880 319 167 48.8 20.6	00-2,000 2014 4888 571 221 123 37.6 16.8	kg 2016 1462 350 136 90.6 34.9 14.9	2,00 2009 -10 13232 788 343 232 57.1 25.1	00–2,100 2014 3131 451 234 132 41.5 19.0 <i>Line</i> 31.0652) kg 2016 1454 526 225 125 38.5 16.7 ar trends 24	2,10 2009 -10 3259 670 317 159 55.8 23.6	00–2,200 2014 936 415 182 87.5 30.8 15.6 99.9847	kg 2016 1905 470 140 77.5 26.8 12.1	2,20 2009 -10 3643 612 355 239 61.3 24.4	00-2,300 2014 814 433 259 157 40.6 17.5 28.2417	kg 2016 4385 356 147 76.0 30.1 13.0	2,30 2009 -10 1527 590 205 108 33.8 16.5	00–2,400 2014 493 316 149 81.0 39.3 21.6 66.6848	kg 2016 330 256 127 70.9 32.0 18.8 31	More 2009 -10 3637 773 330 237 87.1 47.8 -1	than 2,4 2014 3285 450 202 139 58.0 31.0 68.3472	00 kg 2016 1505 436 200 93.8 36.7 21.7
HC (ppm) Max 99th %ile 95th %ile 90th %ile 70th %ile Median 99th %ile 95th %ile	1,70 2009 -10 6589 652 280 175 48.3 19.6	00–1,800 2014 3242 547 242 159 43.9 17.7 2.35861 20.42720	kg 2016 8024 676 239 140 36.0 12.0	1,80 2009 -10 5662 566 241 124 37.0 12.5	00-1,900 2014 5475 428 172 87.0 31.3 11.3 46.6629 31.86492) kg 2016 7306 473 177 88.7 28.2 9.29 7 7 2	1,90 2009 -10 13343 880 319 167 48.8 20.6	00-2,000 2014 4888 571 221 123 37.6 16.8 65.0925 91.6173	kg 2016 1462 350 136 90.6 34.9 14.9 7	2,00 2009 -10 13232 788 343 232 57.1 25.1 25.1	00-2,100 2014 3131 451 234 132 41.5 19.0 <i>Line</i> 31.0652 59.0062	kg 2016 1454 526 225 125 38.5 16.7 ar trends 24 4	2,10 2009 -10 3259 670 317 159 55.8 23.6 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	00-2,200 2014 936 415 182 87.5 30.8 15.6 99.9847 88.6285	kg 2016 1905 470 140 77.5 26.8 12.1 0 8	2,20 2009 -10 3643 612 355 239 61.3 24.4 24.4	00-2,300 2014 814 433 259 157 40.6 17.5 28.2417 04.2645	kg 2016 4385 356 147 76.0 30.1 13.0 '1 54	2,30 2009 -10 1527 590 205 108 33.8 16.5	00-2,400 2014 493 316 149 81.0 39.3 21.6 66.6848 39.1634	kg 2016 330 256 127 70.9 32.0 18.8 31 6	More 2009 -10 3637 773 330 237 87.1 47.8 -1 -1	than 2,4 2014 3285 450 202 139 58.0 31.0 68.3472 64.6458	00 kg 2016 1505 436 200 93.8 36.7 21.7 21.7
HC (ppm) Max 99th %ile 95th %ile 90th %ile 90th %ile 95th %ile 90th %ile	1,70 2009 -10 6589 652 280 175 48.3 19.6	00–1,800 2014 3242 547 242 159 43.9 17.7 20.42720 17.6562	kg 2016 8024 676 239 140 36.0 12.0 7	1,80 2009 -10 5662 566 241 124 37.0 12.5	00-1,900 2014 5475 428 172 87.0 31.3 11.3 46.6629 31.86492 17.72609) kg 2016 7306 473 177 88.7 28.2 9.29 7 2 2 9.29	1,90 2009 -10 13343 880 319 167 48.8 20.6 20.6	00-2,000 2014 4888 571 221 123 37.6 16.8 65.0925 91.6173 38.3983	kg 2016 1462 350 136 90.6 34.9 14.9 59 7 7	2,00 2009 -10 13232 788 343 232 57.1 25.1 25.1	00–2,100 2014 3131 451 234 132 41.5 19.0 <i>Line</i> 31.0652 59.0062 53.7295	kg 2016 1454 526 225 125 38.5 16.7 ar trends 24 4 7	2,10 2009 -10 3259 670 317 159 55.8 23.6 5 -5 -5 -5 -5 -5 -5 -5 -5 -5	00-2,200 2014 936 415 182 87.5 30.8 15.6 99.9847 88.6285 40.5530	kg 2016 1905 470 140 77.5 26.8 12.1 0 8 4	2,20 2009 -10 3643 612 355 239 61.3 24.4 24.4	00-2,300 2014 814 433 259 157 40.6 17.5 28.2417 04.2645 81.6512	kg 2016 4385 356 147 76.0 30.1 13.0 71 54 1	2,30 2009 -10 1527 590 205 108 33.8 16.5	00-2,400 2014 493 316 149 81.0 39.3 21.6 66.6848 39.16340 18.5226	kg 2016 330 256 127 70.9 32.0 18.8 31 6 7	More 2009 -10 3637 773 330 237 87.1 47.8 -1 -1 -1	than 2,4 2014 3285 450 202 139 58.0 31.0 68.3472 64.64585 71.65770	00 kg 2016 1505 436 200 93.8 36.7 21.7 21.7 26 5 0
HC (ppm) Max 99th %ile 95th %ile 90th %ile Median 99th %ile 95th %ile 90th %ile 90th %ile	1,70 2009 -10 6589 652 280 175 48.3 19.6 1 19.6	00-1,800 2014 3242 547 242 159 43.9 17.7 2.35861 20.42720 17.6562 6.15101	kg 2016 8024 676 239 140 36.0 12.0 7	1,80 2009 -10 5662 566 241 124 37.0 12.5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00-1,900 2014 5475 428 172 87.0 31.3 11.3 46.6629 31.86492 17.72609 4.43380) kg 2016 7306 473 177 88.7 28.2 9.29 7 2 2 9.29	1,90 2009 -10 13343 880 319 167 48.8 20.6 20.6	00-2,000 2014 4888 571 221 123 37.6 16.8 65.0925 91.6173 38.3983 6.91138	kg 2016 1462 350 136 90.6 34.9 14.9 59 7 3	2,00 2009 -10 13232 788 343 232 57.1 25.1 25.1	00–2,100 2014 3131 451 234 132 41.5 19.0 <i>Line</i> 31.0652 59.0062 53.7295 9.30775	kg 2016 1454 526 225 125 38.5 16.7 ar trends 24 4 7 5	2,10 2009 -10 3259 670 317 159 55.8 23.6 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	00-2,200 2014 936 415 182 87.5 30.8 15.6 99.9847 88.6285 40.5530 14.4991	kg 2016 1905 470 140 77.5 26.8 12.1 0 8 4 0 4 0	2,20 2009 -10 3643 612 355 239 61.3 24.4 24.4	00-2,300 2014 814 433 259 157 40.6 17.5 28.2417 04.2645 81.6512 15.5889	kg 2016 4385 356 147 76.0 30.1 13.0 71 54 1 4	2,30 2009 -10 1527 590 205 108 33.8 16.5 -1	00-2,400 2014 493 316 149 81.0 39.3 21.6 66.6848 39.16340 18.5226 -0.89612	kg 2016 330 256 127 70.9 32.0 18.8 31 6 7 2	More 2009 -10 3637 773 330 237 87.1 47.8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	than 2,4 2014 3285 450 202 139 58.0 31.0 68.3472 64.64585 71.65770 25.21857	00 kg 2016 1505 436 200 93.8 36.7 21.7 21.7 26 5 0 7

