Hydrological and nutrient modelling of the Peel-Harvey estuary catchment

Appendices (A-F)

Contents

Appendix A: Hydrological calibration	5
A.1 Testing different hydrological models A.2 Overall performance of the catchment model A.3 Urban catchments Source model	6
A.4 Dam Catchments Source model	15
A.5 Serpentine Source model	21
A.6 Murray Source model	31
A.7 Harvey Source model	40
A.8 Coastal South Source model	47
A.9 Coastal north and central Source models	50
Appendix B: Nutrient calibration	52
B.1 Statistics from measured data	52
B.1.1 Nutrient status	52
B.1.2 Trends	
B.2 Nutrient model parameters and daily data	
B.3 Daily modelled and measured nutrient concentrations	59
B.3.1 Samson North Drain, Sommers Road (AWRC ref - 613014).	
B.3.2 South Coolup Main Drain, Yackaboon (AWRC ref - 613027)	
B.3.3 Mayfield Drain, Old Bunbury Road (AWRC ref - 613031).	
B.3.4 Harvey River, Clifton Park (AWRC ref - 613052)	
B.3.5 Meredith Drain, Johnston Road (AWRC ref - 613053).	
B.3.6 Serpentine Drain, Dog Hill (AWRC ref - 614030). B.3.7 Nambeelup Brook, Kielman (AWRC ref - 614063).	
B.3.8 Murray River, Pinjarra (AWRC ref - 614065).	
B.3.9 Punrak Drain, Yangedi Swamp (AWRC ref - 614094)	
B.3.10 Gull Road Drain, Gull Road (AWRC ref - 614120).	
B.3.11 Peel Main Drain, Karnup Road (AWRC ref - 614121).	
B.3.12 Harvey Catchment, Drakesbrook Drain (AWRC ref - 6131335).	
B.3.13 South Dandalup River, Patterson Rd (AWRC ref - 6142623).	
B.3.14 Big Brook, Oneil Road (AWRC ref - 614037).	
Appendix C: Point sources and septic tanks	73
C.1 Point sources of nutrient pollution	73
C.2 Septic tanks	
Appendix D: Source separation	
D.1 Peel-Harvey coastal plain catchments	
D.2 Upper Serpentine	
D.3 Peel Main Drain	
D.4 Dirk Brook	

D.5 Nambeelup	90
D.6 Lower Serpentine	92
D.7 Mandurah	94
D.8 Upper Murray	96
D.9 Lower Murray	98
D.10 Coolup (Peel)	100
D.11 Coolup (Harvey)	102
D.12 Mayfield Drain	104
D.13 Harvey	106
D.14 Meredith Drain	108
D.15 Coastal North	110
D.16 Coastal Central	112
D.17 Coastal South	
D.18 Harvey Diversion Drain	116
Appendix E: Catchment targets	118
E.1 Summary of catchment targets for Western Australian estuaries	118
E.2 The EPP phosphorus targets	
E.3 The Peel Harvey water quality improvement plan	119
Appendix F: Supporting information for the management scenario modelling	121
F.1 Overseer modelling	121
F.1.1 Whole-farm nutrient mapping dataset	
F.1.2 Model setup for the basecase Overseer farm models (current management)	
F.1.3 Model setup for the Overseer scenarios	
F.1.4 Overseer parameter and result summaries	
F.2 Low-water-soluble phosphorus fertilisers: Literature review	
F.3 Dairy effluent management supporting information	
F.4 Summary of the catchment model management scenario results	142

Tables

Table A.1: Calibration result from hydrological model testing	5
Table A.2: Urban model catchments and flow calibration gauges	8
Table B.1: Classifications used to assess the status of TN and TP concentrations	.52
Table B.2: Three-year median concentrations for the period of 2013–15	.52
Table B.3: Medium term (2010–14) total nitrogen trends	.53
Table B.4: Medium-term (2010–14) total phosphorus trends	.53
Table B.5: Hydrological and nutrient model parameters used by reporting catchment	.54
Table B.6: Nitrogen model parameters	.55
Table B.7: Phosphorus model parameters	.56
Table B.8: Riparian zone vegetation parameters derived from model calibration	.57
Table C.1: Point sources identified in this modelling	.73
Table C.2: Industrial emissions to land and water	.74
Table C.3: All WWTPs within the Peel-Harvey catchment model domain	.76
Table C.4: Water balance of the old Williams WWTP	.77
Table C.5: Monthly scaling of annual treated wastewater discharge data	.77
Table C.6: Rubbish tips and septage disposal sites in the Peel-Harvey catchment (Kelsey	et
al. 2011)	.79
Table C.7: The assumed number of people per septic tank for land uses other than urban	
residential	.80

Table C.8: Septic tank inputs by reporting catchment	80
Table C.9: Initial septic tank export rates	81
Table C.10: Average annual (2006–15) modelled septic tank exports	81
Table E.1: Summary of catchment water quality targets in Western Australia	118
Table E.2: Annual modelled phosphorus loads from the Serpentine (include Mandurah),	
Murray (includes Coolup (Peel)) and Harvey (includes Mayfield and Coolup (Harvey))	river
catchments and comparison to the EPP phosphorus targets.	120
Table F.1: Farm-gate nutrient budgets of beef and dairy farms that were modelled in	
Overseer and from local surveys (Ovens et al. 2008; Weaver et al. 2008)	123
Table F.2: The conversion of Colwell P to Olsen P (derived by DPIRD)	124
Table F.3: Assumed soil properties of beef and dairy farms that were derived from the	
DPIRD whole-farm nutrient mapping dataset (2009–18)	124
Table F.4: Overseer beef (low PRI) basecase and scenario model parameterisation and	
results	126
Table F.5: Overseer beef (high PRI) basecase and scenario model parameterisation and	
results	127
Table F.6: Overseer dairy (low PRI) basecase and scenario model parameterisation and	
results	
Table F.7: Overseer dairy (high PRI) basecase and scenario model parameterisation and	
results	129
Table F.8: Cumulative surface runoff phosphorus export mass resulting from applications	
single superphosphate (SSP) reactive phosphate rock (RPR) and no fertiliser applicat	
from Nguyen et al. (2002)	
	141
Table F.10: Nitrogen load removal from all individual and combined management scenar	
	143
Table F.11: Phosphorus load removal from all individual and combined management	
scenarios	144

Figures

Figure A.1: Flow measurement sites used to summarise the overall performance of the	
hydrological model	6
Figure A.2: Dam catchments and flow calibration gauges	15
Figure A.3: Serpentine model domain, catchments and flow calibration sites	21
Figure A.4: Murray model domain, catchments and flow calibration sites	31
Figure A.5: Harvey model domain, catchments and flow calibration sites	40
Figure A.6: Coastal South catchments and flow calibration sites	47
Figure A.7: Coastal North and Central catchments	50
Figure B.1: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP,
bottom graph) at Sommers Road (Samson North Drain, AWRC Ref 613014)	59
Figure B.2: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (
bottom graph) at Yackaboon (South Coolup Main Drain, AWRC Ref 613027)	60
Figure B.3: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP,
bottom graph) at Old Bunbury Road (Mayfield Drain, AWRC Ref 613031)	
Figure B.4: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (
bottom graph) at Clifton Park (Harvey River, AWRC Ref 613052)	
Figure B.5: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (
bottom graph) at Johnston Road (Meredith Drain, AWRC Ref 613053)	
Figure B.6: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (
bottom graph) at Dog Hill (Serpentine Drain, AWRC Ref 614030)	
Figure B.7: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (
bottom graph) at Kielman (Nambeelup Brook, AWRC Ref 614063)	65

 Figure B.8: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Pinjarra (Murray River, AWRC Ref 614065)
Figure B.12: Measured and modelled total nitrogen (TN, top graph) and total phosphorus
(TP, bottom graph) at Drakesbrook Drain (Harvey Catchment, AWRC Ref 6131335)70
Figure B.13: Measured and modelled total nitrogen (TN, top graph) and total phosphorus
(TP, bottom graph) at Patterson Rd (South Dandalup River, AWRC Ref 6142623)71
Figure B.14: Measured and modelled total nitrogen (TN, top graph) and total phosphorus
(TP, bottom graph) at Oneil Road (Big Brook, AWRC Ref 614037)
Figure D.1: Peel-Harvey coastal plain catchment land use
Figure D.2: Land-use of the Upper Serpentine reporting catchment
Figure D.3: Land-use of the Peel Main Drain reporting catchment
Figure D.5: Land-use of the Nambeelup reporting catchment
Figure D.6: Land-use of the Lower Serpentine reporting catchment
Figure D.7: Land-use of the Mandurah reporting catchment
Figure D.8: Land-use of the Upper Murray reporting catchment
Figure D.9: Land-use of the Lower Murray reporting catchment
Figure D.10: Land-use of the Coolup (Peel) reporting catchment
Figure D.11: Land-use of the Coolup (Harvey) reporting catchment
Figure D.12: Land-use of the Mayfield Drain reporting catchment
Figure D.13: Land-use of the Harvey reporting catchment
Figure D.14: Land-use of the Meredith Drain reporting catchment
Figure D.15: Land-use of the Coastal North reporting catchment
Figure D.16: Land-use of the Coastal Central reporting catchment
Figure D.17: Land-use of the Coastal South reporting catchment115
Figure D.18: Land-use of the Harvey Diversion Drain reporting catchment117
Figure E.1: Modelled reporting catchment winter median total phosphorus concentrations
and the PHWQIP concentration target for the period of 2006–15120

Appendix A: Hydrological calibration

A.1 Testing different hydrological models

We tested the following hydrological models in this project:

- GR4J (Perrin et al. 2003)
- LASCAM (Large Scale Catchment Model, Viney et al 2000)
- IHACRES (Jakeman et al. 1990)
- SYMHYD with routing (Chiew et al. 2002)

We tested these models for the period of 2000 to 2015 in cleared catchments in the Peel-Harvey catchment and the urban Bartram Road catchment (north of the model domain). We selected models with the best calibration performance (see Section 4.1 for calibration criteria) relative to their model run-times.

See Table A.1 for the calibration statistics for the models that we tested. Models with the best calibration statistics at each gauge are bold in this table. The GR4J model performed the best in most cleared catchments and was selected to represent cleared functional units. SYMHYD with routing was slightly better than GR4J in the urban catchment that was tested and was selected to represent urban functional units. GR4J was selected to represent vegetated functional units given its good performance in all other model testing.

Hydrology functional unit	Gauge	Model name	Daily NSE	Monthly NSE	Annual NSE	Mass balance error
		GR4J	0.90	0.93	0.92	4%
	Dog Hill (614030)	LASCAM	0.83	0.92	0.74	-8%
		IHACRES	0.85	0.91	0.76	-8%
	Yangedi Swamp (614094)	GR4J	0.84	0.83	0.55	-4%
		LASCAM	0.82	0.87	0.64	-4%
Cleared		IHACRES	0.78	0.85	0.58	-3%
Cleared		GR4J	0.84	0.91	0.79	0%
	Lowlands (614114)	LASCAM	0.81	0.88	0.81	-4%
		IHACRES	0.78	0.90	0.82	-7%
	Kielman (614063)	GR4J	0.87	0.94	0.94	7%
		LASCAM	0.77	0.88	0.79	-3%
		IHACRES	0.75	0.86	0.78	-4%
Urban	Destroyer read (C14002)	SYMHYD with routing	0.84	0.88	0.80	0%
UIDdll	Bartram road (614083)	GR4J	0.83	0.87	0.71	4%

Table A.1: Calibration result from hydrological model testing

A.2 Overall performance of the catchment model

We have summarised the overall performance of the catchment model by summing the following end-of-catchment measured and modelled flows: 614030, 614121, 614094, 614120, 614063, 614065, 613027, 613031, 613052. For the days with without measured flow at a gauge we excluded modelled flows at the same gauge.

Figure A.1: Flow measurement sites used to summarise the overall performance of the hydrological model

Sum of flow sites at the end of estuary catchments

Statistic	Calibration	Validation	Daily fl	ow Calib	ration	Valio	lation
	2000–15	0	statist	ic Gauged	Modelled	Gauged	Modelled
				(ML)	(ML)	(ML)	(ML)
Daily NSE	0.93	0.88	Min	. 28	14	0	1
Monthly NSE	0.95	0.89	Percent				
Annual NSE	0.84	0.70	5th	52	37	10	5
Mass balance error	-4%	-29%	10th	64	60	37	18
			20th	86	77	67	45
			50th	231	170	175	110
			75th	864	903	916	596
			Max	17 222	14 173	30 832	21 330
8000 ¬			400.0				
Gaug	ed flow (ML)	Modelled flo		—— Gaug	ed flow (GL)	Mod	elled flow (GL
5000 -			350.0 -				
4000 -			300.0 -				
2000 -			් ප් 250.0 -				
0000 -	1	A	20000				
8000 -		A I	e 2000 - 9 2000 - 141 150.0 - 9 100.0 -		1		
6000 -		H A	듩 150.0 -		h 1		1
4000 -		N N	ទ៊ី 100.0 -		A A A		
	- AM		50.0 -	$H \in \Lambda \cap \Lambda$	M , N A		/ A
2000 -		W W Y		11111		IL NA	. / / / 2
0		10/2000	0.0 -				
01/2009 04/20		10/2009	2010 20		005	2010	2015
L200 Gaug	ed flow (GL)	Modelled fl	6000 -	—— Gaug	ed flow (GL)	Mod	lelled flow (GL
1000 -			5000 -				
						~	
800 -			- 0006 [] - 0006 flow - 0002 cmmulative				
			Ň		S.		
600 -	۵		€ 3000 -		أستركسيت		
	1		ativ		Jon		
400	1 F	\wedge	ไม่ 2000 - ม	یکے	5/		
200			3				
200 - V	V V		1000 -	المعتود المسم			
0			0 -	<u></u>			
	05 20	010 20	20	00 20	005	2010	2015
	100,000	—— G	ow (ML)	Modelled flow	(ML)		
	40.000						
	10,000 -						
	4 000	and a second					
	<u>୪</u> ଜୁ 100 -						
	· 100 -						
	10 -						
	_						
	1 +	× 2004	40% 609	% 80%	100%		
	05	% 20%	4070 60	∾ ŏU%	100%		

A.3 Urban catchments source model

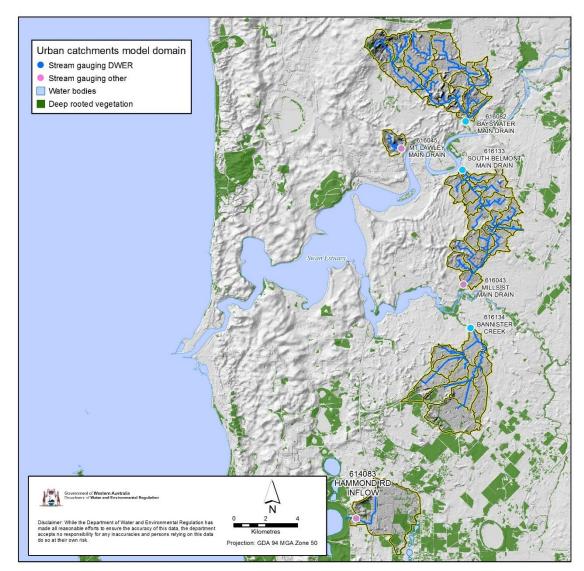


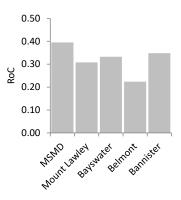
Table A.2: Urban model catchments and flow calibration gauges

Source version and plugins:	Public 3.7.1	No plugins
Rainfall-runoff model:	SYMHYD with routin	g
Link model:	Straight through rou	ting
Climate data:	Daily AWAP rainfall	and FAO56 PET (derived from AWAP data) at catchment centroids
Additional boundaries:	None	
Calibration period:	1985 to 2015	
Validation period:	No validation	
Objective function:	Daily NSE with bias p	penalty
Calibration description:	were calibrated for e Bannister Creek cato catchments on the S contribution from gr Creek were assigned	assumed to be 100% urban with a single functional unit. Unique SYMHYD parameters each gauge. Runoff coefficients for the urban catchments range from 22 to 40%. The chment achieved the highest NSE and exhibits typical hydrograph behaviour for urban wan Coastal Plain, with responsive peaks from individual rainfall events, a baseflow roundwater, and a runoff coefficient of 35%. Calibrated parameters from Bannister It o urban functional units in the Peel Harvey model domain. Note that the gauge used catchment (614083) was only used for model testing and was not considered when lel parameters.

