serial correlation can be thought of as the point of information saturation (Ward et al., 1990).

Five years of data is required to test for trends in this assessment. If five consecutive years of data was not available then trend analysis could not be undertaken for that site.

Testing for statistically significant changes

The Mann Kendall test was used to determine the statistical significance of the trending periods (Gilbert, 1987). It is an example of a non-parametric test and was only used when the data series exhibited independence (ie. no correlation in the data series).

Figure A above shows an example of a time series for TP with little evidence of seasonal variation (LOWESS smooth line). Figure B above shows an autocorrelation plot which indicates that the data points in the time series are mostly independent of each other.

When seasonal cycles were evident in a data series the Seasonal Kendall test was used to test for trend. The Seasonal Kendall test is a variant of the Mann Kendall test that accounts for the presence of seasonal cycles in the data
series (Gilbert, 1987). Seasonal cycles in water quality are common in waterways and can be introduced by natural cycles in rainfall, runoff, tributary hydrology and seasonal variation in groundwater. The presence of seasonal cycles in a data series can introduce correlation to the data series which will complicate the detection of trends. The detection of seasonal variation in the data series was tested for by using an auto-correlation analysis.

Figure A above shows an example of a time series for TP with seasonal variation (LOWESS smooth line). Figure B above shows an autocorrelation plot which indicates that the data points in the time series are dependent on each other.

A trend will be found to be statistically significant when the magnitude of the change is large relative to the variation of the data around the trend line. Unfortunately, when analysing long periods with large sample sizes any trend no matter how small will be statistically significant (Loftis, 1996; McBride et al., 1993; Loftis et al., 1991). The identification of a statistically significant trend should be seen as filter that removes small drifts in concentration from further consideration. Further analysis using sample size estimates are required to determine whether a sufficient number of 'independent' samples were collected to detect a trend.

Water quality in waterways can also be affected by changes in discharge that may create or hide trends in a fixed-interval data series. For this reason, trend analysis was also carried out on the data after it was adjusted for the effects of variation due to flow. The relationship between nutrient concentration and flow was modelled using a LOWESS fit on the flow / concentration response (Esterby, 1996, Robson and Neil, 1996, Lettenmaier et al 1991). The difference or 'residuals' between the observed concentration and the LOWESS modelled concentration is known as a flow-adjusted concentration (Hipel and McLeod, 1994). Subsequently, the flow-adjusted concentrations were reordered in time and then analysed for trend (Gilbert, 1987, Helshel and Hersh, 1992, Harned et al 1981, Hipel and McLeod 1994, Lettenmaier et al 1991). The flow-adjustment process often helped to remove seasonal variation, although some evidence of seasonal variation often remained in the flow-adjusted data series.

Flow response plot with LOWESS fit

Figure A above shows a flow / TP concentration relationship curve (otherwise known as a flow response) with a LOWESS smooth line. Modelled concentrations are derived for every flow level and compared to the observed data. The difference between the modelled and observed data are known as residuals. Figure B above shows the residuals reordered in time with a LOWESS smooth line and are
considered to have flow effects removed from the data.
The Sen slope estimator was used to estimate the slope of the trend line (Gilbert, 1987). The Sen estimate is the median slope of all slopes calculated using all inter-annual pairs of observations. In the presence of seasonal cycles the Seasonal-Kendall slope estimator was used (Gilbert, 1987), which is the median slope of all slopes calculated using pairs of observations collected at the same time each year.

An example of the Seasonal Sen slope estimator being applied to TN monitoring data. This line is used to estimate the slope of the trend in the data series.

Sample size estimates

A period of change being analysed was found to be statistically significant when the Kendall Test had a p-value less than or equal to 0.05 . This was not enough evidence to conclude a trend was present. 'A-posteriori' calculations were subsequently carried out to assess whether enough independent samples had been collected and used in the trend test to meet the criteria specified by the nominated statistical error risks ($a=0.05$ and $b=0.10$). This was achieved by comparing the effective information content in the collected data series with the number of independent samples required to detect a trend.

The effective information content in the data series, that is the effective number of independent values, was estimated for each of the data series analysed for trend using the formula provided by Bayly and Hammersley (1946) (op cit Lettenmaier, 1976, Lachance, 1992, Close, 1989, Zhou, 1996):

$$
n^{*}=\left[1 / n+2 / n^{2} \sum_{j=1}^{n-1}(n-j) \rho(j t)\right]^{-1}
$$

where:

$$
\begin{aligned}
& n^{*}=\text { effective number of independent observations } \\
& n=\text { number of samples } \\
& j=\text { lag number } \\
& t=\text { sampling interval } \\
& \rho=\text { coefficient of correlation }
\end{aligned}
$$

Where seasonal cycles were found the data series was de-trended and deseasonalised (using seasonal medians) prior to calculating the number of independent samples (n^{*}).