Table 21: HC emissions statistics by weight range

NO	Less	than 1,0	00 kg	1,00	00–1,100) kg	1,10)0–1,200) kg	1,20	00–1,300) kg	1,30	00–1,400) kg	1,4(00–1,500) kg	1,50	00–1,600) kg	1,60	00–1,700) kg
(ppm)	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016
Max	6044	4591	3763	4088	5035	4605	5322	4407	4817	6987	5232	4711	5983	5778	5142	5428	6251	4748	6844	5488	5037	6844	4710	4464
99th %ile	3444	3407	2816	2962	2892	2749	3140	2394	2742	3356	3006	2912	3396	2396	2640	3212	2777	2965	3084	2731	2507	2392	2652	3003
95th %ile	2577	2134	2045	1965	1671	1626	2028	1415	1281	2126	1492	1336	2191	1376	1397	2167	1602	1653	1788	1351	1273	1333	1383	1393
90th %ile	1932	1537	1309	1351	1070	1022	1332	859	678	1434	857	665	1558	850	838	1424	902	996	1129	773	746	798	887	920
70th %ile	826	511	454	363	259	239	319	197	154	331	148	105	459	164	172	375	168	163	292	191	164	193	232	261
Median	365	149	125	94.6	71.9	63.1	70.5	68.3	56.3	65.0	42.5	34.4	116	57.5	55.1	81.3	43.0	39.3	66.2	52.6	45.5	50.7	65.8	76.8
											Line	ar trends	6											
99th %ile	-3	14.0240)7	-1	06.5866	64	-1	98.9720)9	-2	21.6400)4	-3	78.4370)8	-1	23.4539	95	-2	288.5090)3	3	05.2122	7
95th %ile	-2	65.9537	'8	-1	69.8506	3	-3	73.5617	0	-3	395.1402	23	-3	96.9834	13	-2	256.6306	63	-2	257.2398	33	2	29.83067	7
90th %ile	-3	11.3451	5	-1	64.2517	'5	-3	27.1683	32	-3	884.4835	51	-3	60.0001	3	-2	14.0944	15	-1	91.5596	60	6	60.62420)
70th %ile	-1	86.3628	88	-(62.3660	9	-8	82.7880	1	-1	12.5781	0	-1	43.1184	4	-1	05.9069	98	-1	63.9246	0	3	33.70951	
Median	-1	20.1153	85	-	15.7648	8	-	7.06743	3	-	15.3288	8	-;	30.4883	0	-2	20.9925	0	-	10.3760	0	1	3.08098	3
NO	1,70)0–1,800) kg	1,8(00–1,900) kg	1,90)0–2,00() kg	2,00	00–2,100) kg	2,10)0–2,20() kg	2,20	00–2,300) kg	2,30	00–2,400) kg	More	than 2,4	00 kg
NO (ppm)	1,70 2009 –10	00–1,800 2014) kg 2016	1,80 2009 –10	00–1,900 2014) kg 2016	1,90 2009 –10	00–2,000 2014) kg 2016	2,00 2009 –10	00–2,100 2014) kg 2016	2,10 2009 –10	00–2,200 2014) kg 2016	2,20 2009 –10	00–2,300 2014	0 kg 2016	2,30 2009 –10	00–2,400 2014	0 kg 2016	More 2009 -10	than 2,4 2014	00 kg 2016
NO (ppm) Max	1,70 2009 –10 4338	00–1,800 2014 3632) kg 2016 3438	1,80 2009 -10 4721	00–1,900 2014 4138) kg 2016 4197	1,90 2009 –10 4683	00–2,000 2014 5080) kg 2016 3213	2,00 2009 -10 4835	00–2,100 2014 4062) kg 2016 4070	2,10 2009 -10 5086	00–2,200 2014 3495) kg 2016 4429	2,20 2009 -10 2937	00–2,300 2014 3646	0 kg 2016 3891	2,30 2009 -10 2800	00–2,400 2014 3090	0 kg 2016 2460	More 2009 –10 9022	than 2,4 2014 3672	00 kg 2016 3188
NO (ppm) Max 99th %ile	1,70 2009 -10 4338 2981	00–1,800 2014 <u>3632</u> 2589) kg 2016 3438 2368	1,80 2009 –10 4721 2654	00–1,900 2014 4138 2273) kg 2016 4197 1952	1,90 2009 -10 4683 2517	00–2,000 2014 5080 3133) kg 2016 3213 2059	2,00 2009 -10 4835 3562	20–2,100 2014 4062 2711) kg 2016 4070 2634	2,10 2009 -10 5086 2428	00–2,200 2014 <u>3495</u> 2254	0 kg 2016 4429 2050	2,20 2009 -10 2937 2549	00–2,300 2014 3646 2293	0 kg 2016 3891 2481	2,30 2009 -10 2800 1924	20–2,400 2014 3090 1695	0 kg 2016 2460 1717	More 2009 -10 9022 2868	than 2,4 2014 <u>3672</u> 2839	00 kg 2016 3188 2207
NO (ppm) Max 99th %ile 95th %ile	1,70 2009 -10 4338 2981 1855	00–1,800 2014 3632 2589 1557) kg 2016 3438 2368 1480	1,80 2009 -10 4721 2654 1353	00–1,900 2014 4138 2273 1254) kg 2016 4197 1952 1243	1,90 2009 -10 4683 2517 1222	00–2,000 2014 5080 3133 1310) kg 2016 3213 2059 1249	2,00 2009 -10 4835 3562 2202	00–2,100 2014 4062 2711 1463) kg 2016 4070 2634 1407	2,10 2009 -10 5086 2428 1399	00–2,200 2014 3495 2254 1255) kg 2016 4429 2050 1315	2,20 2009 -10 2937 2549 1807	00–2,300 2014 3646 2293 1383	0 kg 2016 3891 2481 1555	2,30 2009 -10 2800 1924 1463	20–2,400 2014 3090 1695 1090	2016 2460 1717 1243	More 2009 -10 9022 2868 1941	than 2,4 2014 3672 2839 1847	00 kg 2016 3188 2207 1530
NO (ppm) Max 99th %ile 95th %ile 90th %ile	1,70 2009 -10 4338 2981 1855 1059	00–1,800 2014 3632 2589 1557 1088) kg 2016 3438 2368 1480 1013	1,80 2009 -10 4721 2654 1353 925	00–1,900 2014 4138 2273 1254 736) kg 2016 4197 1952 1243 724	1,90 2009 -10 4683 2517 1222 863	00–2,000 2014 5080 3133 1310 774) kg 2016 3213 2059 1249 819	2,00 2009 -10 4835 3562 2202 1317	2014 2014 4062 2711 1463 1061) kg 2016 4070 2634 1407 1094	2,10 2009 -10 5086 2428 1399 998	00–2,200 2014 3495 2254 1255 998) kg 2016 4429 2050 1315 997	2,20 2009 -10 2937 2549 1807 1293	00–2,300 2014 3646 2293 1383 1017	0 kg 2016 3891 2481 1555 1115	2,30 2009 -10 2800 1924 1463 928	20–2,400 2014 3090 1695 1090 888	0 kg 2016 2460 1717 1243 1092	More 2009 -10 9022 2868 1941 1596	than 2,4 2014 3672 2839 1847 1468	00 kg 2016 3188 2207 1530 1292
NO (ppm) Max 99th %ile 95th %ile 90th %ile 70th %ile	1,70 2009 -10 4338 2981 1855 1059 387	00–1,800 2014 3632 2589 1557 1088 349) kg 2016 3438 2368 1480 1013 329	1,80 2009 -10 4721 2654 1353 925 239	00–1,900 2014 4138 2273 1254 736 237) kg 2016 4197 1952 1243 724 245	1,90 2009 -10 4683 2517 1222 863 286	00–2,000 2014 5080 3133 1310 774 323) kg 2016 3213 2059 1249 819 339	2,00 2009 -10 4835 3562 2202 1317 513	00–2,100 2014 4062 2711 1463 1061 496) kg 2016 4070 2634 1407 1094 546	2,10 2009 -10 5086 2428 1399 998 506	00–2,200 2014 3495 2254 1255 998 410) kg 2016 4429 2050 1315 997 523	2,20 2009 -10 2937 2549 1807 1293 593	00–2,300 2014 3646 2293 1383 1017 576	0 kg 2016 3891 2481 1555 1115 560	2,30 2009 -10 2800 1924 1463 928 448	20–2,400 2014 3090 1695 1090 888 509	0 kg 2016 2460 1717 1243 1092 579	More 2009 -10 9022 2868 1941 1596 1152	than 2,4 2014 3672 2839 1847 1468 871	00 kg 2016 3188 2207 1530 1292 769
NO (ppm) Max 99th %ile 95th %ile 90th %ile 70th %ile Median	1,70 2009 -10 4338 2981 1855 1059 387 112	00–1,800 2014 3632 2589 1557 1088 349 123) kg 2016 3438 2368 1480 1013 329 117	1,80 2009 -10 4721 2654 1353 925 239 66.6	00–1,900 2014 4138 2273 1254 736 237 104) kg 2016 4197 1952 1243 724 245 114	1,90 2009 -10 4683 2517 1222 863 286 115	00–2,000 2014 5080 3133 1310 774 323 156) kg 2016 3213 2059 1249 819 339 158	2,00 2009 -10 4835 3562 2202 1317 513 195	00-2,100 2014 4062 2711 1463 1061 496 205) kg 2016 4070 2634 1407 1094 546 221	2,10 2009 -10 5086 2428 1399 998 506 177	00–2,200 2014 3495 2254 1255 998 410 191) kg 2016 4429 2050 1315 997 523 251	2,20 2009 -10 2937 2549 1807 1293 593 263	00–2,300 2014 3646 2293 1383 1017 576 268	> kg 2016 3891 2481 1555 1115 560 290	2,30 2009 -10 2800 1924 1463 928 448 194	20–2,400 2014 3090 1695 1090 888 509 231	kg 2016 2460 1717 1243 1092 579 218	More 2009 -10 9022 2868 1941 1596 1152 741	than 2,4 2014 3672 2839 1847 1468 871 471	00 kg 2016 3188 2207 1530 1292 769 396