Rainfall-runoff parameters:

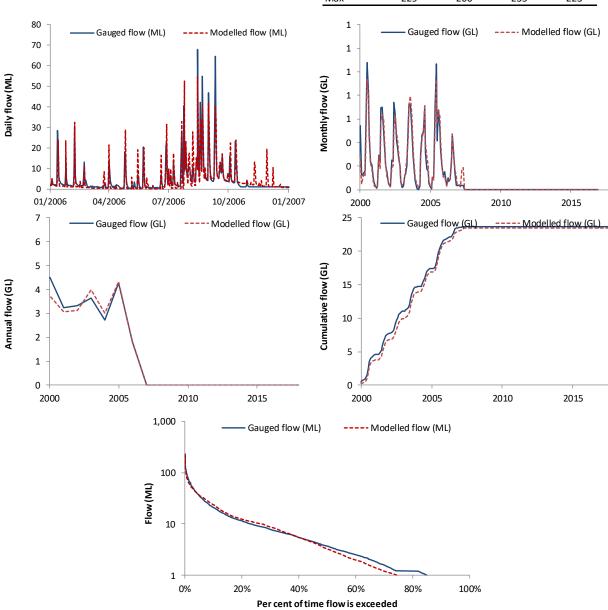
Simhyd with routing

Subcatchment	Function unit	Impervious Threshold (mm)	RISC (mm)	Perv. Fraction	SM SC (mm)	Infiltration shape	Infiltration Coeff.	Interflow Coeff.	Recharge coefficient	Baseflow coeff.
South Belmont	Urban	2.308	3.641	0.872	499.997	3.591	300.963	0.101	0.661	0.020
Mill Street	Urban	0.043	3.252	0.798	375.216	1.862	304.439	0.140	0.988	0.021
Bannister	Urban	0.120	2.268	0.816	494.089	1.762	359.193	0.070	0.995	0.025
Bayswater	Urban	1.442	0.500	0.913	305.585	1.209	311.649	0.082	1.000	0.011
Mount Lawley	Urban	0.003	3.562	0.893	286.184	1.478	192.017	0.003	0.830	0.003

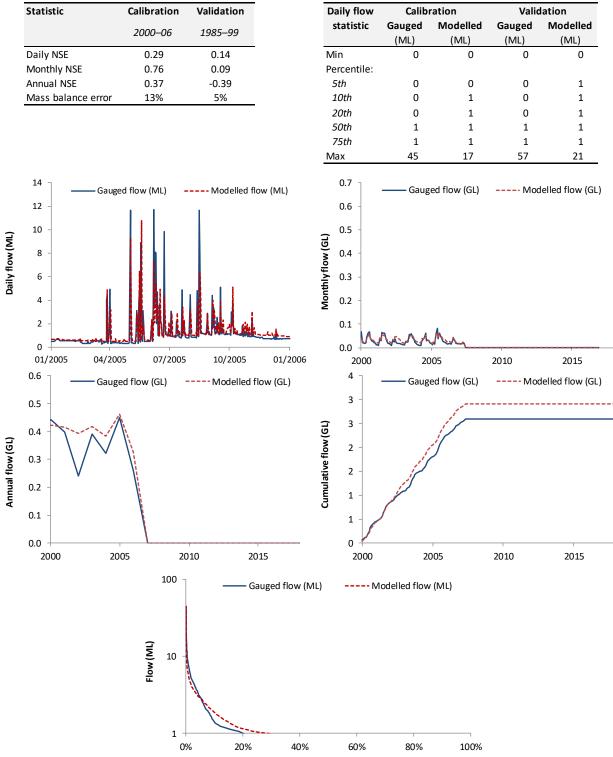

Link parameters:

Runoff coefficients:

Modelled runoff coefficients for model domain

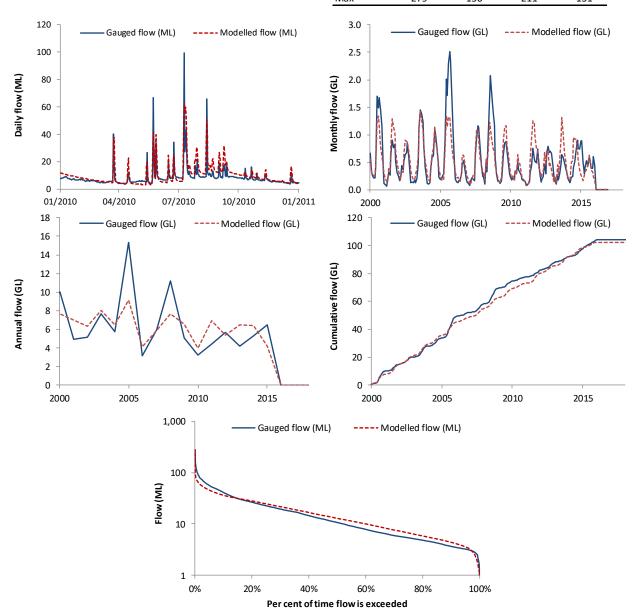

Catchment	MSMD	Mount Lawley	Bayswater	Belmont	Bannister
Period	Urban	Urban	Urban	Urban	Urban
All years	0.41	0.33	0.35	0.24	0.36
1980-1999	0.42	0.34	0.37	0.24	0.38
2000-2015	0.40	0.31	0.33	0.22	0.35

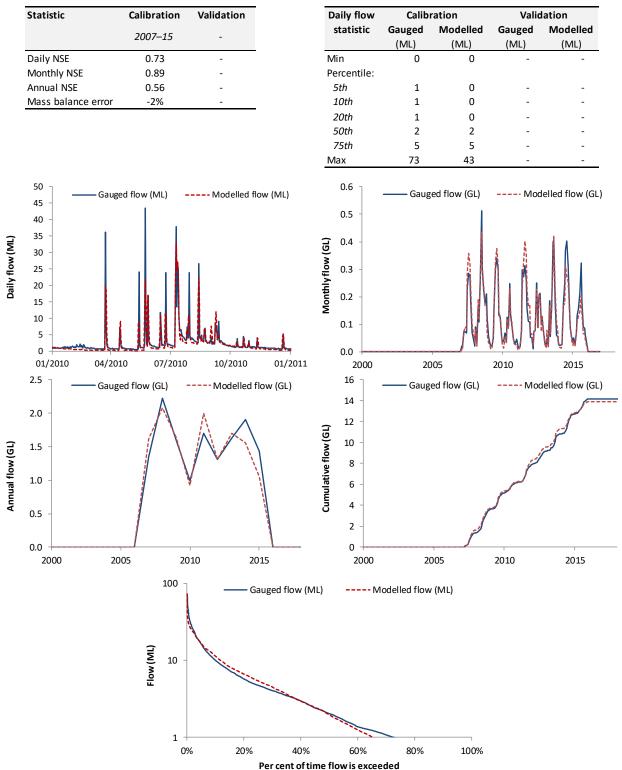
None



Statistic	Calibration	alibration Validation	
	2000–06	1984–99	
Daily NSE	0.79	0.79	
Monthly NSE	0.93	0.88	
Annual NSE	0.89	0.31	
Mass balance error	-2%	-14%	

Daily flow	Calib	ration	Valio	lation
statistic	Gauged Modelled		Gauged	Modelled
	(ML)	(ML)	(ML)	(ML)
Min	0	0	0	0
Percentile:				
5th	0	0	2	0
10th	1	0	2	0
20th	1	1	3	1
50th	4	3	7	5
75th	9	10	14	13
Max	229	200	235	223


Mount Lawley Mai	n Drain - Mount	Lawley - 616045
------------------	-----------------	-----------------


Per cent of time flow is exceeded

Statistic	Calibration	Validation
	2000–15	1988–99
Daily NSE	0.61	0.65
Monthly NSE	0.64	0.75
Annual NSE	0.48	0.41
Mass balance error	-1%	0%

Daily flow	Calib	ration	Valio	lation
statistic	Gauged	Modelled	Gauged	Modelled
	(ML)	(ML)	(ML)	(ML)
Min	1	1	1	3
Percentile:				
5th	3	4	3	4
10th	4	4	4	5
20th	5	6	5	7
50th	11	13	15	18
75th	23	25	32	33
Max	279	150	211	131

South Belmont Main Drain - Cleaver Terrace - 616134

Department of Water

Statistic Calibration Validation Daily flow Calibration Validation statistic Gauged Modelled Gauged Modelled 2007–15 (ML) (ML) (ML) (ML) Min Daily NSE 0.84 _ 0 0 Monthly NSE 0.94 Percentile: Annual NSE 0.66 5th 0 1 Mass balance error -1% 10th 2 1 20th 3 1 50th 7 7 75th 19 20 Max 148 106 140 1.6 Gauged flow (GL) -- Modelled flow (GL) Gauged flow (ML) --- Modelled flow (ML) 1.4 120 1.2 100 Daily flow (ML) Monthly flow (GL) 1.0 80 0.8 60 0.6 40 0.4 20 0.2 0 0.0 01/2010 04/2010 07/2010 10/2010 01/2011 2000 2005 2010 2015 8 50 Gauged flow (GL) ----- Modelled flow (GL) Gauged flow (GL) ---- Modelled flow (GL) 45 7 40 6 35 Cumulative flow (GL) 5 Annual flow (GL) 30 25 4 20 3 15 2 10 1 5 0 0 2005 2010 2015 2005 2010 2015 2000 2000 1,000 Gauged flow (ML) ---- Modelled flow (ML) 100 Flow (ML) 10 1 0% 20% 100% 40% 60% 80% Per cent of time flow is exceeded

Bannister Creek - Acacia Place - 616134

A.4 Dam catchments source model

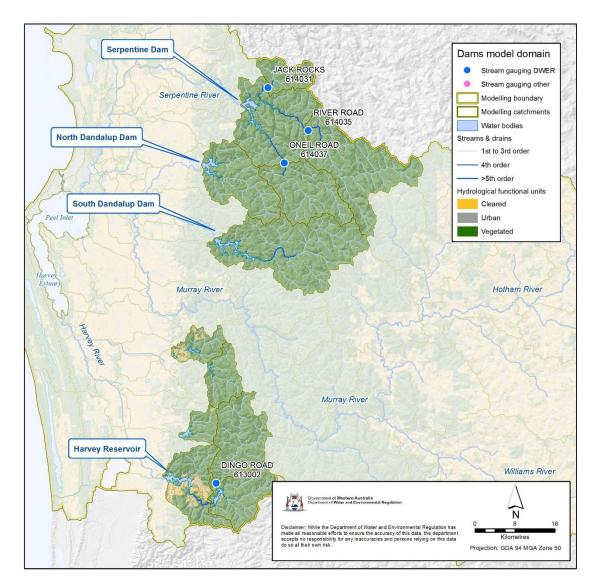


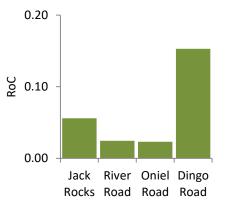
Figure A.2: Dam catchments and flow calibration gauges

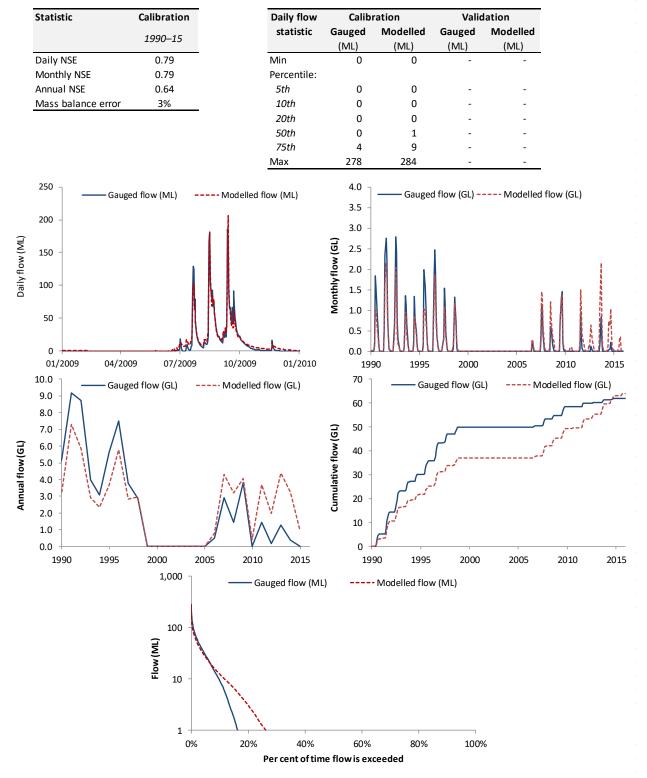
Source version and plugins:	Public 3.7.1	No plugins
Rainfall-runoff model:	GR4J, SYMHYD with	routing
Link model:	Straight-through flow	v routing
Climate data:	Daily AWAP rainfall a	and FAO56 PET (derived from AWAP data) at catchment centroids
Additional boundaries:	None	
Calibration period:	1990 to 2015	
Validation period:	None	
Objective function:	Daily NSE with bias p	enalty
Calibration description:	Unique parameters f	or the vegetated functional units were calibrated for areas upstream

Unique parameters for the vegetated functional units were calibrated for areas upstream of each gauge. For ungauged catchments parameters were transferred from a similar catchment. Runoff coefficients were low for all gauges except Dingo Road which is influenced by a large base flow component.

Rainfall-runoff parameters:

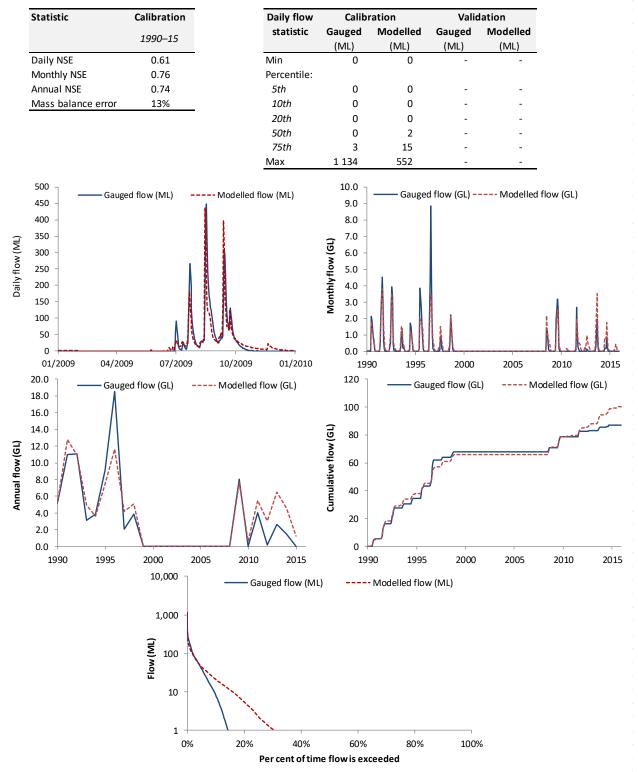
Subcatchment	Functional Unit	Model	GR4J-x1 (mm)	GR4J-x2 (mm)	GR4J-x3 (mm)	GR4J-x4 (d)
SC # 19	Vegetated	GR4J	917.186	-9.986	32.757	1.212
SC #21	Vegetated	GR4J	917.186	-9.986	32.757	1.212
SC #24	Vegetated	GR4J	917.186	-9.986	32.757	1.212
SC #89	Vegetated	GR4J	1496.777	-0.295	45.846	2.409
SC #90	Vegetated	GR4J	1496.777	-0.295	45.846	2.409
SC #91	Vegetated	GR4J	1496.777	-0.295	45.846	2.409
SC #92	Vegetated	GR4J	917.186	-9.986	32.757	1.212
SC #93	Vegetated	GR4J	917.186	-9.986	32.757	1.212
SC #94	Vegetated	GR4J	808.116	-9.994	48.588	1.779
SC #95	Vegetated	GR4J	918.670	-10.000	19.934	3.300
SC #96	Vegetated	GR4J	917.186	-9.986	32.757	1.212
SC #97	Vegetated	GR4J	1279.658	-7.110	2.373	2.975

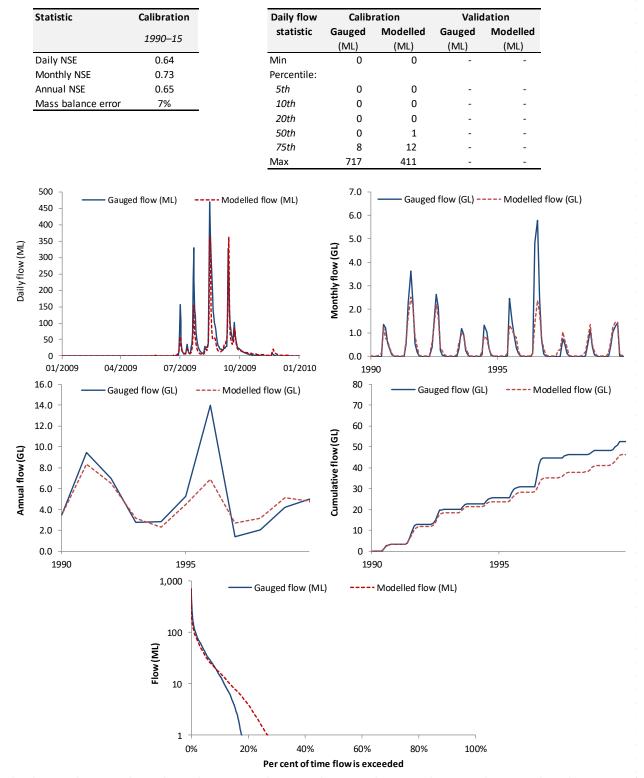

Link parameters:


Runoff coefficients:

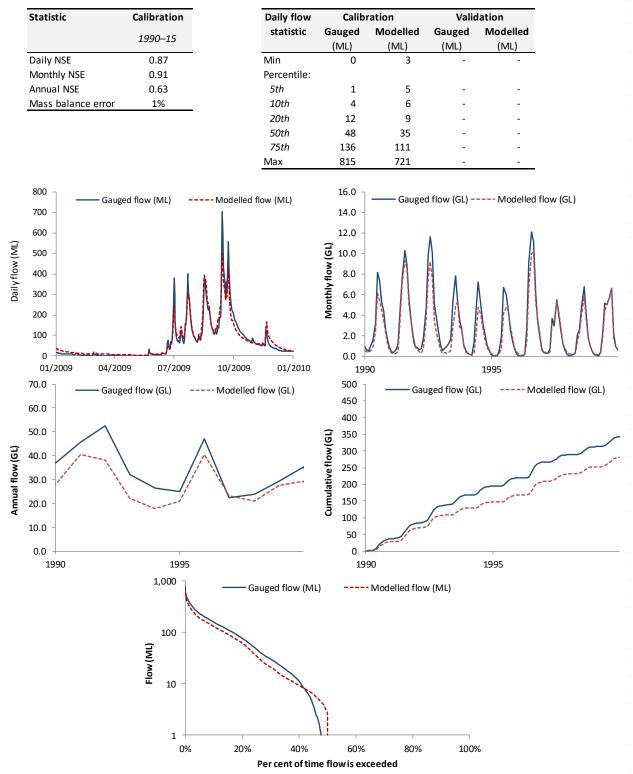
Average annual modelled runoff coefficients for all areas in the Dams model domain

Period	Total RoC	Cleared RoC	Urban RoC	Vegetated RoC
All years	0.07	0.19	0.00	0.06
1980–99	0.07	0.20	0.00	0.07
2000–15	0.06	0.17	0.00	0.06


None



39 Mile Brook - Jack Rocks -614031


Serpentine River - River Road - 614035

Big Brook - Oniel Road - 614037

Harvey River - Dingo Road - 613002

A.5 Serpentine source model

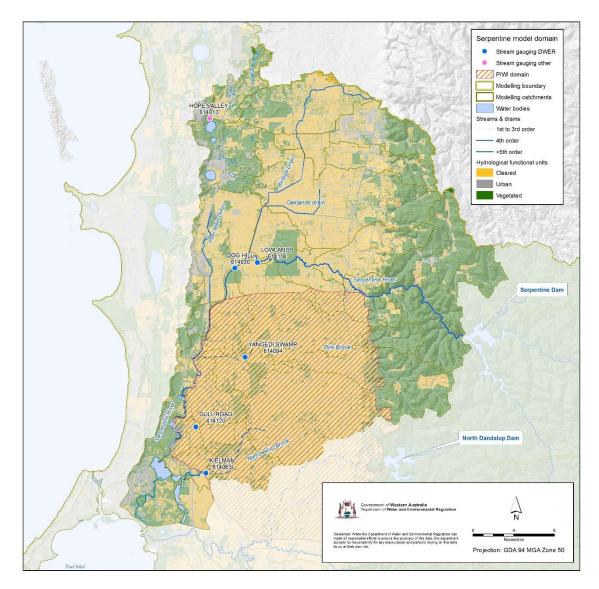


Figure A.3: Serpentine model domain, catchments and flow calibration sites

Source version and plugins:	Public 3.7.1	No plugins					
Rainfall-runoff model:	GR4J, SYMHYD with	GR4J, SYMHYD with routing					
Link model:	Straight-through flo	w routing					
Climate data:	Daily AWAP rainfall	and FAO56 PET (derived from AWAP data) at catchment centroids					
Additional boundaries:	None						
Calibration period:	2000 to 2015						
Validation period:	1980 to 1999						
Objective function:	Daily NSE with bias	penalty					
Calibration description:	mapping. Model par	split into vegetated, cleared and urban functional units based on 2016 land use rameters for vegetated functional units were calibrated for the fully vegetated					

ed catchment of the River Road (614035) gauge and these parameters were used for all vegetated land uses throughout the catchment. SYMHYD parameters for urban areas were sourced from Bannister Creek. Unique parameters for the cleared functional units were calibrated for areas upstream of each gauge. For ungauged catchments, cleared parameters were transferred from a similar catchment. Catchments upstream of the Serpentine Dam were excluded from the model domain and it was assumed that the dam contributes no downstream flow.

GR4J-x1 GR4J-x2 GR4J-x3 GR4J-x4

(d) 1.212 0.768 0.768 0.768 1.188 1.188 1.188 1.188 1.188 1.188 1.188

meters:	Subcatchment	Functional Unit	Model	GR4J-x1 (mm)	GR4J-x2 (mm)	GR4J-x3 (mm)
	All	Vegetated	GR4J	917.186	-9.986	32.757
	SC # 12	Cleared	GR4J	327.033	-1.253	31.981
	SC # 13	Cleared	GR4J	327.033	-1.253	31.981
	SC # 14	Cleared	GR4J	327.033	-1.253	31.981
	SC #31	Cleared	GR4J	306.789	-3.371	23.207
	SC #32	Cleared	GR4J	306.789	-3.371	23.207
	SC #33	Cleared	GR4J	306.789	-3.371	23.207
	SC #50	Cleared	GR4J	306.789	-3.371	23.207
	SC #51	Cleared	GR4J	306.789	-3.371	23.207
	SC #52	Cleared	GR4J	306.789	-3.371	23.207
	SC #53	Cleared	GR4J	306.789	-3.371	23.207
	SC #54	Cleared	GR4J	320.014	-9.972	25.607
	SC #55	Cleared	GR4J	320.014	-9.972	25.607
	SC #56	Cleared	GR4J	1500.000	-0.167	9.063
	SC #57	Cleared	GR4J	306.789	-3.371	23.207
	SC #76	Cleared	GR4J	244.061	-4.024	12.664
	SC #77	Cleared	GR4J	292.538	-3.261	38.212
	SC #78	Cleared	GR4J	244.061	-4.024	12.664
	SC #79	Cleared	GR4J	292.538	-3.261	38.212
	SC #80	Cleared	GR4J	292.538	-3.261	38.212
	SC #81	Cleared	GR4J	244.061	-4.024	12.664
	SC #82	Cleared	GR4J	244.061	-4.024	12.664
	SC #83	Cleared	GR4J	244.061	-4.024	12.664
	SC #84	Cleared	GR4J	244.061	-4.024	12.664
	SC #85	Cleared	GR4J	244.061	-4.024	12.664
	SC #86	Cleared	GR4J	292.538	-3.261	38.212

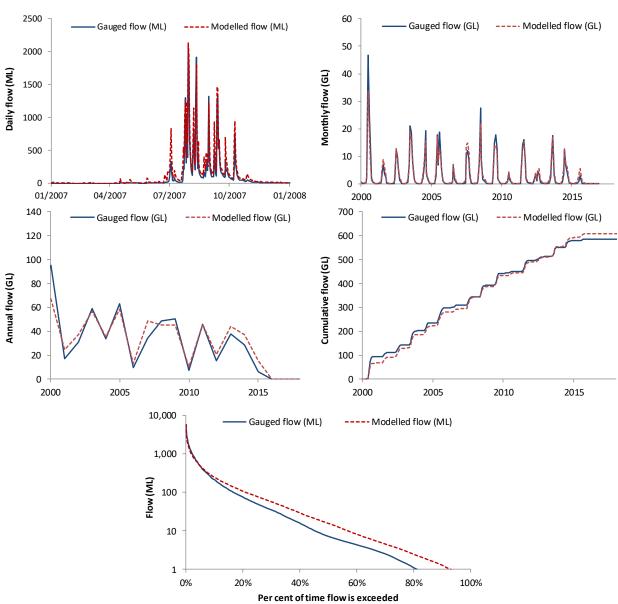
Rainfall-runoff parameters:

All	Urban	0.120	2.268	0.816	494.089	1.762	359.193	0.070	0.995	0.025
Subcatchment	Function unit	Impervious Threshold (mm)	RISC (mm)	Perv. Fraction	SM SC (mm)	Infiltration shape	Infiltration Coeff.	Interflow Coeff.	Recharge co efficient	Baseflow coeff.
Simhyd with rout		C # 100	Cleared	GR4J	306.789	-3.371	23.207	1.188		
		C # 99	Cleared	GR4J	348.895		55.890	1.012		
		2 # 88	Cleared	GR4J	306.789		23.207	1.188		
	so	2 # 87	Cleared	GR4J	306.789	-3.371	23.207	1.188		
	SC	2 # 86	Cleared	GR4J	292.538	-3.261	38.212	1.001		
	so	C #85	Cleared	GR4J	244.061	-4.024	12.664	1.101		
	SC	2 # 84	Cleared	GR4J	244.061	-4.024	12.664	1.101		
	sc	2 #83	Cleared	GR4J	244.061	-4.024	12.664	1.101		
	so	2 # 82	Cleared	GR4J	244.061	-4.024	12.664	1.101		
	SC	C #81	Cleared	GR4J	244.061	-4.024	12.664	1.101		
	sc	C #80	Cleared	GR4J	292.538	-3.261	38.212	1.001		
	so	C #79	Cleared	GR4J	292.538	-3.261	38.212	1.001		
	sc	2 #78	Cleared	GR4J	244.061	-4.024	12.664	1.101		
	sc	C #77	Cleared	GR4J	292.538	-3.261	38.212	1.001		
		C #76	Cleared	GR4J	244.061		12.664	1.101		
	so	C #57	Cleared	GR4J	306.789	-3.371	23.207	1.188		
		C #56	Cleared	GR4J	1500.000		9.063	0.500		
		C #55	Cleared	GR4J	320.014		25.607	3.279		
	SC	C #54	Cleared	GR4J	320.014	-9.972	25.607	3.279		

Link parameters:

None

Runoff coefficients:


Average annual modelled runoff coefficients for all areas in the Serpentine model domain. Flow from inflow nodes have been excluded.

Period	Total RoC	Cleared RoC	Urban RoC	Vegetated RoC
All years	0.11	0.15	0.26	0.03
1980–99	0.12	0.17	0.28	0.04
2000–15	0.10	0.14	0.23	0.03

Serpentine Drain - Dog Hill - 614030

Statistic	Calibration	Validation
	2000–15	1980–99
Daily NSE	0.91	0.76
Monthly NSE	0.94	0.74
Annual NSE	0.92	-0.20
Mass balance error	4%	-40%

Daily flow	y flow Calibration			lation
statistic	Gauged	Modelled	Gauged	Modelled
	(ML)	(ML)	(ML)	(ML)
Min	0	0	0	0
Percentile:				
5th	0	1	3	1
10th	0	1	6	2
20th	1	3	9	3
50th	8	17	38	22
75th	51	80	174	114
Max	5 749	3 883	9 744	10 036

Gauged

Validation

Modelled

2005–15 1990–98 (ML) (ML) (ML) (ML) Min Daily NSE 0.88 0.68 0 0 0 0 Monthly NSE 0.94 0.75 Percentile: Annual NSE 0.94 0.48 5th 0 0 0 0 Mass balance error 7% -32% 10th 0 0 0 0 20th 0 0 0 0 50th 0 3 1 4 75th 12 20 48 39 1 110 Max 948 1 719 1 114 600 16 ---- Modelled flow (GL) Gauged flow (GL) Gauged flow (ML) -- Modelled flow (ML) 14 500 12 400 Daily flow (ML) Monthly flow (GL) 10 300 8 6 200 4 100 2 0 0 04/2007 01/2008 01/2007 07/2007 10/2007 2000 2005 2010 2015 50 120 Gauged flow (GL) ---- Modelled flow (GL) - Gauged flow (GL) ---- Modelled flow (GL) 45 100 40 35 Cumulative flow (GL) 80 Annual flow (GL) 30 25 60 20 40 15 10 20 5 0 0 2005 2015 2005 2015 2000 2010 2000 2010 10,000 Gauged flow (ML) ---- Modelled flow (ML) 1,000 Flow (ML) 100 10 1 20% 100% 0% 40% 60% 80% Per cent of time flow is exceeded

Daily flow

statistic

Calibration

Modelled

Gauged

Nambeelup Brook - Kielman - 614063

Calibration

Validation

Statistic

Dirk Brook & Punrack Drain - Yangedi Swamp - 614094

Stati	stic	Calibratio	n Validation	ſ	Daily flow	Calib	ration	Valio	lation
		2000–15 1995–99 statistic		Gauged	Modelled	Gauged	Modelled		
Daily		0.84	0.84		/lin	(ML) 0	(ML) 0	(ML) 0	(ML) 0
	thly NSE	0.83	0.92		ercentile:	0	0	0	0
	al NSE	0.55	0.75		5th	0	0	0	1
	s balance er		-14%		10th	0	1	0	1
					20th	0	1	0	1
					50th	2	5	12	10
					75th	28	31	65	62
				Ν	/lax	1 912	1 086	1 823	1 153
700	٦				14]				
600		Gauged flow (ML)	Modelled fl	v (ML)	12 -	Gaug	ged flow (GL)	Moo	lelled flow (GL
500					10 -				
400	-			Monthlyflow (GL)	8 -		1		
300	_			nthly1	6 -			A :	
200	-			ž	4 -				
100		here	J . A. a. M.		$2 \qquad \qquad$	MM		IUU	UNA
	2007 0·	4/2007 07/20	007 10/2007	01/2008	2000	20	005	2010	2015
45	_				200 ¬				
40		Gauged flow (GL)	Modelled f	w (GL)	180 -	Gaug	ed flow (GL)	IVI0	delled flow (GL
	A				160 -				
35	1 N			~	140 -			~	
30				(6)					
25	- / /			llow	120 -		ſ		
20				ive1	100 -			-	
15	N IA	1		Cumulative flow (GL)	80 -				
			$\Lambda \wedge / \Sigma$	Ĕ	60 -				
10				ō	40 -	كمسح			
5	- V		V V V		20 -	هش			
0			1	<u> </u>	0		1		
20	000	2005	2010 20	5	2000	20	005	2010	2015
		10,000) ¬						
		10,000	G G	iged flow (ML)	N	lodelled flow	/ (ML)		
		1,000) -						
		-	N N						
		100 (MI)							
		~ ~ ~							
		Ĕ							
		10) -						
		1	0% 20%	40%			100%		
			U% /U%	40%	60%	80%	100%		

Serpentine	River -	Lowlands	-	614114
------------	---------	----------	---	--------

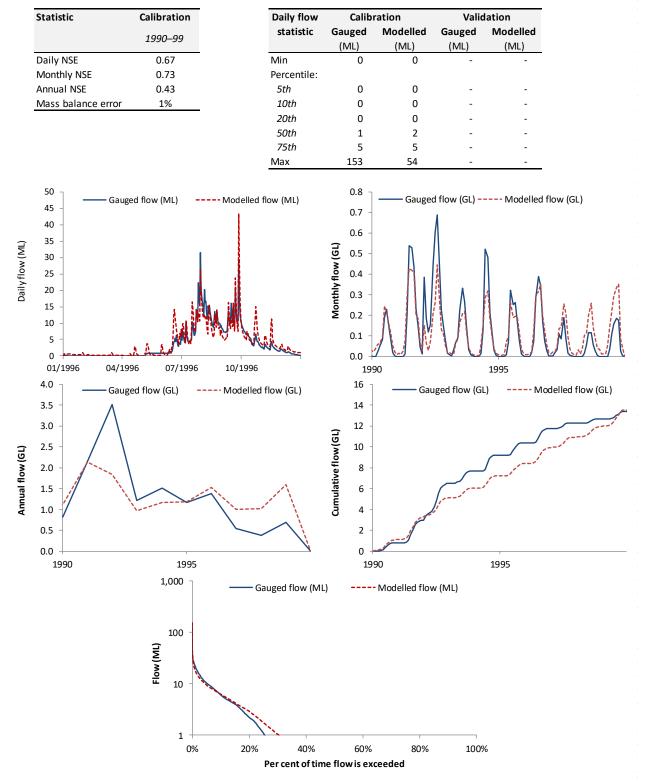
Statistic	Calibration	Validation	Daily f	low Calib	ration	Valio	dation
	2000–15	1998–99	statis	tic Gauged	Modelled	Gauged	Modelled
				(ML)	(ML)	(ML)	(ML)
Daily NSE	0.85	0.83	Min	0	0	4	0
Monthly NSE	0.91	0.95	Percen				
Annual NSE	0.79	0.82	5th	0	0	9	1
Mass balance error	3%	-9%	10th	1	1	10	1
			20th	2	1	11	3
			50th	8	7	28	22
			75th	30	40	86	81
			Max	1 888	1 157	754	684
2000 ¬			16	~			
Gauge	d flow (ML) 🛛 -	Modelled f		Gaug	ged flow (GL)	Moo	delled flow (Gl
1800 -			14	1			
1600 -			12	-			
1400 -			.				
1200 -			10 8 4				
1000 -			8 flo	- 1	A +	1	1
800 -			1 ₽ 6				
600 -			Jon				1
400 -			Σ 4				
200 -		MA AALA	2	- & #	. // ; // //		
0	mil	1 A.M. ANC	0	JUUUU	VWVV	JUJU	UUUL
01/2007 04/200	7 07/2007	10/2007		000 2	005	2010	2015
35Course	d flow (GL)	Modelled	300		ged flow (GL)		delled flow (GI
Gauge	a flow (GL)			Gau	ged now (GL)	10100	defied flow (Gi
30 -			250	-			
25 🔒	Λ		Ē				مستمسمهم
	$ \rangle \wedge$		<u>5</u> 200	-			
20	IN A	5 K.	oj 150		(
15 -		$-\hat{\mathbf{k}}$ $/ \mathbb{N}$	Cumulative flow (GL) 120 100		بسيم	-	
			100 도	_	كسيرسم		
10 - 🗸			E I	1	<u> </u>		
5 -	V V	V V	50				
5		V					
0		1	- 0	μ	1	1	1
2000 20	05 20)10 2	2	.000 2	005	2010	2015
	10,000 -						
	10,000	— 6	w (ML)	Modelled flow	v (ML)		
	1,000 -						
	_ 100 ليل	New York					
	- 100 - How (MI)						
	Ĩ						
	10 -		Same in the second				
	1 -						