The estimated number of independent samples needed to detect a linear trend (in a variable distributed normally about the trend line) was estimated using the function (Lettermaier, 1976; Ward et al., 1990):

$$
\mathrm{n}^{\#}=12 \sigma^{2}\left[\mathrm{t}_{\mathrm{w} 2,(\mathrm{n}-2)}+\mathrm{t}_{\mathrm{B}(\mathrm{n}-2)}\right]^{2} / \Delta^{2}
$$

where:
$\mathrm{n}^{\#}=$ estimated number of samples needed
to detect a trend
$\sigma=$ the standard deviation of the de-trended series
$\Delta=$ the magnitude of the trend
$\mathrm{t}=$ the critical values of the t -distribution, using $\alpha=0.05$ and $\beta=0.1$

This function relies on probabilities predicted by the t-distribution and is therefore from the parametric family of statistical procedures. Data requirements for parametric and the equivalent non-parametric tests are similar, so this equation will approximate the sample size needed for nonparametric tests of significance (Ward et al., 1990).

Detecting the trend

A trend in the data series was considered to be detected only when two criteria were met. Firstly, the Kendall test for trend on the data series must be statistically significant (ie. p<0.05). Secondly, the number of independent samples collected ($n *$) had to approximately equal or exceed the 'estimated' number of independent samples ($\mathrm{n} \#$) required to detect a trend. The direction of a detected trend either increases (representing a deterioration of water quality) or decreases (representing an improvement in water quality). If any of the above two criteria were breached then the result was 'no trend'. If $p<0.05$
and the number of independent samples collected was less than the 'estimated' number of independent samples required to detect a trend, the trend was described as "emerging" (either increasing or decreasing). Sites with a 'no trend' result may be a consequence of poor monitoring program design and implementation over time and, if it is widely believed there should have been a detected trend over the monitoring period, then the monitoring program needs to be re-evaluated.

References

Aulenbach, BT, Hooper, RT \& Bricker, EP 1996, 'Trends in the chemistry of precipitation and surface water in a national network of small watersheds', Hydrological Processes 10(2): 151-181.

Close, ME 1989, 'Effect of serial correlation on groundwater water quality sampling frequency', Water Resources Bulletin 25: 507-515.

Esterby, SR 1996, 'Review of methods for the detection and estimation of trends with emphasis on water quality applications', Hydrological Processes, 10(2): 127-149.

Gilbert, RO 1987, Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold: New York.

Harned, DA, Daniel, CC III \& Crawford, JJ 1981, 'Methods of discharge compensation as an aid to the evaluation of water quality trends', Water Resources Research, 17: 1389-1400.

Helshel, DR \& Hirsch, RM 1992, Statistical methods in water resources, Elsevier, Amsterdam, p. 288

Hipel, KW and McLeod, AI. (1994), Time Series Modelling of Environmental and Water Resources Systems. Elsevier, Amsterdam.

Lachance, M 1992, Monitoring lakes in Quebec. Case study in: Design of water quality monitoring systems, R. Ward, J. Loftis \& G. McBride. Van Nostrand Reinhold, New York.

Lettenmaier, DP 1976, 'Detection of trends in water quality from records with independent observations', Water Resources Research 12(5): 1037-1046.

Lettenmaier, DP, Hooper, ER, Wagoner, C and Faris, K 1991, 'Trends in stream quality in the continental United States, 1978-1987', Water Resources Research, 273: 327-339.

Loftis, JC, McBride, GB \& Ellis, JC 1991, 'Considerations of scale in water quality monitoring and data analysis’, Water Resources Bulletin, 27(2): 255264

Loftis, J 1996, 'Trends in groundwater quality’, Hydrological Processes 10 (2): 335-355.

McBride, GB, Loftis, JC \& Adkins, NC 1993, 'What do significance tests really tell us about the environment?' Environmental Management 17: 423-432.

Robson, AJ \& Neal, C 1996, 'Water quality trends at an upland site in Wales', Hydrological Processes, 140(2): 183-203.
Ward, R, Loftis, J \& McBride, G 1990, Design of water quality monitoring systems. Van Nostrand Reinhold: New York.

Zhou, Yangxiao 1996, Sampling frequency for monitoring the actual state of groundwater systems, Journal of Hydrology 180: 301-318.