NO (ppm) Max 99th %ile 95th %ile 90th %ile 70th %ile Median	1,70 2009 -10 4338 2981 1855 1059 387 112	00–1,800 2014 3632 2589 1557 1088 349 123) kg 2016 3438 2368 1480 1013 329 117	1,80 2009 -10 4721 2654 1353 925 239 66.6	00–1,900 2014 4138 2273 1254 736 237 104) kg 2016 4197 1952 1243 724 245 114	1,90 2009 -10 4683 2517 1222 863 286 115	00–2,000 2014 5080 3133 1310 774 323 156) kg 2016 3213 2059 1249 819 339 158	2,00 2009 -10 4835 3562 2202 1317 513 195	00–2,100 2014 4062 2711 1463 1061 496 205 <i>Line</i>) kg 2016 4070 2634 1407 1094 546 221 ar trends	2,10 2009 -10 5086 2428 1399 998 506 177	00–2,200 2014 3495 2254 1255 998 410 191	0 kg 2016 4429 2050 1315 997 523 251	2,20 2009 -10 2937 2549 1807 1293 593 263	00–2,300 2014 3646 2293 1383 1017 576 268	0 kg 2016 3891 2481 1555 1115 560 290	2,30 2009 -10 2800 1924 1463 928 448 194	20–2,400 2014 3090 1695 1090 888 509 231	0 kg 2016 2460 1717 1243 1092 579 218	More 2009 -10 9022 2868 1941 1596 1152 741	than 2,4 2014 3672 2839 1847 1468 871 471	00 kg 2016 3188 2207 1530 1292 769 396
NO (ppm) Max 99th %ile 95th %ile 90th %ile 70th %ile Median 99th %ile	1,70 2009 -10 4338 2981 1855 1059 387 112 -3	00-1,800 2014 3632 2589 1557 1088 349 123 006.3129	kg 2016 3438 2368 1480 1013 329 117	1,80 2009 -10 4721 2654 1353 925 239 66.6	00–1,900 2014 4138 2273 1254 736 237 104 350.8743) kg 2016 4197 1952 1243 724 245 114 	1,90 2009 -10 4683 2517 1222 863 286 115 -2	00–2,000 2014 5080 3133 1310 774 323 156 29.1066	kg 2016 3213 2059 1249 819 339 158	2,00 2009 -10 4835 3562 2202 1317 513 195	00–2,100 2014 4062 2711 1463 1061 496 205 <i>Line</i> 64.1047	0 kg 2016 4070 2634 1407 1094 546 221 ar trends 73	2,10 2009 -10 5086 2428 1399 998 506 1777 5 -1	00–2,200 2014 3495 2254 1255 998 410 191 89.2320	kg 2016 4429 2050 1315 997 523 251	2,20 2009 -10 2937 2549 1807 1293 593 263	00–2,300 2014 3646 2293 1383 1017 576 268 34.0676	0 kg 2016 3891 2481 1555 1115 560 290 6	2,30 2009 -10 2800 1924 1463 928 448 194	00-2,400 2014 3090 1695 1090 888 509 231 03.4467	0 kg 2016 2460 1717 1243 1092 579 218 74	More 2009 -10 9022 2868 1941 1596 1152 741 -3	than 2,4 2014 3672 2839 1847 1468 871 471 30.7576	00 kg 2016 3188 2207 1530 1292 769 396
NO (ppm) Max 99th %ile 95th %ile 90th %ile 70th %ile Median 99th %ile 95th %ile	1,70 2009 -10 4338 2981 1855 1059 387 112 -3 -3	00–1,800 2014 3632 2589 1557 1088 349 123 006.3129 87.3488	kg 2016 3438 2368 1480 1013 329 117 32	1,80 2009 -10 4721 2654 1353 925 239 66.6 6 -3	00–1,900 2014 4138 2273 1254 736 237 104 350.8743 55.1059) kg 2016 4197 1952 1243 724 245 114 50 0	1,90 2009 -10 4683 2517 1222 863 286 115 -2 -2	00–2,000 2014 5080 3133 1310 774 323 156 229.1066 3.5094	kg 2016 3213 2059 1249 819 339 158 54	2,00 2009 -10 4835 3562 2202 1317 513 195 -2 -2 -2	2014 2014 4062 2711 1463 1061 496 205 <i>Line</i> 64.1047 397.6221	0 kg 2016 4070 2634 1407 1094 546 221 ar trends 73 8	2,10 2009 -10 5086 2428 1399 998 506 177 5 -1	00–2,200 2014 3495 2254 1255 998 410 191 89.2320 42.0059	kg 2016 4429 2050 1315 997 523 251 06 5	2,20 2009 -10 2937 2549 1807 1293 593 263 263	00–2,300 2014 3646 2293 1383 1017 576 268 34.0676 25.796	2016 3891 2481 1555 1115 560 290	2,30 2009 -10 2800 1924 1463 928 448 194 194	00–2,400 2014 3090 1695 1090 888 509 231 03.4467 10.0708	2 kg 2016 2460 1717 1243 1092 579 218 218 74	More 2009 -10 9022 2868 1941 1596 1152 741 -3 -3	than 2,4 2014 3672 2839 1847 1468 871 471 30.7576	00 kg 2016 3188 2207 1530 1292 769 396 396
NO (ppm) Max 99th %ile 95th %ile 90th %ile 70th %ile Median 99th %ile 95th %ile 90th %ile	1,70 2009 -10 4338 2981 1855 1059 387 112 -3 -1 -1	00-1,800 2014 3632 2589 1557 1088 349 123 06.3129 87.3488 22.9994	kg 2016 3438 2368 1480 1013 329 117 01 32 0	1,80 2009 -10 4721 2654 1353 925 239 66.6 -3 -4 -1	00–1,900 2014 4138 2273 1254 736 237 104 350.8743 55.1059 00.7702) kg 2016 4197 1952 1243 724 245 114 60 0 0 77	1,90 2009 -10 4683 2517 1222 863 286 115 286 115 -2 2 1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	00–2,000 2014 5080 3133 1310 774 323 156 229.1066 3.5094 22.3108	kg 2016 3213 2059 1249 819 339 158 64 5 3	2,00 2009 -10 4835 3562 2202 1317 513 195 -2 -3 -1	00–2,100 2014 4062 2711 1463 1061 496 205 <i>Line</i> 64.1047 397.6221 11.5887	0 kg 2016 4070 2634 1407 1094 546 221 ar trends 73 8 75	2,10 2009 -10 5086 2428 1399 998 506 1777 5 -1	00-2,200 2014 3495 2254 1255 998 410 191 89.2320 42.0059 0.52645	kg 2016 4429 2050 1315 997 523 251 06 5 5	2,20 2009 -10 2937 2549 1807 1293 593 263 263	00–2,300 2014 3646 2293 1383 1017 576 268 34.0676 25.7969 88.8809	0 kg 2016 3891 2481 1555 1115 560 290 6 0 5 0	2,30 2009 -10 2800 1924 1463 928 448 194 -1 -1 -1	20–2,400 2014 3090 1695 1090 888 509 231 03.4467 10.0708 32.10902	2 kg 2016 2460 1717 1243 1092 579 218 74 30 2	More 2009 -10 9022 2868 1941 1596 1152 741 -3 -2 -2 -1	than 2,4 2014 3672 2839 1847 1468 871 471 30.7576 05.7441 51.9259	00 kg 2016 3188 2207 1530 1292 769 396 396 5 5 0
NO (ppm) Max 99th %ile 95th %ile 90th %ile 70th %ile 99th %ile 95th %ile 90th %ile 70th %ile	1,70 2009 10 4338 2981 1855 1059 387 112 -3 -1 -1 -2 -2	00-1,800 2014 3632 2589 1557 1088 349 123 06.3129 87.3488 22.99940 29.0847	kg 2016 3438 2368 1480 1013 329 117 320 0 0 0	1,80 2009 -10 4721 2654 1353 925 239 66.6 -3 -3 -1	00–1,900 2014 4138 2273 1254 736 237 104 350.8743 55.1059 00.7702 3.19311	kg 2016 4197 1952 1243 724 245 114 30 0 27	1,90 2009 -10 4683 2517 1222 863 286 115 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	00–2,000 2014 5080 3133 1310 774 323 156 229.1066 3.5094 22.3108 26.3050	kg 2016 3213 2059 1249 819 339 158 64 5 5	2,00 2009 -10 4835 3562 2202 1317 513 195 -2 -2 -3 -1	00-2,100 2014 4062 2711 1463 1061 496 205 <i>Line</i> 64.1047 397.6221 11.5887 16.77224	0 kg 2016 4070 2634 1407 1094 546 221 ar trends 73 8 75 4	2,10 2009 -10 5086 2428 1399 998 506 1777 5 -1 -1 -1	00-2,200 2014 3495 2254 1255 998 410 191 89.2320 42.0059 0.52645 8.44204	kg 2016 4429 2050 1315 997 523 251 06 5 6 5 6 5 6	2,20 2009 -10 2937 2549 1807 1293 593 263 263	00-2,300 2014 3646 2293 1383 1017 576 268 34.0676 25.7969 88.8809 16.3791	2016 3891 2481 1555 1115 560 290 6 95 0 1	2,30 2009 -10 2800 1924 1463 928 448 194 -1 -1 -1 -1 -1	20–2,400 2014 3090 1695 1090 888 509 231 03.4467 10.0708 32.10902 55.83044	kg 2016 2460 1717 1243 1092 579 218 74 30 2 4	More 2009 -10 9022 2868 1941 1596 1152 741 -3 -2 -1 -1	than 2,4 2014 3672 2839 1847 1468 871 471 30.7576 05.7441 51.9259 91.5894	00 kg 2016 3188 2207 1530 1292 769 396 396 5 5 00 2