Per cent of time flow is exceeded

Statistic

Validation

Statistic	Calibration	Validation		Daily f		bration		dation
	2005–07 -		statis			Gauged	Modelled	
Daily NSE			_	Min	(ML)	(ML)	(ML)	(ML)
Daily NSE	0.82	-		Min Percent	0 ile:	0	-	-
Monthly NSE Annual NSE	0.90	-		5th	o ::	0		
Mass balance error	0.91 3%	-		10th	0	0	-	-
	370	-	-	20th	0	0		
				20th 50th	0	0	-	-
				75th	0	1		-
				Max	23	30	-	-
35	ged flow (ML)	Modelled 1	flow (ML)	0	Gau	iged flow (GL)	Mo	delled flow (Gl
30 -				0	-		WICK	
25 -				0 E	-			
20 -				Monthlyflow (GL)	-			
15 -				0 this	-			
10 -				0 Mon	-			
5 -	L PRA	AMALA		0	-			
0	05 07/200	5 10/2005	01/2006	0	000	2005	2010	2015
1				1				
1 - Gaug	ged flow (GL)	Modelled	flow (GL)	-	Gau	iged flow (GL)	Mo	delled flow (Gl
	A			1	-	Ē		
1 -	A			~ 1				
1 -	A			נפר) ¹				
1 -				<u>8</u> 1	-	$\int f^{-i}$		
1 -				ve fl		1-2		
0 -	A			1 ati	-			
0 -				Cumulative flow (GL) 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_			
0 -				D -				
0 -				0	-			
0	V			0				
	005 2	2010 2	015		000	2005	2010	2015
	100]	Gauged flow (MI	_)	Modelled flo	w (ML)		
				,		()		
	Л Г) 10	N .						
	10 (MI)							
	음							
		le li						
		1 in						
		l Ni						
		1.						
	1)% 20%	40%	60	% 80%	100%		


Daily flow

Calibration

Gull Road Drain - Gull Road - 614120

Calibration

Validation

Peel Main Drain - Hope Valley - 614013

Statistic	Calibration	Validation	D	aily flow		ration	Valio	dation
	2005–15 -			statistic	Gauged	Modelled	Gauged	Modelled
					(ML)	(ML)	(ML)	(ML)
Daily NSE	0.73	-	M		0	0	-	-
Monthly NSE	0.83	-		ercentile:				
Annual NSE	0.66	-		5th	0	1	-	-
Mass balance en	ror 17%	-		lOth	0	1	-	-
				20th	1	2	-	-
				50th	6	10	-	-
			2	75th	17	28	-	-
			M	ах	352	295	-	-
				_				
350]@	auged flow (ML) –	Modelled flow (N	L)	5	Gaug	ed flow (GL)	Moo	delled flow (G
300 -	0 ()		,	5 -				
				4 -				
250 -			<u>-</u>	4 -				
200 -	1		Monthly flow (GL)	3 -				
200 -	11		Ň	3 -		I	1 I I	
150 -	44		lyfi	2 -				
	: M		tt.			A A A		1.
100 -		1 AN A	Ĕ	2 -				11
50 -	二 主義 打殺諸	A I K KA KA		1 -				A A E
50	A AV	1 Martine		1 -			11 A 11	
0				0				VVVL
01/2005 04	/2005 07/2005	10/2005 0	/2006	2000	20	005	2010	2015
14]6	auged flow (GL)	Modelled flow (0	51)	80	Gaug	ed flow (GL)	Mo	delled flow (G
		modelied now (,_,	70 -	0008			مرم _ا ر
12 -	Λ							سر الم
10 -			Ê	60 -				کس کم
	()		٥ ١	50 -			1	
8 -		$\Lambda \Lambda$	Cumulative flow (GL)				مس أريد	'
6 -			ve 1	40 -			لتستختص	
0		$ \setminus \forall = \setminus \setminus$	lati	30 -		1	12	
4 -		$//$ V $\langle \rangle$	n L			-1		
			C	20 -		لسما		
2 -				10 -		للسنشني		
0		N N		0		1		
2000	2005 20	10 2015		2000	2	005	2010	2015
2000	2003 20	2013		2000	2	005	2010	2015
	1,000	Gauged	flow (ML)	M	odelled flow	/ (ML)		
		edugeo				()		
	100 -							
		a de la companya de la compa						
	۲ <u>و</u>							
	LIOW (ML)							
	Ĕ ₁₀ −							
					and the second			
					×			
	1 +	1	1					
	0%	6 20%	40%	60%	80%	100%		

Peel Main Drain - Karnup Road - 614121

A.6 Murray source model

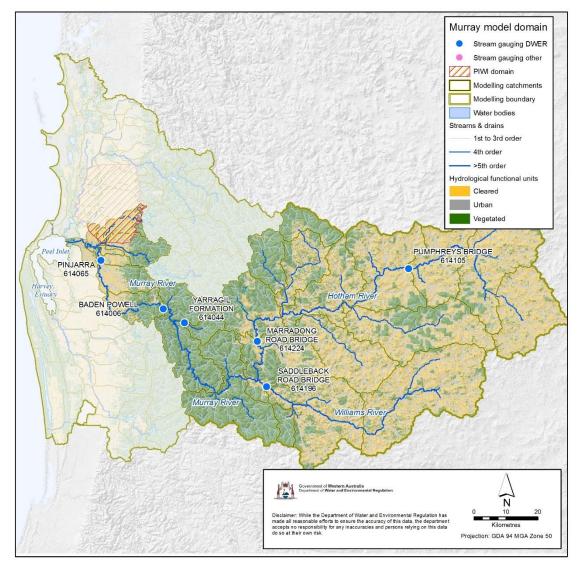


Figure A.4: Murray model domain, catchments and flow calibration sites

Source version and plugins:	Public 3.7.1	No plugins
Rainfall-runoff model:	GR4J, SYMHYD with	routing
Link model:	Storage routing	
Climate data:	Daily AWAP rainfall	and FAO56 PET (derived from AWAP data) at catchment centroids
Additional boundaries:	None	
Calibration period:	2000 to 2015	
Validation period:	1980 to 1999	
Objective function:	Daily NSE with bias p	penalty
Calibration description:		split into vegetated, cleared and urban functional units based on 2016 land use

mapping. Model parameters for the vegetated functional unit were calibrated to the Yarragil Formation gauge which is fully vegetated. SYMHYD parameters for Urban areas were sourced from Bannister Creek. Cleared functional units were calibrated for the upstream catchment of each gauge, and a single set of storage routing parameters were calibrated for all gauges. For ungauged catchments downstream of Baden Powell Water Spout, cleared parameters were transferred from the Nambeelup Brook catchment (Serpentine model) which better represents hydrological response on the coastal plain.

Subcatchment	Functional Unit	Model	GR4J-x1 (mm)	GR4J-x2 (mm)	GR4J-x3 (mm)	GR4J-x4 (d)
All	Vegetated	GR4J	1500.000	-10.000	13.287	1.174
SC #42	Cleared	GR4J	256.779	-3.691	21.586	1.019
SC #43	Cleared	GR4J	170.137	-5.493	38.046	0.500
SC #44	Cleared	GR4J	256.779	-3.691	21.586	1.019
SC #45	Cleared	GR4J	170.137	-5.493	38.046	0.500
SC #46	Cleared	GR4J	256.779	-3.691	21.586	1.019
SC #47	Cleared	GR4J	256.779	-3.691	21.586	1.019
SC #48	Cleared	GR4J	256.779	-3.691	21.586	1.019
SC #49	Cleared	GR4J	256.779	-3.691	21.586	1.019
SC #58	Cleared	GR4J	170.137	-5.493	38.046	0.500
SC #59	Cleared	GR4J	170.137	-5.493	38.046	0.500
SC #60	Cleared	GR4J	170.137	-5.493	38.046	0.500
SC #61	Cleared	GR4J	218.503	-2.606	17.849	1.198
SC #62	Cleared	GR4J	113.827	-9.990	37.184	0.512
SC #63	Cleared	GR4J	218.503	-2.606	17.849	1.198
SC #64	Cleared	GR4J	218.503	-2.606	17.849	1.198
SC #65	Cleared	GR4J	218.503	-2.606	17.849	1.198
SC #66	Cleared	GR4J	218.503	-2.606	17.849	1.198
SC #67	Cleared	GR4J	113.827	-9.990	37.184	0.512
SC #68	Cleared	GR4J	218.503	-2.606	17.849	1.198
SC #69	Cleared	GR4J	113.827	-9.990	37.184	0.512
SC #70	Cleared	GR4J	170.137	-5.493	38.046	0.500
SC #71	Cleared	GR4J	218.503	-2.606	17.849	1.198
SC #72	Cleared	GR4J	150.188	-6.020	57.695	0.507
SC #73	Cleared	GR4J	150.188	-6.020	57.695	0.507
SC #74	Cleared	GR4J	150.188	-6.020	57.695	0.507
SC #75	Cleared	GR4J	218.503	-2.606	17.849	1.198

Simhyd with routing

Subcatchment	Function unit	Impervious Threshold (mm)	RISC (mm)	Perv. Fraction	SM SC (mm)	Infiltration shape	Infiltration Coeff.	Interflow Coeff.	Recharge coefficient	Baseflow coeff.
All	Urban	0.120	2.268	0.816	494.089	1.762	359.193	0.070	0.995	0.025

Runoff coefficients:

Average annual modelled runoff coefficients for all areas in the Murray model domain. Flow from inflow nodes have been excluded.

Period	Total RoC	Cleared RoC	Urban RoC	Vegetated RoC
All years	0.05	0.09	0.11	0.01
1980–99	0.06	0.10	0.12	0.01
2000–15	0.05	0.08	0.10	0.01

Storage routing parameters:

Link name	Routing Exponent	Routing Constant	
	(m)	(k)	
link for catchment SC #62	0.9753	50697	
link for catchment SC #69	0.9753	50697	
link for catchment SC #67	0.9753	50697	
link for catchment SC #68	0.9753	50697	
link for catchment SC #65	0.9753	50697	
link for catchment SC #75	0.9753	50697	
link for catchment SC #71	0.9753	50697	
link for catchment SC #66	0.9753	50697	
link for catchment SC #63	0.9753	50697	
link for catchment SC #64	0.9753	50697	
link for catchment SC #72	0.9753	50697	
link for catchment SC #73	0.9753	50697	
link for catchment SC #74	0.9753	50697	
link for catchment SC #61	0.9753	50697	
link for catchment SC #60	0.9753	50697	
link for catchment SC #70	0.9753	50697	
link for catchment SC #58	0.9753	50697	
link for catchment SC #59	0.9753	50697	
link for catchment SC #43	0.9753	50697	
link for catchment SC #45	0.9753	50697	
link for catchment SC #47	0.9982	46032	
link for catchment SC #46	0.9982	46032	
link for catchment SC #48	0.9982	46032	
link for catchment SC #44	0.9982	46032	
link for catchment SC #42	0.9982	46032	
link for catchment SC #49	0.9982	46032	
Other Parameters			
Reach Length	25000		
Average Regulated Flow	0		
No. Divs.	1		
Inflow Bias	0.5		

6000

5000

4000

3000

2000

1000

0

700

600

500

400 300 200

100 0

2000

Annual flow (GL)

01/2007

Daily flow (ML)

Murray River -	Baden	Powell	- 614030
----------------	-------	--------	----------

Statistic	Calibration	Validation
	2000–15	1980–99
Daily NSE	0.89	0.85
Monthly NSE	0.94	0.89
Annual NSE	0.89	0.68
Mass balance error	-8%	-25%

Gauged flow (ML)

04/2007

Gauged flow (GL)

2005

07/2007

2010

100,000

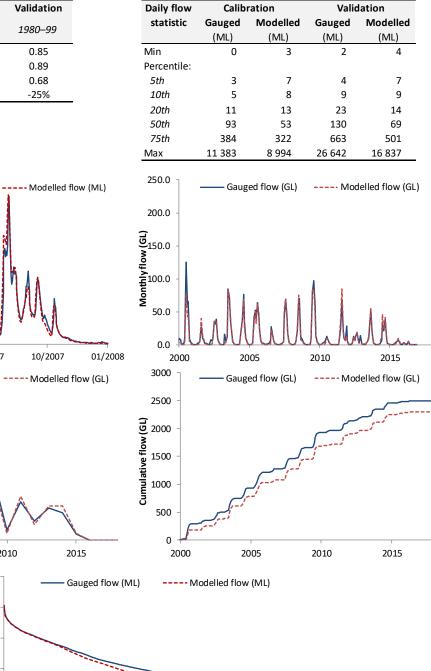
10,000

(M) M) 100

10

1 0%

20%


40%

Per cent of time flow is exceeded

60%

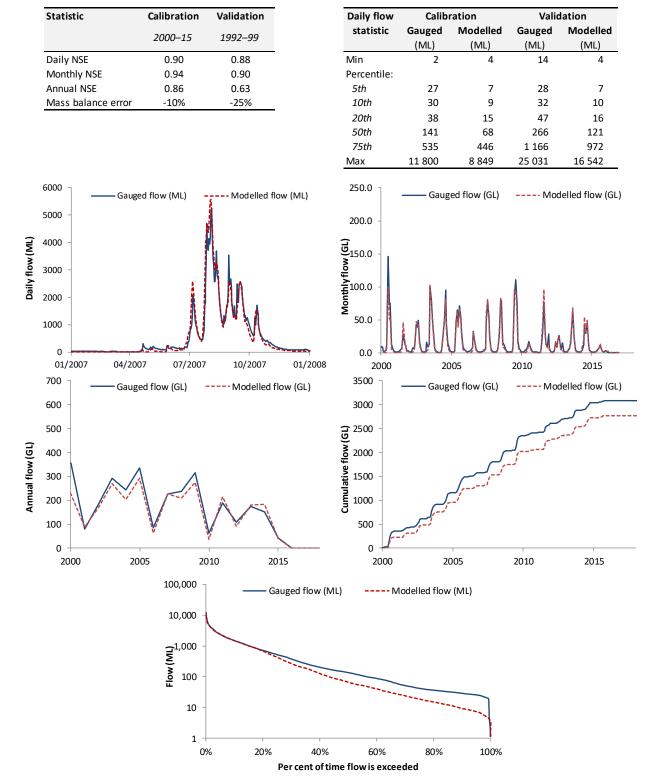
80%

100%

Validation

Statistic	Calibration	valuation		Daily now			valiu	
	2000–15	1980–99		statistic	Gauged	Modelled	Gauged	Modelled
	0.60	0.40			(ML)	(ML)	(ML)	(ML)
Daily NSE	0.69	0.49		Min	0	0	0	0
Monthly NSE	0.76	0.54		Percentile:	•			
Annual NSE	0.80	0.24		5th	0	0	0	0
Mass balance error	10%	-41%		10th	0	0	0	0
				20th	0	0	0	0
				50th	0	0	0	1
				75th	0	2	4	3
				Max	121	86	295	221
60 Gaug	ged flow (ML)	Modelled f	ow (ML)	1.8 1.6	——— Gauge	ed flow (GL)	Mode	elled flow (GL
50 -				1.4 -				
40 -				(J 1.2 -				
30 -				1.0 1.0 0.8				
20 -], [] []		1.2 - 1.0 - 0.8 - 0.6 -	1		1	
10 -	į	MAA.I		0.4		N A I		
		. E. Y. B. AM (Y		0.2 -		$\Lambda \Lambda \Lambda \Lambda$	I. MA	AA.
0 + 01/2007 04/20	07 07/2007	10/2007	01/2008	0.0	200	05	2010	2015
4.5] — Gaug	ged flow (GL)	Modelled	low (GL)	14	Gauge	d flow (GL)	Mod	elled flow (Gl
4.0 -				12 -				
3.5 -								
3.0 -				(j 10 -			lan-1	_
) >		0		
2.5 -				e flov				
2.0 -				- 9 tive	_	المستعبة ال		
1.5 -	٨					7		
		0		L 4 -	م میں ا مراجع			
1.0								
0.5 -	V V			2 -	م-م-			
0.0	•			о 🕌				
	005 20	010 2)15	2000	20	05	2010	2015
	1,000 -	1						
	1,000		auged flow (M	L) M	Iodelled flow	(ML)		
	100 -							
	Σ	N .						
	Elow (ML)	N. Contraction of the second s						
	œ ₁₀ −	No and Andrews						
		No.						
		\`````						
	1 -		· · · · · · · · · · · · · · · · · · ·					
	L -	1 1		1	1	1		
		% 20%	40%	60%	80%	100%		