Table 22: NO emissions statistics by weight range

	Less	than 1,0	00 kg	1,00	00–1,100) kg	1,1()0–1,200) kg	1,20)0–1,30() kg	1,30	00–1,400) kg	1,40	00–1,500) kg	1,50	00–1,60) kg	1,60)0–1,70() kg
uvSmoke	2009 10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016
Max	2.52	1.23	0.55	1.32	0.69	0.81	3.85	0.58	0.55	1.47	1.26	2.91	1.46	2.11	1.22	1.20	0.86	1.80	1.65	1.00	1.85	2.48	1.54	2.90
99th %ile	0.52	0.42	0.40	0.30	0.25	0.20	0.37	0.29	0.24	0.38	0.24	0.27	0.40	0.27	0.26	0.32	0.31	0.27	0.31	0.25	0.22	0.36	0.32	0.35
95th %ile	0.29	0.26	0.23	0.15	0.12	0.08	0.21	0.13	0.07	0.20	0.12	0.09	0.20	0.15	0.13	0.19	0.15	0.14	0.16	0.14	0.12	0.17	0.15	0.14
90th %ile	0.21	0.17	0.17 0.13 0.09 0.06 0.0				0.13	0.05	0.05	0.13	0.06	0.05	0.14	0.08	0.06	0.14	0.08	0.08	0.11	0.07	0.06	0.11	0.08	0.09
70th %ile	0.07	0.04	0.04	0.03	0.03	0.02	0.03	0.03	0.02	0.04	0.02	0.02	0.04	0.03	0.02	0.04	0.03	0.03	0.04	0.03	0.02	0.04	0.03	0.03
Median	0.03	0.02	0.02	0.02	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.02	0.02	0.01	0.02	0.02	0.02
											Linea	ar trends	6			1			ſ					
99th %ile	-	0.05820)	-	0.04939		-	0.06306		-	0.05457	,	-	0.06985	5		-0.02381			-0.04370)	-	0.00368	3
95th %ile	-	0.03045	5	-	0.03591		-	0.06589		-	0.05120)	-	0.03913	3		-0.02228	3		-0.02000)	-	0.01301	
90th %ile	-	0.03543	3	-	0.02039		-	0.04218		-	0.04335	;	-	0.03906	6		-0.02807	,		-0.02407	7	-	0.01024	ŀ
70th %ile	-	0.01595	5	-	0.00474		-	0.00520		-	0.00860)	-	0.00893	3		-0.00615	5		-0.00756	6	-	0.00560)
Median	-	0.00798	3	-	0.00330		-	0.00320	1	-	0.00455	;	-	0.00418	3		-0.00378	3		-0.00480)	-	0.00375	5
	1,70	00–1,800) kg	1,80	00–1,900) kg	1,90	00–2,000) kg	2,00	00–2,100) kg	2,10	00–2,200) kg	2,20	00–2,300) kg	2,30	00–2,40) kg	More	than 2,4	00 kg
uvSmoke	2009 -10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016
Max	3.47	1.34	4.11	1.78	0.71	5.26	1.74	3.56	1.59	3.57	1.39	2.26	2.32	1.02	2.47	1.28	1.21	0.54	0.92	1.17	1.82	4.24	1.76	3.16
99th %ile	0.52	0.61	0.78	0.52	0.42	0.62	0.56	0.71	0.69	0.56	0.53	0.89	0.63	0.64	0.74	0.40	0.65	0.37	0.64	0.36	0.53	0.85	0.61	0.62
95th %ile	0.23	0.22	0.26	0.26	0.21	0.23	0.27	0.27	0.30	0.30	0.27	0.31	0.36	0.26	0.29	0.24	0.22	0.19	0.35	0.21	0.21	0.41	0.28	0.31
90th %ile	0.17	0.15	0.16	0.17	0.15	0.16	0.20	0.20	0.19	0.22	0.21	0.20	0.25	0.18	0.21	0.20	0.18	0.16	0.20	0.17	0.16	0.30	0.19	0.23
70th %ile	0.08	0.06	0.06	0.07	0.06	0.06	0.09	0.09	0.09	0.11	0.08	0.08	0.12	0.08	0.09	0.13	0.09	0.09	0.09	0.09	0.08	0.15	0.10	0.11
Median	0.03	0.03	0.03	0.03	0.02	0.02	0.05	0.04	0.04	0.05	0.04	0.04	0.06	0.04	0.06	0.07	0.06	0.05	0.06	0.06	0.06	0.10	0.07	0.06
											Line	ar trends	6											
99th %ile		0.13324			0.04929			0.06298			0.16580			0.05424			-0.01361			-0.05405	5	-	0.11522	2
95th %ile		0.01170		-	0.01773			0.01242			0.00533		-	0.03093	3	-	-0.02644	ļ		-0.06968	3	-	0.05274	<u>ا</u>
90th %ile	-	0.00654	ŀ	-	0.00644		-	0.00593		-	0.01229)	-	0.01740)		-0.02153	3		-0.01962	2	-	0.03646	6
70th %ile	-	0.00678	3	-	0.00454		-	0.00057		-	0.01161		-	0.01403	3		-0.02406	5		-0.00557	7	-	0.02343	3
Median	-	0.00290)	-	-0.00473		-	0.00665		-	0.00385		-	0.00423	3		-0.01060)		0.00205		-	0.01675	5

Table 23: uvSmoke emissions statistics by weight range

		1995			1996			1997			1998			1999			2000			2001			2002			2003			2004			2005	
CO (%)	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016
Maria	-10	4.00	40.5	-10	0.04	0.00	-10	5.00	0.70	-10	44.5	10.0	-10	0.00	0.07	-10	0.04	44.0	-10	10.0	40.5	-10	0.05	0.07	-10	0.00	44.0	-10	0.40	0.44	-10	40.0	7.45
Max	11.0	4.96	10.5	10.5	8.24	6.86	8.06	5.82	8.76	8.60	11.5	10.8	9.21	8.80	9.27	7.50	9.01	11.9	6.23	13.0	13.5	8.00	9.95	6.97	0.82	8.98	11.0	7.91	8.13	0.44	7.37	10.2	7.45
99(I1 %ile	7.09	3.74	4.95	0.73	2.00	3.70	5.74 2.24	3.74	0.1Z	4.04	0.70	2.80	3.54	4.12	3.15	4.00	4.04	0.91	4.33	2.33	0.00	2.94	5.49 1.72	4.33	2.01	2.03	3.30	2.03	2.11	2.90	2.53	0.01	2.10
90th %ile	3.65 2.12 2.82 1.98 1.29 0.94		2.05	1/18	1.63	2.34	1 33	1.04	1.12	2.10	2.00	2.09	1 30	1.93	1.00	1.00	0.08	0.83	1.09	0.84	0.79	1.73	0.83	0.61	0.75	0.60	0.95	0.67	0.65	0.70	0.60	0.66	
70th %ile	0.65	0.52	0.50	0.60	0.67	0.54	0.55	0.53	0.52	0.45	0.55	0.53	0.39	0.49	0.48	0.32	0.38	0.43	0.29	0.39	0.33	0.25	0.31	0.28	0.21	0.30	0.28	0.17	0.24	0.26	0.12	0.20	0.21
Median	0.33	0.34	0.29	0.31	0.38	0.33	0.28	0.32	0.32	0.21	0.25	0.25	0.17	0.26	0.22	0.14	0.19	0.23	0.13	0.15	0.18	0.10	0.15	0.15	0.08	0.13	0.13	0.05	0.09	0.11	0.04	0.08	0.08
															Lii	near tren	ds																
99th %ile	-	1.06758	3		0.01691			-0.30797	,		1.61044			0.80195			0.61367			0.63486			0.69171			0.28756	;		0.17815	5	-	0.18343	,
95th %ile		0.41227	7		0.47289	1		-0.24655	;		0.34117			-0.08187	,		-0.10843	}		0.02819			-0.01083	5		0.02258			0.05753	}		0.06282	
90th %ile	-	0.51961			-0.11218	3		-0.09687	,		0.20365			0.07696			-0.01492	2		0.00622			0.01723			-0.00584	1		0.04751			0.05832	
70th %ile	-	0.07528	3		-0.02978	3		-0.01464	ļ		0.04152			0.04472			0.05720			0.02153			0.01465			0.03442	!		0.04590)		0.04763	
Median		0.01848	3		0.01098			0.02383			0.01930			0.02375			0.04545			0.02768			0.02413			0.02425			0.03043	3		0.02010	
		2006			2007	-		2008			2009			2010			2011			2012			2013			2014	-		2015	-		2016	
CO (%)	2009 -10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016
Max	8.64	4.79	6.11	6.63	5.71	5.44	4.39	4.87	9.87	3.86	5.95	3.77	4.71	4.20	6.93		9.48	4.70		3.29	4.03		4.96	3.22		4.36	2.24			1.71			3.82
99th %ile	1.17	1.31	1.44	1.29	1.41	1.07	0.93	1.37	1.30	0.78	1.35	1.58	0.57	1.87	1.57		0.90	0.93		0.81	1.01		0.95	0.94		0.60	0.77			0.66			0.74
95th %ile	0.43	0.60	0.54	0.35	0.50	0.58	0.25	0.44	0.47	0.24	0.44	0.63	0.19	0.48	0.55		0.40	0.39		0.32	0.42		0.25	0.43		0.18	0.24			0.21			0.27
90th %ile	0.22	0.34	0.35	0.16	0.29	0.33	0.13	0.30	0.28	0.10	0.25	0.37	0.09	0.27	0.29		0.22	0.22		0.18	0.23		0.15	0.23		0.09	0.13			0.10			0.14
70th %ile	0.04	0.09	0.11	0.04	0.07	0.06	0.03	0.06	0.06	0.03	0.06	0.08	0.02	0.05	0.07		0.04	0.05		0.04	0.05		0.03	0.04		0.02	0.03			0.02			0.02
Median	0.02	0.03	0.04	0.01	0.03	0.02	0.01	0.02	0.02	0.01	0.02	0.02	0.01	0.02	0.02		0.02	0.02		0.02	0.02		0.01	0.01		0.01	0.01			0.01			0.01
	1												1		Liı	near tren	ds					1			1								
99th %ile		0.13286			-0.10804	1		0.18462			0.39978			0.49907			0.03396			0.20008			-0.01342	2		0.16906	;						
95th %ile		0.05781			0.11610)	-	0.10981			0.19318			0.18039			-0.00821			0.09793			0.17964			0.06199)						
90th %ile		0.06096			0.08209	1		0.07657			0.13077			0.09797			-0.00083	}		0.05190			0.08280			0.03824							
70th %ile		0.03468			0.01384			0.01545			0.02831			0.02171			0.00933			0.00292			0.00866			0.00850	1						
Median		0.01030			0.00488			0.00508			0.00740			0.00620			0.00040			-0.00080)		0.00055			0.00125	1						

Table 24: CO emissions statistics by year of manufacture – petrol vehicles

		1995			1996			1997			1998			1999			2000			2001			2002			2003			2004			2005	
HC (ppm)	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016
Maria	-10	000	4055	-10	00.14		-10	0744	0554	-10		0000	-10	4050	0700	-10	0455	4570	-10	4554	4004	-10		0010	-10	0004	0444	-10	4400	000	-10	7000	4547
	8550	966	1855	11732	2241	33977	4413	9741	3554	4530	40270	3223	5429	1352	8792	3123	2455	1579	6589	1554	1294	19228	12576	3812	5084	2834	3414	6246	1180	980	3792	7293	1517
99th %ile	1580	849	1126	1959	1816	2662	1648	1263	879	1504	2666	871	977	1042	657	1218	898	1014	748	1157	1009	820	1671	594	694	662	684	613	528	520	419	491	479
95th %ile	///	623	678	623	906	766	668	703	472	550	/12	559	461	480	460	462	513	452	384	518	413	349	448	359	290	300	333	221	250	260	164	201	213
90th %ile	564 538		4/2	479	503	537	461	417	379	385	464	408	321	351	354	318	379	298	263	310	296	242	280	270	189	208	217	122	160	144	93.1	111	121
70th %ile	272 250		210	209	240	245	230	212	217	161	189	201	109	168	165	115	140	145	84.2	103	96.5	63.2	84.6	88.9	44.8	67.3	65.6	33.1	39.6	46.4	25.6	36.3	35.0
Median	150	128	84.3	110	129	137	99.2	124	124	72.5	81.3	92.3	41.6	66.2	63.9	35.6	56.6	70.1	29.1	41.5	40.6	23.7	35.7	31.7	15.1	25.6	22.6	11.7	14.6	16.9	7.83	12.0	11.0
															Lir	near tren	ds																
99th %ile	-2	27.1675	54	3	51.3371	3	-3	384.4009	8	-3	16.6959	3	-1	59.8941	5	- ^	101.7753	5	1	30.5667	4	-1	12.8001	0		-5.23519)		46.5986	1	3	0.33986	
95th %ile	-4	49.8908	9	-	71.38813	3	-	98.08998	3		4.11711		-	-0.38483			-4.70167			14.43022	2		4.73026			21.95068	3	-	19.83928	8	2	4.13456	
90th %ile		46.1979	4	2	28.96445	5	-	41.04112	2		11.30435	5	-	16.50079)		-9.55020			16.39603	3		13.74293	8		14.40759	9	,	11.02857	•	1	4.17342	
70th %ile	-:	30.6248	4	-	18.25222	2		-6.28141			19.83090)	2	27.76917	•		14.63928	8		6.16584			12.82230)		10.37982	2		6.66252			4.70565	
Median	-:	32.8818	5		13.78280)		12.31715	5		9.88758		-	11.12955	5		17.22820)		5.74343			3.98483			3.76535			2.61140			1.59690	
		2006	1		2007			2008			2009			2010			2011			2012			2013			2014			2015			2016	
HC (ppm)	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016
Max	5779	1787	489	4722	496	1731	1082	22962	4672	950	2641	744	909	958	1300		3170	2607		1584	907		1478	965		373	488			900			237
99th %ile	355	388	226	295	239	360	209	345	239	255	250	308	139	342	322		268	262		204	164		260	188		183	153			224			198
95th %ile	81.2	115	105	71.0	103	110	59.8	93.7	77.5	53.1	95.3	106	48.6	88.9	77.1		75.6	74.7		75.0	67.0		58.8	55.8		43.3	41.3			39.1			105
90th %ile	43.3	69.4	67.4	37.3	58.2	54.4	33.6	52.3	46.4	30.7	49.6	56.5	25.3	51.9	49.1		43.7	44.7		44.5	41.9		34.9	36.1		27.7	23.7			18.9			27.1
70th %ile	12.3	18.6	20.4	9.38	14.5	17.1	9.67	15.1	16.6	7.24	16.4	18.4	5.48	15.2	13.9		10.3	11.2		12.1	10.8		7.70	7.7		2.55	3.32			1.34			3.61
Median	1.07	3.62	4.07	-0.89	1.53	3.26	-0.93	1.75	1.86	-2.38	2.26	3.37	-2.89	0.89	1.76		-1.61	0.22		0.12	-0.27		-3.04	-3.01		-7.80	-5.36			-6.81			-6.77
															Lir	near tren	ds																
99th %ile	-(64.4461	8	:	32.53875	5		15.08052	2	2	26.30667	7	ç	91.48196	5		-5.74895		-	40.2809	7	-	72.19586	6	_	29.1017	1						
95th %ile	1	1.69548	8		19.51464	1		8.87316		2	26.34681			14.25801			-0.95199			-7.95611			-3.00222			-2.06304	Ļ						
90th %ile	12.05348 8.546			8.54674			6.39063			12.87284	1		11.85767	,		1.03559			-2.53496	5		1.13059			-4.00425	5							
70th %ile	4.07632 3.86801					3.48388			5.56632			4.23300			0.89571			-1.29644	ļ		-0.02700			0.76315									
Median		1.50460)		2.07360			1.39645			2.87515			2.32640			1.83425			-0.38780)		0.02960			2.44055							