Daily flow


Calibration

Yarragil Brook - Yarragil Formation - 614044

Calibration Validation

Statistic

Murray River	- Pinjarra	- 614065
--------------	------------	----------

Validation

Statistic	calibration	Validation		Dully now				
	2000–15	1996–99		statistic	Gauged	Modelled	Gauged	Modelled
Daily NSE	0.57	0.71	-	Min	(ML) 0	(ML) 0	(ML) 0	(ML)
Monthly NSE	0.57 0.77	0.71 0.77		Percentile:	0	0	0	0
Annual NSE	0.73	0.66		5th	0	1	0	1
Mass balance error	-5%	-30%		10th	0	1	0	1
	570	5070	•	20th	0	1	0	1
				50th	1	4	1	8
				75th	19	19	87	45
				Max	2 374	1 358	8 781	3 444
				TTUAX	2371	1 330	0,01	5 111
1400 Gauge	d flow (ML)	Modelled 1	low (ML)	40.0	Gaug	ed flow (GL)	Mod	elled flow (GL)
1200 -		·		35.0 -	Curb		11100	
				30.0 -				
1000 -								
800 -				≥ 25.0 -				
600 -				(19) 25.0 - 20.0 - Xitti 15.0 - 10.0 -				
				1 5.0 -				
400 -				Ž 10.0 −			1	
200 -				5.0 -	ł., ł	A 6	1.1	1.
0	M	V: Vla		0.0	h M i	A. A.	Mr. M.	Ak
01/2009 04/200	09 07/2009	10/2009	01/2010	2000	20	05	2010	2015
70 -		Modelled		200]		ed flow (GL)		lelled flow (GL
60 -		Wodened		180 -	Guug		11100	
00				160 -			~	مستقريب المسارك
50 -				គ្រ 140 -				
40 -				Crimulative flow (GL) 120 - 100 - 80 - 60 - 40			F'	
				5 100 -		ſ		
30 -				- 08 at ič		·		
20				6 0 -	_			
20	-F-	٨		J 40 -	- برج	2		
10	/ /	$\langle \rangle \rangle \langle \rangle$			وليسيب المسيب			
	V	V VA N	in the second se	20 -	J.			
0 + 2000 20	05 20	010 2	015	0 - 12 2000	ວເ)05	2010	2015
2000 20	05 20	2010	015	2000	20	105	2010	2015
	10,000 -	— •	auged flow (ML)	N	lodelled flow	(ML)		
						()		
	1,000 -							
	,	N .						
	Ĵ							
	- 100 - 100 -	and the second s						
	Flov	and the second						
	_	``	and the second s					
	10 -							
	10 -		· · · · ·					
	10 -							
	1 -	% 20%	40%	60%	80%	100%		

Daily flow

Calibration

Hotham River - Pumphrey's Bridge - 614105

Validation

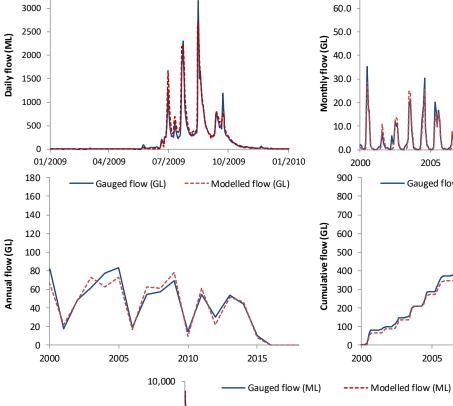
Calibration

Statistic

3500

Williams River - Saddleback Road Bridge - 614196

Statistic	Calibration	Validation		
	2000–15	1980–99		
Daily NSE	0.78	0.87		
Monthly NSE	0.91	0.96		
Annual NSE	0.90	0.90		
Mass balance error	-2%	-5%		


Gauged flow (ML)

Validation	Daily flow	Calib	ration	Valio	lation
1000 00	statistic	Gauged	Modelled	Gauged	Modelled
1980–99		(ML)	(ML)	(ML)	(ML)
0.87	Min	0	2	0	2
0.96	Percentile:				
0.90	5th	1	3	0	4
-5%	10th	2	4	1	4
	20th	4	6	2	6
	50th	30	19	29	24
	75th	122	112	151	158
	Max	5 529	2 761	19 735	11 554
10/2009 01/2010	60.0 - 50.0 - (T9) wolf 10.0 - 10.0 - 0.0 - 2000 900 -		005	2010	2015
Modelled flow (GL)	500 800 - 700 - 600 - 500 - 400 - 300 - 300 - 200 -	—— Gaug	ed flow (GL)	Moc	delled flow (C

2005

2010

2015

1,000

10

1 0%

20%

40%

Per cent of time flow is exceeded

60%

80%

100%

Flow (ML) 100

Validation

		2000–15	1980–99		statistic	Gauged (ML)	Modelled (ML)	Gauged (ML)	Modelled (ML)
	Daily NSE	0.86	0.84	_	Min	1	1	0	1
	Monthly NSE	0.90	0.91		Percentile:				
	Annual NSE	0.87	0.79		5th	1	2	2	2
	Mass balance error	0%	-18%	_	10th	2	3	3	3
				_	20th	3	5	4	5
					50th	24	20	36	26
					75th	158	137	249	206
					Max	8 231	6 888	21 153	11 835
	9000			(, , , ,)	140.0	6		N	
	8000 - Gauge	d flow (ML)	Modelled f	flow (ML)	120.0 -	Gaug	ged flow (GL)	IVIO0	lelled flow (GL)
	7000 -								
ML)	6000 -				100.0 - ד				
low (5000 -				80.0 -				
Daily flow (ML)	4000 -				(Jose 0 80.0 - 40.0 - 40.0 - 40.0 -			1	
Δ	3000 -				40.0 -	Ι.	1 . 1		
	2000 - 1000 -		LINA.		20.0 -		A AA		6
	0	W	VVV		0.0			Mall	Ma
	01/2009 04/200	9 07/2009	10/2009	01/2010	2000	2	005	2010	2015
	400 Gauge	d flow (GL)	Modelled	flow (GL)	1200	Gaug	ged flow (GL)	Moo	lelled flow (GL)
	350 -				1000 -			_	
	300 -				T				
GL)	250 -				- 008 (GL) - 009 - 009 - 009 - 009 - 009 - 000 -		ſ	<u>_</u>	
Annual flow (GL)	200 -				- 000 e fi		کیے جمہے		
li ler	150 -				i tal 100 -				
Annı	100 - ^ /		Δ.		iun 400	السر			
	50 -		N S		200 -	المبرر			
		V	V V V	No.	0				
	2000 200	05 20	010 2	015	2000	2	005	2010	2015
		10,000 -	1						
			@	Gauged flow (N	1L)N	lodelled flov	v (ML)		
		1,000 -							
			Sec.						
		- ₁₀₀ آلا	•	and a second					
		- 100 - How (MI)		and the second					
		ш 10 -			a construction of the second s				
		10							

Daily flow

Calibration

Hotham River - Marradong Road Bridge - 614224

1 -0%

20%

40%

Per cent of time flow is exceeded

60%

80%

100%

Validation

Calibration

Statistic

A.7 Harvey source model

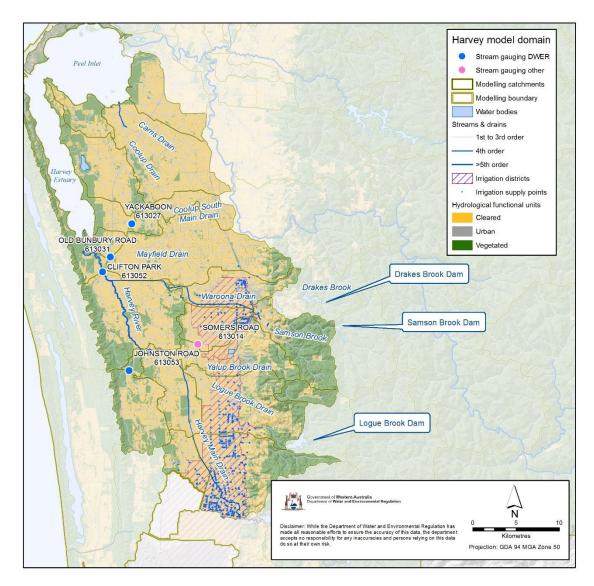


Figure A.5: Harvey model domain, catchments and flow calibration sites

Source version and plugins:	Public 3.7.1 No plugins					
Rainfall-runoff model:	GR4J, SYMHYD with routing					
Link model:	Straight through routing					
Climate data:	Daily AWAP rainfall and FAO56 PET (derived from AWAP data) at catchment centroids					
Additional boundaries:	Inflow node model boundaries for irrigation supply in Waroona and Harvey irrigation districts with 45% return flows assumed based on average seasonal supply. Average Harvey Water supply point data from 1998 to 2008 was used to estimate irrigation supply.					
Calibration period:	2000 to 2015					
Validation period:	1980 to 1999					
Objective function:	Daily NSE with bias penalty					
Calibration description:	The catchment was split into vegetated, cleared and urban functional units based on 2016 land use mapping. Model parameters for the vegetated functional unit were calibrated to the River Road (614035)					

mapping. Model parameters for the vegetated functional unit were calibrated to the River Road (614035) gauge which is fully vegetated. Cleared functional units were calibrated for the upstream catchment of each gauge. Cleared functional units in ungauged catchments were assigned parameters calibrated to the Yackaboon (613027) gauge. Mining areas in catchment #17 were assigned 'cleared' GR4J parameter set.

Subcatchment	Functional Unit	Model	GR4J-x1 (mm)	GR4J-x2 (mm)	GR4J-x3 (mm)	GR4J-x4 (d)
All	Vegetated	GR4J	917.186	-9.986	32.757	1.212
SC #6	Cleared	GR4J	340.076	-3.856	32.228	1.076
SC #7	Cleared	GR4J	340.076	-3.856	32.228	1.076
SC #8	Cleared	GR4J	340.076	-3.856	32.228	1.076
SC #9	Cleared	GR4J	340.076	-3.856	32.228	1.076
SC #10	Cleared	GR4J	340.076	-3.856	32.228	1.076
SC #11	Cleared	GR4J	340.076	-3.856	32.228	1.076
SC # 15	Cleared	GR4J	251.596	-1.134	23.692	1.259
SC #16	Cleared	GR4J	251.596	-1.134	23.692	1.259
SC #17	Cleared	GR4J	251.596	-1.134	23.692	1.259
SC #18	Cleared	GR4J	251.596	-1.134	23.692	1.259
SC #20	Cleared	GR4J	251.596	-1.134	23.692	1.259
SC #22	Cleared	GR4J	251.596	-1.134	23.692	1.259
SC #23	Cleared	GR4J	251.596	-1.134	23.692	1.259
SC #25	Cleared	GR4J	251.596	-1.134	23.692	1.259
SC #26	Cleared	GR4J	251.596	-1.134	23.692	1.259
SC #27	Cleared	GR4J	251.596	-1.134	23.692	1.259
SC #28	Cleared	GR4J	286.247	-2.813	19.338	0.928
SC #34	Cleared	GR4J	340.076	-3.856	32.228	1.076
SC #35	Cleared	GR4J	231.025	-2.684	28.242	0.960
SC #36	Cleared	GR4J	231.025	-2.684	28.242	0.960
SC #37	Cleared	GR4J	486.125	-9.956	87.261	1.045
SC #38	Cleared	GR4J	243.655	-1.839	26.819	1.245

Simhyd with routing

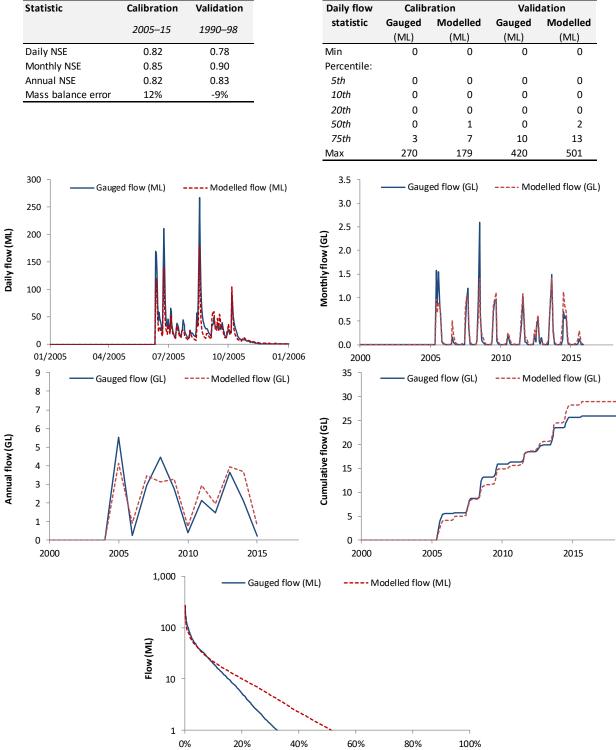
None

Subcatchment	Function unit	Impervious Threshold (mm)	RISC (mm)	Perv. Fraction	SM SC (mm)	Infiltration shape	Infiltration Coeff.		Recharge coefficient	
All	Urban	0.120	2.268	0.816	494.089	1.762	359.193	0.070	0.995	0.025

Link parameters:

Runoff coefficients:

Rainfall-runoff parameters:


Average annual modelled runoff coefficients for all areas in the Murray model domain. Flow from inflow nodes have been excluded.

Period	Total RoC	Cleared RoC	Urban RoC	Vegetated RoC
All years	0.17	0.23	0.18	0.04
1980–99	0.18	0.25	0.19	0.04
2000–15	0.15	0.21	0.16	0.03

Samson North L	Drain - Somers	Road	- 613014
----------------	----------------	------	----------

Statistic	Calibration	Validation	[Daily flow	Calib	ration	Valio	dation
	2005–2007	1980–99		statistic	Gauged	Modelled	Gauged	Modelled
Daily NSE	0.82	0.67	_	/lin	(ML) 0	(ML) 0	(ML) 0	(ML) 0
Monthly NSE	0.82	0.71		ercentile:	0	0	0	0
Annual NSE	0.97	-0.22		5th	1	0	1	0
Mass balance error	-2%	-20%		10th	1	0	2	1
	2,0	2070		20th	2	1	3	2
				50th	4	2	9	2
				75th	10	11	16	12
				/lax	256	265	476	850
300	ed flow (ML) •	Modelled f	11.)	3.5	- Gaug	ged flow (GL)	Mor	delled flow (G
250 -		Wodelieu I	iL)	3.0 -	Guue		WIC	
200 -			÷	2.5 -				
150 -			D) MO	2.0 -				
			Monthlyflow (GL)	1.5 -		5		
100 -			Mon	1.0 -		k , N		
50 -			٨	0.5 -				
0 U 01/2005 04/20	05 07/2005	10/2005	1/2006	0.0	2(005	2010	2015
12 -		Modelled	GL)	14]		ed flow (GL)		delled flow (G
10 -				12 -	-	[
8 -			GL)	10 -				
6 -	ι		flow (8 -		L'		
	A		Cumulative flow (GL)	6 -		1		
4 -			Cumu	4 -				
2 -	V V			2 -				
0 - 2000 20	005 20	010 20		0	2	005	2010	2015
2000 20		510 20		2000	2	005	2010	2015
	1,000 -	G	l flow (ML)	M	lodelled flow	v (ML)		
	100 -	X.						
	- 10 -	No.						
	6 10 -							
			- Chan					

Per cent of time flow is exceeded

Per cent of time flow is exceeded

Mayfield Drain - Old	Bunbury Road - 613031
----------------------	-----------------------

Statistic	Calibration	Validation	Daily flow	Calib	ration	Valio	dation
	2000–15	1991–99	statistic	Gauged	Modelled	Gauged	Modelled
				(ML)	(ML)	(ML)	(ML)
Daily NSE	0.77	0.82	Min	0	0	0	0
Monthly NSE	0.86	0.93	Percentile:	0	0	0	0
Annual NSE Mass balance error	0.80	0.87	5th	0	0	0	0
Mass balance error	6%	1%	10th	0	0	0	0
			20th 50th	1 2	1 4	1 3	1 5
			75th	17			
				1 841	37 1 528	33 2 253	62 2 936
			Max	1041	1 528	2 2 3 3	2 930
1800			18.0				
1600 - Gauge	ed flow (ML)	Modelled flow	16.0	Gaug	ged flow (GL)	Moo	delled flow (G
1400 -			14.0 -				
1200 -			ਰਿ ^{12.0} -				
1000 -			<u>ک</u> 10.0				
800 -			, 7fi		1		
							A .
600 -	1 4 1		(j) 12.0 - 10.0 - 10			Å	
400 -			e 4.0 -	A		×.	
200 -			2.0 -			: 11 1	
0 +	- WINNA	M CLANN C	0.0	Λ			WU Li
01/2005 04/200	05 07/2005	5 10/2005	2000 2000	20	005	2010	2015
40] — Gauge	ed flow (GL)	Modelled flo	180	Gaug	ed flow (GL)	Mo	delled flow (0
35 -		Wodened He	160 -	0008			
Λ			140 -				5
30 -							
25 🔥	A		<u>5</u> 120 -			ہے	
20 -		1	මු 100 -		_		
20			- 08 <u> </u>		r		
15 -	A IA		- 06 E		ليستريب		
10 -			5		l i		
	MI		J 40 -	· · · · · · · · · · · · · · · · · · ·	=		
5 -	V	/	20 -				
0		· · ·	– o ↓		1		
2000 20	05 2	010 201	2000	2	005	2010	2015
	10,000 -	_					
	10,000	Gau	w (ML) N	lodelled flow	/ (ML)		
	1,000 -	A					
		N.					
	100 - 100 -						
	≥ 100 - ≥	\					
	Flo						
	10 -						
	1 -						