Table 25: HC emissions statistics by year of manufacture – petrol vehicles

		1995			1996			1997			1998			1999			2000			2001			2002			2003			2004			2005	
NO (ppm)	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016
	-10	10 - 0		-10			-10			-10			-10			-10			-10			-10			-10			-10			-10		
Max	4965	4359	3047	6987	4193	3854	5428	3245	4570	4573	5035	3604	5256	3869	3625	4584	4445	4748	5003	5080	5142	41/4	3486	4527	3960	3430	5037	3037	5232	3697	4336	2797	4817
99th %ile	3569	3405	2687	3704	3880	3402	3506	3084	3708	3579	3482	3052	3428	3628	3108	3527	3176	3719	3586	3533	3612	3117	2610	3137	2831	2751	2967	2126	2309	2466	2011	1850	2524
95th %ile	2858 2690 2125 2304 2548 1772			2805	2445	2702	2769	2513	3014	2///	2759	2546	2236	2591	2380	2479	2408	2675	2372	2284	2413	1944	2147	2143	1590	1678	1836	1159	1427	1331	860	1046	1265
90th %ile	2304	2548	1772	2306	1998	2471	2248	2168	2323	2189	2110	1943	1771	2117	1929	1928	1764	1968	1/16	1756	1859	1222	1/0/	1482	989	1083	11/1	648	820	928	479	658	833
70th %lle	1254	1508	1162	1117	1265	1504	1139	1283	1298	944	1002	1036	636	1009	808	636	640	875	549	589	112	387	569	581	302	398	413	146	246	294	102	217	246
Median	/1/	1034	701	624	834	883	603	692	785	458	447	548	292	402	406	238	298	392	209	241	321	133	239	217	103	158	183	49.8	90.1	114	35.8	76.5	87.2
													[Li	near tren	ds		1													/	
99th %ile	-4	40.9296	50	-1	150.8974	1	1	101.1712	4	-2	263.6823	5	-^	159.8473	39		96.3852			12.9221	(9.64970		ť	67.8508	(1	70.1795	1	2	56.8204	6
95th %ile	-3	366.3602	27	-	-51.30993	3	1	122.4106	5	-^	15.4049	5		72.01668	3		97.94570)		20.93477	7	!	99.23738	3	1	22.7841	5	1	86.11572	2	2	02.6479	2
90th %ile	-2	266.2864	15	1	82.60215	5	:	37.69695	5	-1	23.0734	0		79.02015	5		19.69980)		71.60805	5	1	29.7232	5	ę	91.09587	7	1	39.8827	9	1	76.6190	3
70th %ile		46.2502	5	1	93.6922	0		79.70115	5		45.97201			86.32944	1	1	19.5497	7	1	111.3355	0		96.56185	5	Ę	55.6218	5		73.92666	6	7	2.03598	3
Median		-8.05125	5	1	29.4947	0		90.91600)		45.01475	5		56.83195	5		76.78290)		55.82868	3		41.77863	3	:	39.71390)		31.95420)	2	25.6826	<u>ز</u>
		2006	-		2007	1		2008			2009			2010			2011			2012			2013			2014			2015	1		2016	
NO (ppm)	2009 -10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 10	2014	2016	2009 10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016
Max	3386	3243	2263	4420	3047	2460	2985	3253	2728	3175	2509	2148	2988	4556	3866		2602	4055		1555	2688		1343	1460		3884	2765			2421			3128
99th %ile	1477	1563	1591	1223	1646	1704	1118	1435	1146	930	1179	1020	871	1225	938		1098	1059		796	873		889	671		737	1158			1010			584
95th %ile	460	683	624	348	498	481	255	480	425	200	458	395	210	397	440		392	370		259	270		278	210		200	178			187			112
90th %ile	192	341	310	166	255	282	120	262	230	97.6	245	239	93.5	222	231		177	181		148	156		144	122		112	90.3			92.3			83.7
70th %ile	51.1	84.7	91.5	40.1	67.8	72.1	33.8	69.0	63.8	31.3	64.3	63.3	27.0	58.0	58.5		46.7	53.3		41.5	43.8		37.9	38.6		37.4	31.2			31.3			33.9
Median	17.3	30.7	37.1	11.7	23.2	25.5	11.0	27.3	24.5	10.8	22.1	19.9	8.25	21.4	20.0		19.9	19.7		13.6	13.3		13.1	10.7		13.5	9.53			9.90			15.1
															Li	near tren	ds																
99th %ile	Ę	57.04801	1	2	240.5458	0		13.98034	1		14.85380)		33.35216	6	-	38.8848	9		76.99024	1	-2	217.4531	2	4	21.0394	1						
95th %ile	8	32.35527	7		66.22044	1		84.75544	1		97.51031		1	15.1583	3	-	21.9495	1		10.79759)	-	67.30132	2	-:	21.7738	6						
90th %ile	Ę	58.74185	5		58.03392	2	:	55.21206	6	-	70.64111			68.92386	6		3.96925			7.92422		-	22.19436	6	-	21.5401	8						
70th %ile	2	20.23769 16.00728			3		15.00780)		16.01825	;		15.72671	1		6.62756			2.28476			0.66403			-6.25375	5							
Median		9.88958			6.88038			6.76608			4.54060			5.86455			-0.17470)		-0.28550)		-2.38055			-3.92570)						

Table 26: NO emissions statistics by year of manufacture – petrol vehicles

		1995			1996			1997			1998			1999			2000			2001			2002			2003			2004			2005	
uvSmoke	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016	2009	2014	2016
Max	-10	0.36	0.55	-10	0.60	2 01	-10 1 20	1 09	1 22	-10	1 23	0.37	-10 2.41	0.83	0.60	-10	0.51	0.50	-10	0.51	0.36	-10 1 13	0.71	1 30	-10	0.32	0.48	-10 1 23	0.41	1 1 1	-10	0 34	1 01
99th %ile	0.30	0.30	0.33	0.53	0.00	0.58	0.51	0.28	0.49	0.00	0.33	0.37	0.29	0.00	0.00	0.30	0.31	0.30	0.73	0.37	0.30	0.24	0.71	0.23	0.19	0.32	0.40	0.16	0.41	0.23	0.73	0.34	0.19
95th %ile	0.00	0.20	0.37	0.33	0.30	0.30	0.24	0.20	0.43	0.00	0.33	0.20	0.20	0.23	0.04	0.00	0.00	0.27	0.24	0.02	0.00	0.24	0.20	0.20	0.13	0.21	0.20	0.10	0.20	0.20	0.14	0.17	0.13
90th %ile	0.23 0.20 0.23 0.24 0.24 0 0.19 0.15 0.16 0.18 0.18 0 0			0.22	0.24	0.20	0.25	0.22	0.22	0.10	0.10	0.22	0.10	0.13	0.10	0.10	0.10	0.10	0.10	0.13	0.17	0.10	0.12	0.08	0.13	0.07	0.00	0.05	0.07	0.07	0.07		
70th %ile	0.10	0.07	0.07	0.08	0.08	0.11	0.09	0.07	0.06	0.07	0.06	0.06	0.05	0.06	0.05	0.05	0.04	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.03	0.03	0.03	0.03	0.02	0.03	0.03	0.02	0.02
Median	0.05	0.04	0.03	0.04	0.04	0.05	0.04	0.04	0.03	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.02	0.03	0.03	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01
						1								1	Lii	near tren	ds		1											1			
99th %ile		0.02315			0.02494	Ļ		-0.01174	Ļ		-0.04945			0.02575			-0.01357	,		0.03009	1		-0.00504	ŀ		0.03270)		0.03418	;		0.02192	
95th %ile	-	0.00277	,		0.03548	5		-0.00307	,		-0.02887			0.00117			-0.00381			-0.00002	2	-	0.00201			0.00411			0.01073	5		0.00024	
90th %ile	-	0.01796	5		0.01616	;		-0.01350)		-0.01658			-0.00255	5		0.00103			0.00251		-	0.00448	3		0.00497	•		0.00340)		0.00198	3
70th %ile	-	0.01746	5		0.01638	;		-0.01118	3		-0.00313			0.00115			-0.00125	5		-0.00270)	-	0.00168	3		-0.00167	7		-0.00095	5		0.00220)
Median	-	0.01110)		0.00293	5		-0.00450)		-0.00168			-0.00032	2		0.00020			-0.00068	3	-	0.00075	5		-0.00215	5		-0.00113	3		0.0016	5
		2006			2007			2008			2009			2010			2011			2012			2013			2014			2015			2016	
uvSmoke	2009 -10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016	2009 10	2014	2016	2009 10	2014	2016	2009 -10	2014	2016	2009 10	2014	2016									
Max	0.59	0.57	0.39	1.47	0.88	1.13	0.22	1.32	0.79	0.29	0.28	0.27	0.27	0.36	0.52		0.39	0.66		0.29	0.21		0.42	0.37		0.25	0.31			0.39			0.10
99th %ile	0.11	0.13	0.12	0.11	0.13	0.14	0.09	0.13	0.08	0.10	0.12	0.09	0.10	0.13	0.09		0.11	0.08		0.10	0.07		0.14	0.07		0.08	0.10			0.08			0.07
95th %ile	0.06	0.05	0.05	0.06	0.05	0.05	0.05	0.05	0.05	0.06	0.05	0.04	0.05	0.05	0.05		0.05	0.04		0.05	0.04		0.05	0.04		0.05	0.04			0.04			0.04
90th %ile	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.03		0.03	0.03		0.04	0.03		0.04	0.03		0.03	0.03			0.03			0.03
70th %ile	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02		0.02	0.02		0.02	0.02		0.02	0.02		0.02	0.02			0.02			0.02
Median	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		0.01	0.01		0.01	0.01		0.01	0.01		0.01	0.01			0.01			0.01
							•								Lii	near tren	ds								•								
99th %ile		0.00124			0.01375	;		-0.00611			-0.00623			-0.00204	L .		-0.03119			-0.02329)	-	0.06368	3		0.02294							
95th %ile	-	0.00240)		-0.00455	5		-0.00415	6		-0.00643			-0.00247	1		-0.00168	}		-0.00779)		0.00271			-0.00503	3						
90th %ile	-	-0.00308 -0.00286			6		-0.00263	5		-0.00444			-0.00217	,		-0.00078	}		-0.00356	6		0.00410)		-0.00249)							
70th %ile		0.00309)		-0.00189)		-0.00340)		-0.00260			-0.00224	ļ		-0.00017	•		-0.00088	3		0.00030)		-0.00046	6		_				
Median	-	0.00200)		-0.00163	3		-0.00270			-0.00205			-0.00170)		0.00050			-0.00150)		0.00080)		0.00055							

Table 27: Smoke emissions statistics by year of manufacture – petrol vehicles

		2004			2005			2006			2007			2008			2009			2010	
CO (%)	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016
Max	1.363	0.624	0.233	0.845	1.451	0.471	1.456	0.470	0.722	0.540	1.234	0.704	1.430	1.122	0.857	0.875	1.592	0.756	0.595	1.782	0.439
99th %ile	0.398	0.193	0.115	0.263	0.343	0.374	0.471	0.217	0.276	0.261	0.577	0.233	0.272	0.303	0.147	0.373	0.348	0.184	0.228	0.585	0.154
95th %ile	0.118	0.151	0.064	0.133	0.133	0.136	0.116	0.116	0.111	0.110	0.073	0.088	0.095	0.068	0.054	0.084	0.072	0.088	0.052	0.067	0.057
90th %ile	0.075	0.095	0.045	0.070	0.072	0.070	0.072	0.050	0.057	0.061	0.042	0.041	0.045	0.042	0.028	0.033	0.039	0.050	0.026	0.029	0.026
70th %ile	0.032	0.028	0.016	0.030	0.033	0.028	0.028	0.024	0.017	0.014	0.012	0.009	0.008	0.012	0.007	0.008	0.011	0.008	0.007	0.012	0.007
Median	0.016	0.017	0.010	0.014	0.013	0.015	0.011	0.010	0.009	0.004	0.004	0.002	0.003	0.004	0.002	0.002	0.005	0.002	0.002	0.004	0.002
										Linear tr	rends										
99th %ile		-0.14161			0.05537			-0.09744			-0.01438			-0.06269			-0.09442			-0.03708	
95th %ile		-0.02680			0.00120			-0.00259			-0.01135			-0.02070			0.00202			0.00256	
90th %ile		-0.01504			0.00002			-0.00756			-0.01000			-0.00830			0.00839			-0.00006	
70th %ile		-0.00801			-0.00111			-0.00544			-0.00262			-0.00050			-0.00026			0.00008	
Median		-0.00343			0.00045			-0.00113			-0.00103			-0.00060			-0.00015			0.00015	
		2011			2012			2013			2014			2015			2016				
CO (%)	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016			
Max		5.139	0.974		0.792	1.410		2.324	1.430		1.782	0.743			0.717			0.337			
99th %ile		0.160	0.327		0.224	0.410		0.358	0.208		0.144	0.199			0.082			0.186			
95th %ile		0.053	0.039		0.060	0.047		0.069	0.036		0.041	0.032			0.032			0.065			
90th %ile		0.024	0.019		0.025	0.021		0.028	0.022		0.019	0.016			0.017			0.011			
70th %ile		0.010	0.007		0.009	0.007		0.008	0.008		0.007	0.006			0.007			0.006			
Median		0.003	0.001		0.004	0.002		0.003	0.002		0.002	0.001			0.002			0.003			
							ſ			Linear t	rends										
99th %ile		0.16675			0.18672			-0.14997			0.05441										
95th %ile		-0.01406			-0.01274			-0.03256			-0.00832										
90th %ile		-0.00524			-0.00380			-0.00599			-0.00371										
70th %ile	-0.00318 -0.0025							-0.00020			-0.00132										
Median		-0.00190			-0.00190			-0.00110			-0.00090										

 Table 28: CO emissions statistics by year of manufacture – diesel vehicles

ЦС	2004			2005		2006				2007			2008		2009			2010			
(ppm)	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016
Max	2552	566	1542	929	561	352	1031	350	1064	1011	406	5099	3643	344	1128	2891	443	845	1846	533	369
99th %ile	394	290	258	338	450	298	438	287	188	288	341	480	325	220	209	233	164	420	335	250	132
95th %ile	213	170	143	157	194	168	189	144	121	153	117	97.1	110	100	106	109	118	130	109	103	81.4
90th %ile	162	114	90.1	125	127	124	121	94.5	93.7	92.9	86.5	75.4	71.4	64.8	73.9	76.5	75.6	74.5	73.7	75.0	53.9
70th %ile	69.2	51.0	48.7	62.1	57.4	57.7	59.5	53.2	50.7	42.9	45.1	39.0	36.3	37.2	37.2	39.8	34.5	33.7	38.7	33.9	30.7
Median	42.7	32.3	28.4	34.8	35.9	36.1	37.8	29.9	32.7	24.9	23.0	20.8	21.0	21.0	19.0	22.0	15.7	14.5	20.9	16.0	16.8
				•			-			Linear t	rends		-			-					
99th %ile	-67.99786 -19.70252			2	-	124.6596	3		95.85071		-58.05789			93.47916			-101.50622				
95th %ile	-34.97376 5.33058				-33.93960				-28.11849			-1.80225			10.40901			-13.55636			
90th %ile	-	-36.03888 -0.58483			-13.40634			-8.76942			1.23287			-0.98499			-9.90310				
70th %ile	-10.27288 -2.2		-2.20139		-4.37843				-1.95659			0.46416			-3.03018			-3.99526			
Median	-7.11638			0.65375		-2.52220		-2.04853			-1.02953			-3.75250			-2.01290				
нс		2011		2012		2013		2014		2015			2016								
(ppm)	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016			
Max		3285	302		566	692		580	342		641	502			7306			121			
99th %ile		268	181		264	193		198	197		275	192			162			101			
95th %ile		97.2	84.0		110	93.1		96.8	90.0		100	100			78.9			59.0			
90th %ile		70.0	57.2		67.5	58.5		65.5	66.0		70.8	54.9			54.4			46.7			
70th %ile		26.5	25.3		33.3	28.8		32.2	26.9		33.0	25.9			25.2			18.8			
Median		14.3	13.9		17.6	13.4		17.2	12.8		17.4	13.7			13.0			7.67			
										Linear t	rends										
99th %ile	-86.67581 -71.05981					-0.26663		-	82.98693	}											
95th %ile	-13.15893 -16.61057		7		-6.78000			0.15553													
90th %ile		12.77762			-8.96402			0.46779			15.81530)									
70th %ile		-1.21304			-4.58370			-5.28686			-7.07591										
Median	-0.47440 -4.17840					-4.41040			-3.75885												

Table 29: HC emissions statistics by year of manufacture – diesel vehicles

		2004			2005			2006			2007			2008			2009		2010		
(ppm)	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016
Max	2979	3646	2910	2482	3009	2387	3715	3632	2997	3085	2943	3172	2514	3117	2942	3871	2755	2259	2912	3076	2505
99th %ile	2378	2126	2683	2068	2481	1988	2419	2479	2200	2516	2408	2454	1826	1633	2211	1586	2058	1673	1758	1767	1981
95th %ile	1611	1777	1851	1426	1681	1590	1748	1464	1612	1448	1338	1379	1178	1128	1450	1048	1181	1299	971	1416	1465
90th %ile	1334	1462	1309	1239	1298	1297	1357	1236	1226	1105	979	1036	933	945	1232	802	963	1001	767	1012	1254
70th %ile	699	789	851	695	707	882	680	704	709	467	514	550	414	492	555	344	443	538	334	502	601
Median	458	431	513	437	425	502	400	437	462	231	276	298	195	305	256	183	260	292	177	264	275
										Linear ti	rends										
99th %ile	152.36106		39.91085	5	-	109.6684 ⁻	7	-	30.97972	2		92.7134	1	43.30684			111.44387				
95th %ile	120.28203 82.04152		2	-67.85920			-	-34.11605			135.85920			125.78840			247.04967				
90th %ile	-	12.73915	5		28.67465	;	-	65.44275	5	-	34.58410)		49.2773	9		99.23451		2	243.54420)
70th %ile	75.81913			93.63754			14.08527			41.19963			70.50906	j		97.05995		1	33.58280)	
Median	27.36080		32.35460		30.79043		33.35085				30.18015			54.24340			49.11988				
NO		2011			2012		2013		2014		2015			2016							
(ppm)	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016			
Max		4138	3213		2461	2374		1693	2179		2174	2415			3736			2653			
99th %ile		1694	1563		1711	1543		1466	1669		1584	1593			1604			2179			
95th %ile		1157	1286		1159	1273		1096	1236		1115	1181			1119			1213			
90th %ile		859	1061		829	962		875	987		868	916			894			1054			
70th %ile		431	486		412	468		425	465		439	459			384			504			
Median		234	256		235	228		219	241		221	223			217			234			
										Linear t	rends										
99th %ile	-130.70798 -167.19778			8	2	203.70302	2		8.76612												
95th %ile	1	28.88170)	1	14.27000	C	1	40.45640)		66.39875										
90th %ile	2	202.13016	6	1	33.46092	2	1	12.49903	3		48.79291										
70th %ile		54.85326			56.42872			40.56007			19.80604										
Median	21.64940				-7.34050			22.73785		2.37165											