Per cent of time flow is exceeded

Validation

statistic Gauged Modelled Gauged Modelled 2000–15 1982–99 (ML) (ML) (ML) (ML) Min Daily NSE 0.87 0.80 4 9 6 9 Monthly NSE 0.92 0.81 Percentile: Annual NSE 0.86 0.22 16 29 19 5th 18 Mass balance error 4% -29% 10th 22 26 35 27 20th 34 55 47 57 50th 67 71 106 80 169 349 75th 231 497 7 350 6 019 10 465 9 398 Max 5000 90.0 Gauged flow (GL) ---- Modelled flow (GL) Gauged flow (ML) --- Modelled flow (ML) 4500 80.0 4000 70.0 3500 60.0 Daily flow (ML) Monthlyflow (GL) 3000 50.0 2500 40.0 2000 30.0 1500 20.0 1000 500 10.0 0 0.0 01/2005 04/2005 07/2005 10/2005 01/2006 2000 2005 2010 2015 350 1800 Gauged flow (GL) ---- Modelled flow (GL) Gauged flow (GL) ---- Modelled flow (GL) 1600 300 1400 250 Cumulative flow (GL) 1200 Annual flow (GL) 200 1000 800 150 600 100 400 50 200 0 0 2005 2015 2000 2010 2015 2000 2005 2010 10,000 Gauged flow (ML) ---- Modelled flow (ML) 1,000 Flow (ML) 100 10 1 0% 20% 40% 60% 80% 100% Per cent of time flow is exceeded

Daily flow

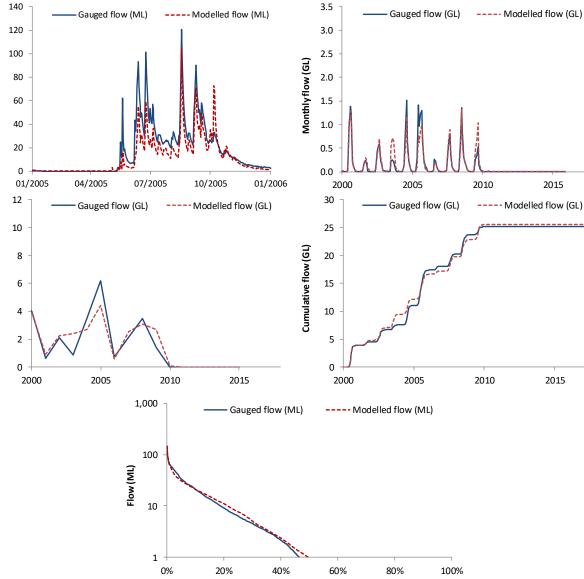
Calibration

Harvey River - Clifton Park - 613052

Calibration

Validation

Statistic


2015

2015

Meredith Drain - Johnston Road - 613053

Statistic	Calibration	Validation		
	2000–10	1982–99		
Daily NSE	0.85	0.75		
Monthly NSE	0.88	0.75		
Annual NSE	0.89	0.16		
Mass balance error	2%	-37%		

Daily flow	Calib	ration	Validation		
statistic	Gauged	Modelled	Gauged	Modelled	
	(ML)	(ML)	(ML)	(ML)	
Min	0	0	0	0	
Percentile:					
5th	0	0	0	0	
10th	0	0	0	0	
20th	0	0	0	0	
50th	1	1	4	2	
75th	6	8	18	12	
Max	145	132	345	255	

Per cent of time flow is exceeded

Daily flow (ML)

Annual flow (GL)

A.8 Coastal south source model

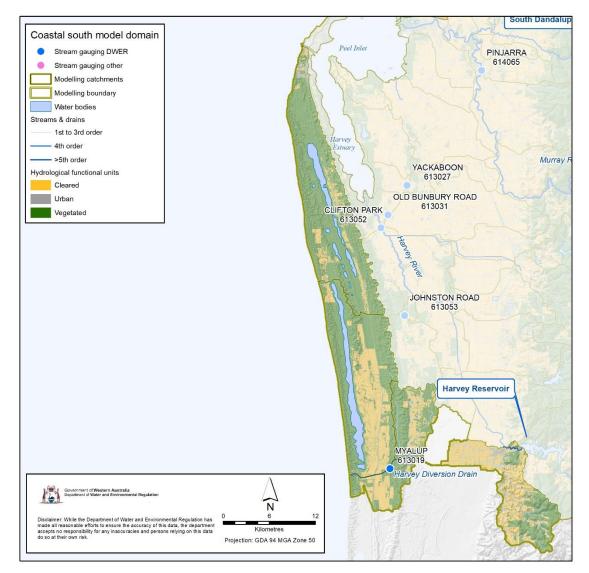


Figure A.6: Coastal south catchments and flow calibration sites

Source version and plugins:	Public 3.7.1	No plugins
Rainfall-runoff model:	GR4J, SYMHYD with	routing
Link model:	Straight through rou	ting
Climate data:	Daily AWAP rainfall a	and FAO56 PET (derived from AWAP data) at catchment centroids
Additional boundaries:		oundaries for irrigation supply in Harvey irrigation district with 45% return flows verage seasonal supply. Average Harvey Water supply point data from 1998 to 2008 e irrigation supply.
Calibration period:	2000 to 2015	
Validation period:	1980 to 1999	
Objective function:	Daily NSE with bias p	penalty
Calibration description:	mapping. Model par years 2014 and 2015	split into vegetated, cleared and urban functional units based on 2016 land use ameters for the cleared catchment areas were calibrated to the Myalup Gauge for the is only. Cleared catchment parameters for the coastal strip were sourced from the ment (SC37) in the Harvey Model.

Subcatchment	Functional Unit	Model	GR4J-x1 (mm)	GR4J-x2 (mm)	GR4J-x3 (mm)	GR4J-x4 (d)
All	Vegetated	GR4J	917.186	-9.986	32.757	1.212
SC #4	Cleared	GR4J	486.125	-9.956	87.261	1.045
SC #5	Cleared	GR4J	486.125	-9.956	87.261	1.045
SC #29	Cleared	GR4J	412.681	-3.105	13.187	2.181
SC #30	Cleared	GR4J	412.681	-3.105	13.187	2.181

Simhyd with routing

Rainfall-runoff parameters:

Subcatchment	Function unit	Impervious Threshold (mm)	RISC (mm)	Perv. Fraction	SM SC (mm)	Infiltration shape	Infiltration Coeff.		Recharge coefficient	
All	Urban	0.120	2.268	0.816	494.089	1.762	359.193	0.070	0.995	0.025

Link parameters:

None

Runoff coefficients:

Average annual modelled runoff coefficients for all areas in the Coastal South model domain. Flow from inflow nodes have been excluded.

Period	Total RoC	Cleared RoC	Urban RoC	Vegetated RoC
All years	0.06	0.14	0.20	0.02
1980–99	0.07	0.16	0.22	0.03
2000–15	0.05	0.13	0.18	0.02

Validation

Validation

statistic Gauged Modelled Gauged Modelled 2014–15 _ (ML) (ML) (ML) (ML) Min Daily NSE 0.96 0.23 0 0 1 0 Monthly NSE 0.99 0.09 Percentile: Annual NSE 1.00 -2.48 0 5th 1 7 1 Mass balance error -5% -76% 10th 0 1 11 1 20th 0 19 1 1 50th 7 3 43 8 25 75th 16 227 44 1 083 788 4 581 1 932 Max 1200 60.0 ---- Modelled flow (GL) Gauged flow (GL) Gauged flow (ML) --- Modelled flow (ML) 1000 50.0 800 Daily flow (ML) 40.0 Monthlyflow (GL) 600 30.0 400 20.0 200 10.0 0 0.0 01/2014 04/2014 07/2014 10/2014 01/2015 2000 2005 2010 2015 160 30 Gauged flow (GL) ---- Modelled flow (GL) Gauged flow (GL) ----- Modelled flow (GL) 140 25 120 Cumulative flow (GL) 20 100 Annual flow (GL) 15 80 60 10 40 5 20 0 0 2005 2010 2005 2000 2015 2000 2010 2015 10,000 Gauged flow (ML) ---- Modelled flow (ML) 1,000 Flow (ML) 100 10 1 100% 0% 20% 40% 60% 80% Per cent of time flow is exceeded

Daily flow

Calibration

Harvey Diversion Drain - Myalup - 613019 Calibration

Statistic

A.9 Coastal north and central source models

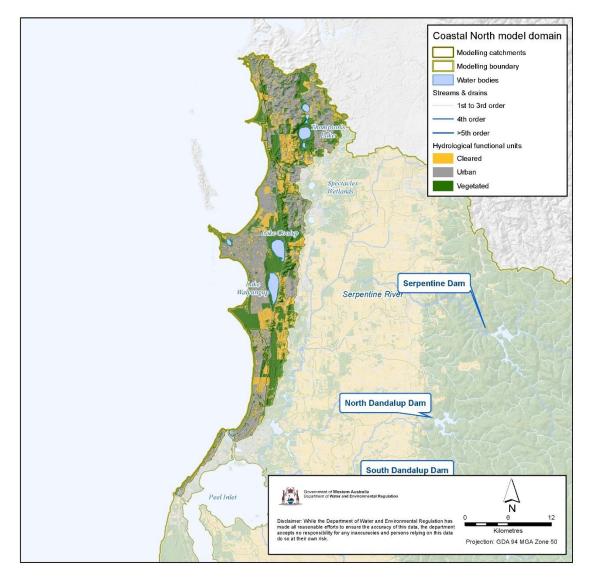


Figure A.7: Coastal north and central catchments

Source version and plugins:	Public 3.7.1	No plugins
Rainfall-runoff model:	GR4J, SYMHYD with	routing
Link model:	Straight through rou	ting
Climate data:	Daily AWAP rainfall a	and FAO56 PET (derived from AWAP data) at catchment centroids
Additional boundaries:	None	
Calibration period:	NA	
Validation period:	NA	
Objective function:	MA	
Calibration description:		split into vegetated, cleared and urban functional units based on 2016 land del parameters were sourced from Bannister Creek. Cleared parameters we

The catchment was split into vegetated, cleared and urban functional units based on 2016 land use mapping. Urban model parameters were sourced from Bannister Creek. Cleared parameters were sourced from the Hope Valley catchment in the Serpentine model. Vegetated parameters were sourced from the River Road catchment.

Rainfall-runoff	narameters									
Kannan-Funon	parameters		bcatchment	Function Unit	al Mo	del			R4J-x3 (mm)	GR4J-x4 (d)
		All		Vegetate	d GR	4J 917	'.186 -9	.986 3	32.757	1.212
		SC	#1	Cleared	GR	4J 1499	9.950 -0	.556 8	8.596	0.509
		SC	#2	Cleared	GR	4J 1499	9.950 -0	.556 8	8.596	0.509
		SC	#3	Cleared	GR	4J 1499	9.950 -0	.556 8	8.596	0.509
		SC	#98	Cleared	GR	4J 1499	9.950 -0	.556 8	8.596	0.509
Simhyd with rout	ting									
Subcatchment	Function unit	Impervio Thresho (mm)	old (mm)	Perv. Fraction	SM SC (mm)	Infiltration shape	Infiltration Coeff.	n Interflow Coeff.		•
All	Urban	0.120	2.268	0.816	494.089	1.762	359.193	0.070	0.9	95 0.025

Link parameters:

None

Runoff coefficients:

Average annual modelled runoff coefficients for all areas in the Coastal North model domain. Flow from inflow nodes have been excluded.

Period	Total RoC	Cleared RoC	Urban RoC	Vegetated RoC
All years	0.16	0.45	0.15	0.02
1980–99	0.17	0.47	0.16	0.02
2000–15	0.15	0.42	0.14	0.01

Appendix B: Nutrient calibration

B.1 Statistics from measured data

B.1.1 Nutrient status

Nutrient status is a method for classifying and reporting total nitrogen (TN) and total phosphorus (TP) concentrations. Nutrient status is a three-year median of consecutive years of water quality data and includes statistical measures to account for inter-annual variation. A full description of the calculation of nutrient status is given here¹.

The nutrient status classifications that we used are given in Table B.1 and the calculated nutrient status for all monitored sites is given in Table B.2 for the period of 2013–15.

Table B.1: Classifications used to assess the status of TN and TP concentrations

Status		Total nitrogen	Total phosphorus
Status		(mg/L)	(mg/L)
Very high	٠	> 2.0	>0.2
High	•	1.2-2.0	0.08-0.2
Moderate	•	0.75-1.2	0.02-0.08
Low	•	< 0.75	< 0.02

AWRC Ref	Site context	River name	Т	N	T	P
			(mg/L)	Status	(mg/L)	Status
613014	Somers Road	Samson North Drain	1.60	•	0.200	•
613027	Yackaboon	South Coolup Main Drain	2.15	•	0.285	•
613031	Old Bunbury Road	Mayfield Drain	0.54	•	0.031	٠
613052	Clifton Park	Harvey River	1.40	•	0.150	•
613053	Johnston Road	Meredith Drain	2.40	•	0.260	•
614030	Dog Hill	Serpentine Drain	0.91	•	0.110	•
614063	Kielman	Nambeelup Brook	3.65	•	0.600	•
614065	Pinjarra	Murray River	0.56	•	0.013	•
614094	Yangedi Swamp	Punrack Drain	2.40	•	0.190	•
614120	Gull Road	Gull Road Drain	4.60	•	0.910	•
614121	Karnup Road	Peel Main Drain	1.40	•	0.235	•
6131335	Drakesbrook Drain	Harvey Catchment	1.05	٠	0.062	•
6142623	Patterson Rd	South Dandalup River	0.80	•	0.095	•

B.1.2 Trends

Surface water nutrient concentrations are inherently variable. Changes brought about by human activity will usually be superimposed on natural sources of variation as well as the effect of climate. We examined the influences of flow and seasonal variation and applied

¹ https://www.water.wa.gov.au/water-topics/waterways/assessing-waterway-health/catchment-nutirent-reports

corrections before trend analysis. Thus, the observed trends in nutrient concentrations are likely to be linked to human intervention or other changes within the catchment.

Non-parametric tests are used to identify statistically significant trends in the nutrient data; they are used because they are not affected by non-normal data distribution, are not sensitive to outliers and are not affected by missing or censored data (Loftis et al. 1991). An assumption of the non-parametric (Mann-Kendall) trend tests is that the trends are monotonically increasing or decreasing (Helshel & Hirsch 1992). Refer to the department's website² for more information about this statistical technique.

To detect a statistically significant trend the *p*-value must be below 0.05, and the number of independent samples (n^{*}) must be larger than the number of independent samples required to detect a trend (n[#]). That is, if p < 0.05 and n^{*} > n[#], then there is a statistically significant trend. If p < 0.05 and n^{*} < n[#], then it is likely that a trend will emerge if more samples are collected.

Table B.3 and Table B.4 give the medium term (2010–14) trends in TN and TP concentrations respectively. We found increasing TN trends at Meredith Drain and Peel Main Drain, increasing TP trends at Harvey River and Nambeelup Brook and decreasing TP trends at Gull Road drain and the Murray River.