Table 30: NO emissions statistics by year of manufacture – diesel vehicles

		2004			2005			2006			2007			2008			2009			2010	
uvSmoke	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016
Max	2.32	1.03	5.26	0.96	2.11	1.22	1.78	1.76	0.82	2.43	1.17	0.82	0.78	0.81	0.90	1.48	0.92	4.11	0.96	1.34	2.32
99th %ile	0.93	0.98	1.31	0.57	0.89	0.79	0.61	0.67	0.64	0.48	0.79	0.47	0.45	0.48	0.66	0.51	0.65	0.88	0.51	0.53	0.93
95th %ile	0.37	0.34	0.39	0.32	0.46	0.47	0.38	0.36	0.36	0.28	0.27	0.30	0.22	0.26	0.33	0.25	0.28	0.31	0.24	0.23	0.37
90th %ile	0.29	0.23	0.25	0.26	0.27	0.30	0.28	0.23	0.28	0.21	0.21	0.25	0.18	0.16	0.25	0.18	0.17	0.22	0.18	0.16	0.29
70th %ile	0.17	0.14	0.15	0.16	0.15	0.16	0.15	0.13	0.16	0.11	0.11	0.12	0.10	0.09	0.12	0.10	0.09	0.10	0.11	0.09	0.17
Median	0.12	0.10	0.11	0.11	0.10	0.11	0.11	0.10	0.10	0.08	0.06	0.07	0.07	0.06	0.07	0.07	0.05	0.07	0.07	0.06	0.12
										Linear ti	rends										
99th %ile	0.19078 0.11207					0.01481			-0.00654			0.10646			0.18465		-0.08451				
95th %ile	0.00931 0.07223					-0.01108			0.00902			0.05444			0.02851		0.00489				
90th %ile		-0.01808			0.02009			0.00067			0.01823			0.03455			0.01664			-0.00022	
70th %ile	-0.01161 -0.00153			0.00091				0.00404			0.00727			-0.00063			-0.00406				
Median		-0.00873			-0.00007		-0.00160			-0.00213				0.00228			-0.00255			-0.00210	
		2011			2012		2013			2014				2015		2016			-		
uvSmoke	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016	2009– 10	2014	2016			
Max		0.86	1.59		1.39	1.82		1.15	0.82		1.21	1.81			0.56			0.57			
99th %ile		0.34	0.64		0.60	0.93		0.63	0.55		0.58	0.88			0.38			0.53			
95th %ile		0.21	0.27		0.29	0.28		0.31	0.29		0.32	0.29			0.19			0.23	-		
90th %ile		0.16	0.17		0.20	0.18		0.19	0.19		0.19	0.18			0.13			0.15	-		
70th %ile		0.08	0.09		0.10	0.09		0.09	0.09		0.09	0.09			0.07			0.06	-		
Median		0.05	0.06		0.06	0.06		0.06	0.05		0.06	0.05			0.04			0.03			
				I						Linear t	rends										
99th %ile	0.29706 0.32804					-0.08126			0.29942								-				
95th %ile		0.06784			-0.01615			-0.01397			-0.03378								-		
90th %ile		0.00654			-0.01262			0.00352			-0.00893										
70th %ile		0.00620			-0.00958			-0.00084			-0.00177										
Median	0.01160				-0.00410			-0.00680		-0.00885											

Table 31: Smoke emissions statistics by year of manufacture – diesel vehicles

Emission	No. au	Medi	an CO Cha	nge	Medi	an HC Chai	nge	Media	an NO Cha	nge	Median Smoke Change			
Standard	rear	2009-10	2014	2016	2009-10	2014	2016	2009-10	2014	2016	2009–10	2014	2016	
A DD27/00	1994–1995	0.67%	27.51%	9.64%	0.44%	36.00%	47.98%	9.37%	5.88%	23.00%	7.93%	55.98%	29.51%	
ADK37/00	1995–1996	4.57%	-10.29%	-15.15%	26.98%	-1.20%	-62.71%	12.96%	19.28%	-26.00%	21.62%	-12.89%	-58.82%	
	1996–1997	11.44%	15.04%	2.99%	9.41%	3.92%	9.66%	3.35%	17.10%	11.11%	-2.12%	9.55%	30.50%	
	1997–1998	24.69%	22.33%	23.85%	26.90%	34.65%	25.48%	23.99%	35.41%	30.13%	11.86%	11.11%	-2.51%	
	1998–1999	17.77%	-5.33%	11.39%	42.60%	18.62%	30.79%	36.30%	10.14%	26.03%	19.28%	12.50%	13.00%	
ADR37/01	1999–2000	17.46%	28.51%	-6.17%	14.40%	14.49%	-9.70%	18.33%	25.70%	3.36%	7.22%	16.93%	3.69%	
	2000–2001	10.90%	17.74%	21.94%	18.24%	26.61%	42.04%	12.26%	19.14%	18.15%	2.22%	-2.34%	8.58%	
	2001–2002	21.92%	4.89%	19.14%	18.59%	13.91%	21.99%	36.22%	0.74%	32.38%	11.74%	19.50%	12.97%	
	2002–2003	18.51%	9.73%	12.25%	36.43%	28.51%	28.66%	22.72%	34.13%	15.87%	8.15%	11.34%	21.56%	
Euro 2	2003-2004	34.52%	28.91%	11.90%	22.44%	42.82%	25.17%	51.75%	42.87%	37.74%	19.39%	12.79%	12.28%	
ADR79/00	2004–2005	18.78%	15.42%	26.92%	33.04%	18.00%	34.83%	27.95%	15.13%	23.27%	8.41%	5.33%	16.67%	
Euro 2	2005-2006	64.67%	59.75%	56.94%	86.40%	69.83%	63.05%	51.70%	59.78%	57.47%	11.39%	22.89%	20.00%	
	2006–2007	16.94%	21.16%	37.59%	B/D	57.70%	20.01%	32.23%	24.50%	31.27%	-2.86%	5.02%	-11.50%	
ADRISIUI	2007-2008	3.20%	8.55%	0.00%	B/D	-14.64%	42.99%	6.67%	-17.60%	3.97%	-6.25%	-4.81%	11.21%	
	2008-2009	16.53%	-3.04%	-11.91%	B/D	-28.91%	-81.49%	1.37%	18.97%	18.79%	9.15%	5.50%	1.01%	
Euro 4	2009–2010	8.91%	24.47%	13.25%	B/D	60.74%	47.70%	23.59%	3.39%	-0.50%	5.76%	-3.88%	1.02%	
	2010–2011		10.06%	23.61%		B/D	87.54%		7.06%	1.45%		5.14%	-9.79%	
ADRISIUZ	2011–2012		0.00%	7.27%		B/D	B/D		31.42%	32.26%		-4.43%	14.55%	
	2012-2013		27.33%	19.93%		B/D	B/D		4.09%	19.89%		2.83%	-4.40%	
Euro E	2013-2014		26.50%	19.59%		B/D	B/D		-2.97%	10.83%		12.62%	-0.53%	
	2014–2015			16.24%			B/D			-3.93%			17.28%	
ADRISIUS	2015-2016			1.21%			B/D			-52.76%			-21.52%	
Seelo	Increase	Stable	Decrease											
Scale	-100.00%	0.00%	100.00%										I	
B/D = Mec	lian sample i	below detec	tion limit (le	ss than ze	ero)								I	

Figure	15: Median	year-to-year	emission	reduction	per yeai	r of manufa	acture –
petrol							

Emission	Veer	Medi	an CO Cha	nge	Medi	an HC Cha	ange	Media	an NO Cha	nge	Median	Smoke C	hange
Standard	rear	2009–10	2014	2016	2009-10	2014	2016	2009–10	2014	2016	2009–10	2014	2016
Euro 2	2003–2004	1.95%	-1.83%	21.67%	-1.59%	8.10%	28.04%	0.79%	12.04%	-8.92%	0.40%	-1.56%	27.20%
ADR79/00	2004-2005	23.84%	28.74%	-53.72%	19.41%	-9.81%	-24.55%	5.21%	7.82%	7.43%	10.31%	11.96%	-10.01%
	2005–2006	22.61%	23.53%	41.18%	-4.31%	15.68%	6.83%	19.90%	-3.35%	2.00%	0.18%	0.31%	10.23%
	2006-2007	59.55%	59.34%	88.82%	29.81%	24.17%	43.52%	35.84%	43.81%	39.03%	29.50%	36.12%	25.63%
	2007-2008	44.44%	-9.46%	-15.79%	13.48%	6.85%	0.38%	18.23%	-11.36%	11.15%	8.42%	-4.77%	1.17%
Euro 4	2008-2009	25.00%	9.88%	-18.18%	-5.39%	27.37%	26.22%	2.61%	13.01%	-14.70%	1.95%	14.65%	12.80%
ADR79/02	2009-2010	-20.00%	0.00%	-38.46%	5.71%	-3.18%	-19.01%	0.54%	-14.00%	6.54%	0.57%	-10.03%	-2.56%
	2010-2011		26.03%	55.56%		9.78%	14.28%		11.49%	2.55%		20.85%	13.58%
	2011-2012		-9.26%	-62.50%		-27.56%	4.12%		2.09%	12.86%		-32.78%	-0.59%
	2012-2013		15.25%	30.77%		2.42%	3.69%		2.23%	-5.55%		5.63%	3.04%
Euro 5	2013-2014		14.00%	-44.44%		-0.29%	-5.20%		-2.16%	9.17%		6.79%	8.01%
(Core)	2014-2015			38.46%			-5.36%			1.18%			13.83%
ADR79/03	2015-2016			-187.50%			60.28%			9.89%			40.66%
Saala	Increase	Stable	Decrease										
Scale	-100.00%	0.00%	100.00%										
B/D = Mee	dian sample i	below detec	tion limit (le	ss than ze	ero)	,					,		

Figure 16: Median year-to-year emission reduction per year of manufacture – diesel