AWRC ref	River name	Flow adjusted	Test	р	n*	n#	Trend	Trend
							(mg/L/yr)	
613053	Meredith Drain	No	S	0.001	58	22	0.30	Increasing trend
614121	Peel Main Drain	No	S	0.049	44	29	0.15	Increasing trend
614121	Peel Main Drain	Yes	S	0.023	73	70	0.07	Increasing trend

Table B.3: Medium term (2010-14) total nitrogen trends

S = Seasonal Kendall, MK = Mann-Kendall

Table B.4: Medium-term (2010-14) total phosphorus trends

AWRC re	f River name	Flow adjusted	Test	р	n*	n#	Trend	Trend
							(mg/L/yr)	
613052	Harvey River	No	S	0	85	27	0.02	Increasing trend
614063	Nambeelup Brook	No	S	0.016	58	44	0.05	Increasing trend
614065	Murray River	Yes	S	0.003	84	47	0.00	Decreasing trend
614120	Gull Road Drain	No	S	0	43	8	-0.17	Decreasing trend

S = Seasonal Kendall, MK = Mann-Kendall

² <u>https://www.water.wa.gov.au/water-topics/waterways/assessing-waterway-health/catchment-nutirent-reports</u>

B.2 Nutrient model parameters and daily data

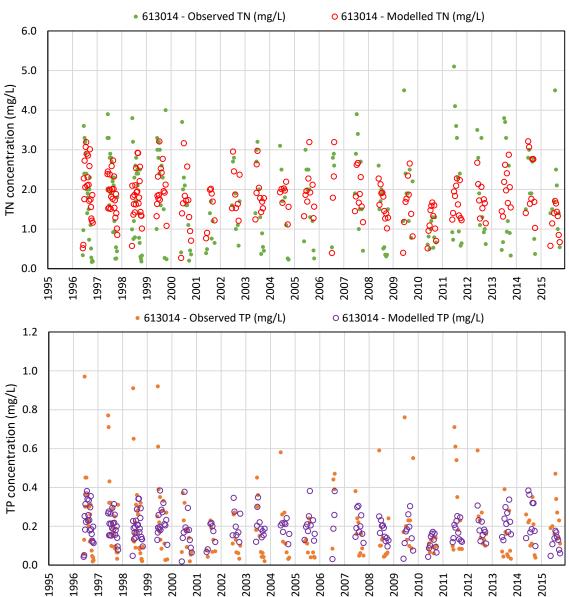
Reporting catchment	Hydrological model	Nutrient model
Coastal Central	North Coastal	Peel Main Drain
Coastal North	North Coastal	Peel Main Drain
Coastal South	South Coastal	Peel Main Drain
Coolup (Harvey)	Harvey	Coolup (Harvey)
Coolup (Peel)	Harvey	Coolup (Peel) ungauged
Dirk Brook	Lower Serpentine	Dirk Brook
Harvey	Harvey	Harvey
Harvey Diversion Drain	South Coastal	Harvey Diversion Drain ungauged
Lower Serpentine	Lower Serpentine	Upper Serpentine
Mandurah	Harvey	Peel Main Drain
Mayfield Drain	Harvey	Mayfield
Meredith Drain	Harvey	Meredith
Murray	Murray	Murray ungauged
Nambeelup	Lower Serpentine	Nambeelup
Peel Main Drain	Lower Serpentine	Peel Main Drain
Upper Murray	Murray	Upper Murray
Upper Serpentine	Lower Serpentine	Upper Serpentine
Upstream Harvey Reservoir	Dams	Dams
Upstream North Dandalup Dam	Dams	Dams
Upstream Serpentine Dam	Dams	Dams
Upstream South Dandalup Dam	Dams	Dams

Table B.5: Hydrological and nutrient model parameters used by reporting catchment

Table B.6: Nitrogen model parameters

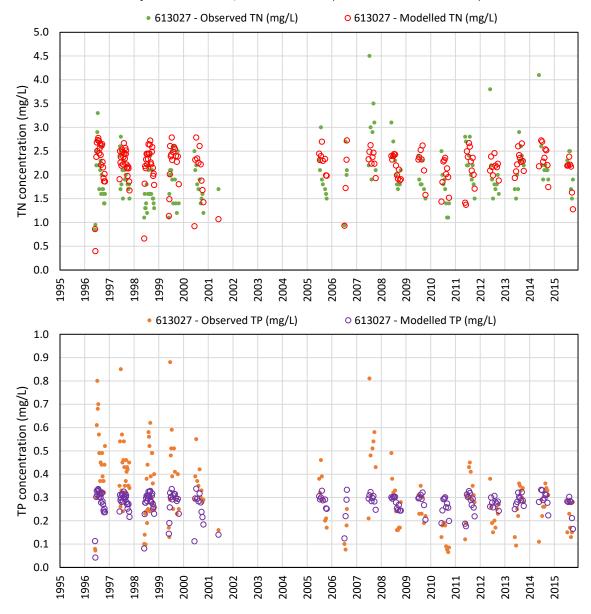
Modelling land use		Brook	Namb		Peel Dra	ain	Upp Serpei	ntine	Gull I		Up Mur	ray		rray	Har		Sam		Drakes		Mere		Mayf		Coo (Har	•	Dai		Cool (Pee ungau	el) Iged	Murr ungau	ged	Harv Diver Dra ungau	in uged
Bare soil & other (high PRI)	a 0.14	0.16	a 0.25	b 0.03	a 0.31	b 0.10	a 0.15	b 0.25	a 0.15	b -0.10	a 0.13	b 0.20	a 0.10	b 0.38	a 0.15	b 0.29	a 0.14	b 0.20	a 0.14	b 0.20	a 0.24	b 0.18	a 0.12	b 0.26	a 0.15	0.05	a 0.21	b -0.20	a 0.15	b 0.05	a 0.10	b 0.38	a 0.31	b 0.10
Bare soil & other (low PRI)	0.14			0.03		0.10		0.25										0.20		0.20	0.24	0.18		0.26	0.15			-0.20	0.15				0.31	
Beef (high PRI)	2.43		4.28	0.03		0.10	2.58	0.25	2.52		2.12	0.20	1.69			0.29	2.30	0.20		0.20	4.10	0.18	2.04	0.26	2.57	0.05	0.21	-0.20	2.57	0.05	1.69	0.38		
Beef (low PRI)	2.43			0.03		0.10	2.58	0.25	2.52									0.20		0.20	4.10	0.18	2.04	0.26	2.57	0.05	0.21		2.57			0.38	5.16	
Cropping (high PRI)	1.11			0.03		0.10	1.18	0.25	1.15		0.97	0.20	0.77			0.29	1.05	0.20		0.20	1.87	0.18	0.93	0.26	1.18	0.05	0.21		1.18	0.05	0.77	0.38		
Cropping (low PRI)	1.11			0.03		0.10		0.25		-0.10		0.20						0.20			1.87	0.18	0.93		1.18	0.05			1.18				2.36	
Dairy (high PRI)	3.82			0.03		0.10		0.25						0.38					3.55	0.20	6.33				3.79	0.05								
Dairy (low PRI)	3.75			0.03		0.10	5.99	0.25	3.89	-0.10		0.20	2.60			0.29		0.20		0.20	6.33	0.18	4.22	0.26	5.94	0.05	0.21		3.74	0.05	5.85	0.38		0.10
Feedlots & stockyards (high PRI)	18.19		32.08		38.70		19.36		18.90				12.64		19.16		17.20		18.02		30.73		15.30		19.28	0.05	0.21			0.05		0.38		0.10
Feedlots & stockyards (Ingiri Ri)	18.19		32.08		38.70		19.36		18.90				12.64		19.16		17.20		18.02		30.73		15.30	0.26		0.05	0.21			0.05		0.38		0.10
Horses (high PRI)	1.94			0.03		0.10	2.06	0.25	2.01			0.20				0.29		0.20		0.20	3.27	0.18	1.63		2.05	0.05	0.21		2.05			0.38		
Horses (low PRI)	1.94	0.10		0.03		0.10	2.00	0.25	2.01		1.69	0.20	1.35			0.29	1.83	0.20		0.20	3.27	0.18	1.63	0.26	2.05	0.05	0.21		2.05	0.05		0.38		0.10
Horticulture (high PRI)	1.41			0.03		0.10		0.25										0.20		0.20	2.38		1.19	0.26	1.50	0.05			1.50				3.00	
Horticulture (low PRI)		0.10		0.03		0.10	1.50	0.25	1.47							0.29		0.20		0.20	2.38	0.18	1.19	0.20	1.50	0.05			1.50					
Industry, manufacturing & transport (high PRI)	0.10			0.03		0.10	0.06	0.25	0.03	-0.10	0.03	0.20	0.98			0.29	0.08	0.20		0.20	0.07	0.18	0.08	0.20	0.07	0.05	0.21	-0.20	0.07	0.05	0.98	0.38		0.10
Industry, manufacturing & transport (low PRI)	0.10		0.11	0.03		0.10	0.00	0.25	0.03			0.20					0.08	0.20		0.20	0.07	0.18	0.08	0.20	0.07	0.05	0.21		0.07	0.05	0.06	0.38		
Lifestyle block (high PRI)	1.52			0.03		0.10	1.61	0.25	1.58			0.20				0.29		0.20		0.20	2.56		1.28	0.26	1.61	0.05	0.21		1.61					
Lifestyle block (low PRI)		0.16		0.03		0.10	1.61	0.25	1.58							0.29		0.20		0.20	2.56		1.28	0.20	1.61	0.05	0.21						3.22	
Mixed grazing (high PRI)	1.90			0.03		0.10	2.02	0.25	1.97	-0.10	1.66	0.20	1.32			0.29		0.20		0.20	3.21	0.18	1.60	0.26	2.01	0.05	0.21		2.01			0.38		0.10
Mixed grazing (low PRI)	1.90			0.03		0.10	2.02	0.25								0.29		0.20		0.20	3.21		1.60	0.20	2.01	0.05						0.38		0.10
Native vegetation (high PRI)	0.08			0.03		0.10	0.11	0.25	0.08			0.20				0.29		0.20		0.20	0.08	0.18		0.20	0.11	0.05	0.21					0.38	0.12	
Native vegetation (low PRI)	0.08			0.03		0.10	0.11	0.25	0.08		0.11	0.20	0.12		0.08	0.29	0.10	0.20		0.20	0.08	0.18	0.11	0.20	0.11	0.05	0.21	-0.20	0.11	0.05	0.12	0.38		
Offices, commercial & education (high PRI)	1.93			0.03		0.10	1.31	0.25	0.62		0.11	0.20	1.14			0.29		0.20		0.20	1.34	0.18	1.65	0.20	1.35	0.05	0.21	-0.20	1.35	0.05	1.14	0.38		0.10
Offices, commercial & education (ling) PRI	1.93		2.27	0.03		0.10	1.31	0.25	0.62		0.69	0.20	1.14			0.29	1.56	0.20		0.20	1.34	0.18	1.65	0.20	1.35	0.05	0.21	-0.20	1.35	0.05	1.14	0.38		0.10
Orchard (high PRI)	0.26			0.03		0.10	0.28	0.25	0.62		0.89	0.20				0.29		0.20		0.20	0.44	0.18	0.22	0.26	0.27	0.05	0.21		0.27			0.38	0.55	
Orchard (low PRI)	0.20			0.03		0.10	0.28	0.25	0.27		0.23	0.20	0.18			0.29	0.25	0.20		0.20	0.44	0.18	0.22	0.20	0.27	0.05	0.21	-0.20	0.27	0.05		0.38		
Piggeries & abattoirs (high PRI)		0.10			18.54	0.10	9.28	0.25	9.06			0.20				0.29		0.20			14.72		7.33	0.20	9.23	0.05	0.21		9.23			0.38		0.10
Piggeries & abattoirs (low PRI)		0.10			18.54	0.10	9.28	0.25	9.06			0.20						0.20			14.72		7.33	0.20	9.23	0.05			9.23			0.38		0.10
Plantation (high PRI)	1.71		4.55	0.03		0.10	2.36	0.25	1.73	-0.10	2.26	0.20	2.49			0.29	2.02	0.20		0.20	1.72	0.18	2.34	0.20	2.16	0.05	0.21	-0.20	2.16	0.05	2.49	0.38	2.42	0.10
Plantation (low PRI)	1.71			0.03		0.10		0.25	1.73									0.20		0.20	1.72				2.10	0.05	0.21		2.10					
Point source (high PRI)	0.14			0.03		0.10	0.15	0.25	0.15			0.20						0.20			0.24	0.18			0.15	0.05	0.21	-0.20	0.15			0.38		0.10
Point source (low PRI)	0.14			0.03		0.10	0.15	0.25	0.15							0.29		0.20			0.24	0.18	0.12	0.20	0.15	0.05	0.21		0.15			0.38	0.31	
Poultry (high PRI)	37.71		66.51		80.23		40.15			-0.10			26.21		39.73		35.66		37.37		63.71			0.20		0.05				0.05				
Poultry (low PRI)		0.10			80.23		40.15		39.19		32.94		26.21		39.73		35.66		37.37		63.71			0.20		0.05		-0.20		0.05		0.38		0.10
Recreation (high PRI)	1.97			0.03			2.10	0.25			1.72					0.29			1.96	0.20	3.33	0.18	1.66		2.09	0.05			2.09					0.10
Recreation (low PRI)	1.97		3.48	0.03		0.10	2.10	0.25	2.05	-0.10	1.72		1.37			0.29	1.87	0.20		0.20	3.33	0.18	1.66	0.20	2.09	0.05	0.21	-0.20	2.09	0.05	1.37	0.38	4.20	0.10
Rural living (bush block) (high PRI)	1.49			0.03		0.10		0.25	1.51			0.20						0.20		0.20	5.55 1.50	0.18	2.04	0.26	1.88	0.05	0.21		1.88					0.10
Rural living (bush block) (low PRI)	1.49			0.03		0.10	2.00	0.25	1.51			0.20				0.29		0.20		0.20	1.50	0.18	2.04		1.88	0.05	0.21	-0.20	1.88			0.38		0.10
Turf farm (high PRI)	2.77		4.89	0.03		0.10	2.00	0.25	2.88	-0.10			1.93			0.29		0.20		0.20	4.68	0.18	2.33	0.20	2.94	0.05	0.21	-0.20	2.94			0.38		0.10
Turf farm (low PRI)	2.77			0.03		0.10		0.25	2.88									0.20		0.20	4.68	0.18	2.33	0.26	2.94	0.05			2.94			0.38		
Urban residential (high PRI)	1.63					0.10		0.25		-0.10						0.29			2.75	0.20		0.18	2.55	0.26	1.14	0.05						0.38	0.78	
Urban residential (low PRI)	1.63			0.03		0.10	1.11	0.25		-0.10		0.20				0.29		0.20		0.20	1.13	0.18	1.40	0.26	1.14	0.05						0.38		
Urban residential (low PRI) Urban residential (very small) (high PRI)	0.52		0.61	0.03		0.10	0.35	0.25	0.52	-0.10	0.58	0.20	0.96			0.29	0.42	0.20		0.20	0.36	0.18	0.45	0.26	0.36	0.05	0.21	-0.20	0.36	0.05	0.96	0.38		0.10
	0.52			0.03		0.10	0.35	0.25		-0.10								0.20			0.36		0.45	0.26	0.36	0.05	0.21			0.05		0.38	0.25	
Urban residential (very small) (low PRI)																																		
Viticulture (high PRI)	1.45		2.56 2.56			0.10	1.54	0.25 0.25		-0.10 -0.10								0.20			2.45		1.22		1.54	0.05								
Viticulture (low PRI)						0.10						0.20			_		1.37			_		0.18						_		0.05		_	3.09 1.79	
Total	2.20	0.16	4.15	0.03	1.79	0.10	2.45	0.25	4.28	-0.10	0.92	0.20	1.40	0.58	2.17	0.29	2.15	0.20	1.80	0.20	3.50	0.18	1.91	0.26	2.50	0.05	0.21	-0.20	2.50	0.05	1.40	0.50	1.79	0.10

Table B.7: Phosphorus model parameters


	0.11		N		Peel	Main	Upp	er			Upp	ber					6		Destaut						Cool	up		с	oolup (I	Peel)	Murray		arvey /ersion
Modelling land use	DIRKE	STOOK	Namb	eeiup	Dra	ain	Serpen	ntine	Gull Ro	ad	Muri		Murr	ay	Harv	/ey	Sams	son	Drakes	Drook	were	aith	Mayfi	eia	(Harv	/ey)	Dams		ungaug	ged u	ngauged	D	Drain
																																ung	gauged
	а	b	а	b	а	b	а	b	а	b	а	b	а	b	а	b	а	b	а	b	а	b	а	b	а	b	a I	b	а	b a	b	а	b
Bare soil & other (high PRI)	0.001	0.08	0.002	0.05	5 0.002	0.10	0.001	0.20	0.001 -	0.10 (0.000	0.20 0	0.001	0.36 0	0.001	0.34	0.002	0.25	0.001	0.60	0.001	0.25	0.001	0.35	0.001	0.03 0.0	03 -0	.20 0	0.001	0.03 0.0	01 0.3	6 0.00	0.10
Bare soil & other (low PRI)	0.007	0.08	0.012	0.05	5 0.016	0.10	0.011	0.20	0.006 -	0.10	0.003	0.20 0	0.004	0.36 0	0.010	0.34	0.013	0.25	0.004	0.60	0.009	0.25	0.007	0.35	0.010	0.03 0.0	03 -0	.20 0	0.010	0.03 0.0	04 0.3	6 0.01	.6 0.10
Beef (high PRI)	0.053	0.08	0.096	0.05	5 0.127	0.10	0.088	0.20	0.045 -	0.10	0.026	0.20 0	0.032	0.36 0	0.080	0.34	0.104	0.25	0.030	0.60	0.071	0.25	0.057	0.35	0.074	0.03 0.0	03 -0	.20 0	0.074	0.03 0.0	32 0.3	6 0.12	7 0.10
Beef (low PRI)	0.425	0.08	0.768	0.05	5 1.013	0.10	0.704	0.20	0.361 -	0.10	0.211	0.20 0	0.253	0.36 0	0.640	0.34	0.830	0.25	0.237	0.60	0.571	0.25	0.455	0.35	0.595	0.03 0.0	03 -0	.20 0).595	0.03 0.2	53 0.3	6 1.01	.3 0.10
Cropping (high PRI)	0.019	0.08	0.034	0.05	5 0.045	0.10	0.031	0.20	0.016 -	0.10 (0.009	0.20 0	0.011	0.36 0	0.028	0.34	0.037	0.25	0.011	0.60	0.025	0.25	0.020	0.35	0.026	0.03 0.0	003 -0	.20 0	0.026	0.03 0.0	11 0.3	6 0.04	5 0.10
Cropping (low PRI)	0.150	0.08	0.272	0.05	5 0.359	0.10	0.249	0.20	0.128 -	0.10 (0.075	0.20 0	0.090	0.36 0	0.227	0.34	0.294	0.25	0.084	0.60	0.202	0.25	0.161	0.35	0.211	0.03 0.0	003 -0	.20 0	0.211	0.03 0.0	90 0.3	6 0.35	9 0.10
Dairy (high PRI)	0.136	0.08	0.504	0.05	5 0.225	0.10	0.396	0.20	0.080 -	0.10 (0.047	0.20 0	0.183	0.36 0	0.288	0.34	1.514	0.25	0.050	0.60	0.127	0.25	0.094	0.35	0.125	0.03 0.0	003 -0	.20 0	0.936	0.03 0.0	72 0.3	6 0.13	7 0.10
Dairy (low PRI)	0.755	0.08	1.378	0.05	5 1.802	0.10	1.914	0.20	0.642 -	0.10	0.376	0.20 0	0.450	0.36 0	0.324	0.34	1.477	0.25	1.064	0.60	1.017	0.25	1.226	0.35	1.713	0.03 0.0	03 -0	.20 0	0.919	0.03 1.5	74 0.3	6 0.13	7 0.10
Feedlots & stockyards (high PRI)	0.213	0.08	0.386	0.05	5 0.509	0.10	0.354	0.20	0.181 -	0.10	0.106	0.20 0	0.127	0.36 0	0.321	0.34	0.417	0.25	0.119	0.60	0.287	0.25	0.229	0.35	0.299	0.03 0.0	03 -0	.20 0).299	0.03 0.1	27 0.3	6 0.50	9 0.10
Feedlots & stockyards (low PRI)	1.706	0.08	3.086	0.05	5 4.071	0.10	2.830	0.20	1.450 -	0.10	0.849	0.20 1	1.016	0.36	2.570	0.34	3.336	0.25	0.950	0.60	2.296	0.25	1.828	0.35	2.389	0.03 0.0	0- 00	.20 2	2.389	0.03 1.0	16 0.3	6 4.07	1 0.10
Horses (high PRI)	0.062	0.08	0.112	0.05	5 0.148	0.10	0.103	0.20	0.053 -	0.10	0.031	0.20 0	0.037	0.36	0.093	0.34	0.121	0.25	0.035	0.60	0.083	0.25	0.066	0.35	0.087	0.03 0.0	0- 00	.20 0	0.087	0.03 0.0	37 0.3	6 0.14	8 0.10
Horses (low PRI)	0.496	0.08	0.897	0.05	5 1.184	0.10	0.823	0.20	0.422 -	0.10	0.247	0.20 0	0.295	0.36	0.747	0.34	0.970	0.25	0.276	0.60	0.668	0.25	0.531	0.35	0.695	0.03 0.0	0- 00	.20 0	0.695	0.03 0.2	95 0.3	6 1.18	4 0.10
Horticulture (high PRI)	0.546	0.08	0.987	0.05	5 1.303	0.10	0.905	0.20	0.464 -	0.10	0.272	0.20 0	0.325	0.36	0.822	0.34	1.067	0.25	0.304	0.60	0.735	0.25	0.585	0.35	0.764	0.03 0.0	0- 00	.20 0	0.764	0.03 0.3	25 0.3	6 1.30	3 0.10
Horticulture (low PRI)	4.365	0.08	7.898	0.05	5 10.42	0.10	7.243	0.20	3.710 -	0.10	2.173	0.20 2	2.600	0.36	6.578	0.34	8.537	0.25	2.432	0.60	5.876	0.25	4.678	0.35	6.114	0.03 0.0	0- 00	.20 6	5.114	0.03 2.6	00 0.3	6 10.4	2 0.10
Industry, manufacturing & transport (high PRI)	0.001	0.08	0.001	0.05	5 0.000	0.10	0.001	0.20	0.000 -	0.10	0.000	0.20 0	0.000	0.36	0.001	0.34	0.001	0.25	0.000	0.60	0.000	0.25	0.001	0.35	0.001	0.03 0.0	0- 00	.20 0	0.001	0.03 0.0	00 0.3	6 0.00	0 0.10
Industry, manufacturing & transport (low PRI)	0.004	0.08	0.005	0.05	5 0.002	0.10	0.005	0.20	0.001 -	0.10	0.001	0.20 0	0.002	0.36	0.009	0.34	0.007	0.25	0.003	0.60	0.003	0.25	0.005	0.35	0.004	0.03 0.0	0- 00	.20 0	0.004	0.03 0.0	02 0.3	6 0.00	0.10
Lifestyle block (high PRI)	0.011	0.08	0.020	0.05	5 0.027	0.10	0.019	0.20	0.010 -	0.10	0.006	0.20 0	0.007	0.36	0.017	0.34	0.022	0.25	0.006	0.60	0.015	0.25	0.012	0.35	0.016	0.03 0.0	0- 20	.20 0	0.016	0.03 0.0	07 0.3	6 0.02	7 0.10
Lifestyle block (low PRI)	0.090	0.08	0.163	0.05	5 0.215	0.10	0.150	0.20	0.077 -	0.10	0.045	0.20 0	0.054	0.36	0.136	0.34	0.176	0.25	0.050	0.60	0.121	0.25	0.097	0.35	0.126	0.03 0.0	0- 20	.20 0	0.126	0.03 0.0	54 0.3	6 0.21	.5 0.10
Mixed grazing (high PRI)	0.036	0.08	0.065	0.05	5 0.086	0.10	0.060	0.20	0.031 -	0.10	0.018	0.20 0	0.022	0.36	0.055	0.34	0.071	0.25	0.020	0.60	0.049	0.25	0.039	0.35	0.051	0.03 0.0	0- 20	.20 0	0.051	0.03 0.0	22 0.3	6 0.08	6 0.10
Mixed grazing (low PRI)	0.289	0.08	0.523	0.05	5 0.691	0.10	0.480	0.20	0.246 -	0.10	0.144	0.20 0	0.172	0.36	0.436	0.34	0.566	0.25	0.161	0.60	0.389	0.25	0.310	0.35	0.405	0.03 0.0	0- 20	.20 0	0.405	0.03 0.1	72 0.3	6 0.69	1 0.10
Native vegetation (high PRI)	0.000	0.08	0.001	0.05	5 0.000	0.10	0.001	0.20	0.000 -	0.10	0.000	0.20 0	0.000	0.36	0.000	0.34	0.001	0.25	0.000	0.60	0.000	0.25	0.001	0.35	0.001	0.03 0.0	0- 20	.20 0	0.001	0.03 0.0	00 0.3	6 0.00	0 0.10
Native vegetation (low PRI)	0.002	0.08	0.006	0.05	5 0.004	0.10	0.005	0.20	0.002 -	0.10	0.002	0.20 0	0.003	0.36	0.003	0.34	0.005	0.25	0.001	0.60	0.002	0.25	0.004	0.35	0.004	0.03 0.0	0- 20	.20 0	0.004	0.03 0.0	03 0.3	6 0.00	4 0.10
Offices, commercial & education (high PRI)	0.056	0.08	0.068	0.05	5 0.030	0.10	0.060	0.20	0.015 -	0.10	0.011	0.20 0	0.029	0.36	0.112	0.34	0.094	0.25	0.043	0.60	0.031	0.25	0.061	0.35	0.052	0.03 0.0	0- 20	.20 0	0.052	0.03 0.0	29 0.3	6 0.03	0 0.10
Offices, commercial & education (low PRI)	0.451	0.08	0.544	0.05	5 0.242	0.10	0.478	0.20	0.118 -	0.10	0.091	0.20 0	0.228	0.36	0.898	0.34	0.753	0.25	0.342	0.60	0.249	0.25	0.491	0.35	0.417	0.03 0.0	0- 00	.20 0	0.417	0.03 0.2	28 0.3	6 0.24	2 0.10
Orchard (high PRI)	0.029	0.08	0.053	0.05	5 0.070	0.10	0.048	0.20	0.025 -	0.10	0.015	0.20 0	0.017	0.36	0.044	0.34	0.057	0.25	0.016	0.60	0.039	0.25	0.031	0.35	0.041	0.03 0.0	0- 20	.20 0	0.041	0.03 0.0	17 0.3	6 0.07	0 0.10
Orchard (low PRI)	0.233	0.08	0.421	0.05	0.556	0.10	0.387	0.20	0.198 -	0.10	0.116	0.20 0	0.139	0.36	0.351	0.34	0.456	0.25	0.130	0.60	0.314	0.25	0.250	0.35	0.326	0.03 0.0	0- 20	.20 0	0.326	0.03 0.1	39 0.3	6 0.55	6 0.10
Piggeries & abattoirs (high PRI)	0.317	0.08	0.573	0.05	5 0.756	0.10	0.525	0.20	0.269 -	0.10	0.158	0.20 0	0.189	0.36	0.477	0.34	0.619	0.25	0.176	0.60	0.426	0.25	0.339	0.35	0.443	0.03 0.0	0- 20	.20 0).443	0.03 0.1	89 0.3	6 0.75	6 0.10
Piggeries & abattoirs (low PRI)	2.532	0.08	4.581	0.05	6.044	0.10	4.201	0.20	2.152 -	0.10	1.260	0.20 1	1.508	0.36	3.816	0.34	4.952	0.25	1.411	0.60	3.409	0.25	2.713	0.35	3.546	0.03 0.0	0- 20	.20 3	3.546	0.03 1.5	08 0.3	6 6.04	4 0.10
Plantation (high PRI)	0.170	0.08	0.464	0.05	5 0.270	0.10	0.366	0.20	0.141 -	0.10	0.128	0.20 0	0.213	0.36	0.235	0.34	0.416	0.25	0.054	0.60	0.136	0.25	0.296	0.35	0.284	0.03 0.0	0- 20	.20 0	0.284	0.03 0.2	13 0.3	6 0.27	0 0.10
Plantation (low PRI)	1.359	0.08	3.713	0.05	5 2.163	0.10	2.926	0.20	1.129 -	0.10	1.023	0.20 1	1.700	0.36	1.881	0.34	3.328	0.25	0.433	0.60	1.092	0.25	2.369	0.35	2.275	0.03 0.0	0- 20	.20 2	2.275	0.03 1.7	00 0.3	6 2.16	3 0.10
Point source (high PRI)	0.001	0.08	0.002	0.05	5 0.002	0.10	0.001	0.20	0.001 -	0.10	0.000	0.20 0	0.001	0.36	0.001	0.34	0.002	0.25	0.001	0.60	0.001	0.25	0.001	0.35	0.001	0.03 0.0	03 -0	.20 0		0.03 0.0		6 0.00	0.10
Point source (low PRI)	0.007	0.08	0.012	0.05	5 0.016	0.10	0.011	0.20	0.006 -	0.10	0.003	0.20 0	0.004	0.36	0.010	0.34	0.013	0.25	0.004	0.60	0.009	0.25	0.007	0.35	0.010	0.03 0.0	03 -0	.20 0	0.010	0.03 0.0	04 0.3	6 0.01	.6 0.10
Poultry (high PRI)	0.102	0.08	0.184	0.05	5 0.243	0.10	0.169	0.20	0.087 -	0.10	0.051	0.20 0	0.061	0.36	0.154	0.34	0.199	0.25	0.057	0.60	0.137	0.25	0.109	0.35	0.143	0.03 0.0	03 -0	.20 0	0.143	0.03 0.0	61 0.3	6 0.24	3 0.10
Poultry (low PRI)	0.815	0.08	1.475	0.05	5 1.946	0.10	1.353	0.20	0.693 -	0.10	0.406	0.20 0	0.486	0.36		0.34			0.454	0.60	1.097	0.25				0.03 0.0		.20 1	L.142	0.03 0.4	86 0.3	6 1.94	6 0.10
Recreation (high PRI)	0.009	0.08	0.017	0.05	5 0.022	0.10	0.015	0.20	0.008 -	0.10	0.005	0.20 0	0.006	0.36	0.014	0.34	0.018	0.25	0.005	0.60	0.013	0.25	0.010	0.35	0.013	0.03 0.0	03 -0	.20 0	0.013	0.03 0.0	06 0.3	6 0.02	2 0.10
Recreation (low PRI)	0.074	0.08	0.135	0.05	5 0.178	0.10		0.20		0.10		0.20 0		0.36 (0.34			0.041	0.60						0.03 0.0		.20 0		0.03 0.0		6 0.17	8 0.10
Rural living (bush block) (high PRI)	0.005		0.014		5 0.008			0.20	0.004 -			0.20 0		0.36					0.002	0.60						0.03 0.0		.20 0		0.03 0.0		6 0.00	
Rural living (bush block) (low PRI)	0.040	0.08	0.108	0.05	5 0.063	0.10	0.085	0.20	0.033 -	0.10	0.030	0.20 0	0.049	0.36 (0.055	0.34	0.097	0.25	0.013	0.60	0.032	0.25	0.069	0.35	0.066	0.03 0.0	03 -0	.20 0	0.066	0.03 0.0	49 0.3	6 0.06	3 0.10
Turf farm (high PRI)	0.125	0.08	0.226		5 0.298					0.10		0.20 0		0.36 (0.34			0.070	0.60						0.03 0.0		.20 0		0.03 0.0		6 0.29	
Turf farm (low PRI)	0.999		1.808		5 2.385				0.849 -			0.20 0		0.36		0.34			0.557	0.60						0.03 0.0		.20 1		0.03 0.5		6 2.38	
Urban residential (high PRI)	0.049		0.059		5 0.027			0.20		0.10		0.20 0		0.36 (0.34			0.037	0.60						0.03 0.0		.20 0		0.03 0.0		6 0.02	
Urban residential (low PRI)	0.394		0.476		5 0.212				0.103 -			0.20 0		0.36 (0.34			0.300	0.60						0.03 0.0		.20 0		0.03 0.1		6 0.21	
Urban residential (very small) (high PRI)	0.020		0.024		5 0.011		0.021		0.005 -			0.20 0		0.36 (0.34			0.015	0.60		0.25				0.03 0.0		.20 0		0.03 0.0		6 0.01	
Urban residential (very small) (low PRI)	0.158		0.190		5 0.085				0.041 -					0.36 (0.60						0.03 0.0				0.03 0.0		6 0.08	
Viticulture (high PRI)	0.063		0.115						0.054 -					0.36 (0.124			0.60						0.03 0.0		.20 0		0.03 0.0			1 0.10
Viticulture (low PRI)	0.507		0.918		5 1.211			0.20		0.10 (0.20 0		0.36 (0.34			0.283	0.60					0.710	0.03 0.0		.20 0		0.03 0.3		6 1.21	
Total	0.304								2.470 -																	0.03 0.0		_		0.03 0.2			3 0.10

Catchment ID	Reporting catchment	Location	Max N reduction	Max P reduction	Vegetated	N reduction	P reduction		
			(%)	(%)	(%)	(%)	(%)		
2	Coastal North	SCP	12	2.5	28	3.4	0.		
3	Coastal North	SCP	12	2.5	55	6.7	1.4		
5	Coastal South	SCP	12	2.5	68	8.2	1.		
6	Coolup (Harvey)	SCP	12	2.5	12	1.5	0.3		
7	Coolup (Harvey)	SCP	12	2.5	21	2.6	0.		
8	Coolup (Harvey)	SCP	12	2.5	31	3.7	0.		
9	Coolup (Peel)	SCP	12	2.5	16	1.9	0.		
10	Coolup (Peel)	SCP	12	2.5	40	4.8	1.		
11	Coolup (Peel)	SCP	12	2.5	32	3.9	0.		
12	Dirk Brook	SCP	12	2.5	83	10.0	2.		
13	Dirk Brook	SCP	12	2.5	57	6.8	1.		
14	Dirk Brook	SCP	12	2.5	29	3.5	0.		
15	Harvey	Upland	40	15.0	71	28.6	10.		
16	Harvey	SCP	12	2.5	23	2.8	0.		
17	Harvey	SCP	12	2.5	30	3.7	0.		
18	Harvey	SCP	12	2.5	44	5.3	1.		
19	Drakesbrook & Waroona Dams	Upland	40	15.0	87	34.7	13.		
20	Harvey	SCP	12	2.5	57	6.9	1.		
21	Logue Brook Dam	Upland	40	15.0	94	37.5	14.		
22	Harvey	SCP	12	2.5	37	4.4	0		
23	Harvey	Upland	40	15.0	65	25.8	9		
24	Samson Brook Dam	Upland	40	15.0	100	40.0	15.		
25	Harvey	SCP	12	2.5	15	1.8	0		
26	Harvey	SCP	12	2.5	19	2.3	0		
27	Harvey	SCP	12	2.5	23	2.7	0		
28	Harvey	SCP	12	2.5	12	1.4	0		
29	Harvey Diversion Drain	SCP	12	2.5	36	4.3	0		
30	Harvey Diversion Drain	SCP	12	2.5	25	3.0	0		
31	Lower Serpentine	SCP	12	2.5	20 60	7.2	1		
32	Lower Serpentine	SCP	12	2.5	81	9.8	2		
33	Lower Serpentine	SCP	12	2.5	49	5.8	1		
35	Mayfield Drain	SCP	12	2.5	23	2.7	0		
35 36	Mayfield Drain	SCP	12	2.5	23 54	6.5	1		
	,								
37	Meredith Drain	SCP	12	2.5	24	2.9	0		
38	Meredith Drain	SCP	12	2.5	10	1.2	0		
42	Lower Murray	SCP	12	2.5	60	7.2	1		
43	Lower Murray	SCP	12	2.5	79	9.5	2		
44	Lower Murray	SCP	12	2.5	54	6.4	1		
45	Lower Murray	SCP	12	2.5	58	7.0	1		
46	Lower Murray	SCP	12	2.5	80	9.6	2		
47	Lower Murray	SCP	12	2.5	55	6.6	1		
48	Lower Murray	SCP	12	2.5	39	4.6	1		
49	Lower Murray	SCP	12	2.5	40	4.9	1		
50	Nambeelup	SCP	12	2.5	63	7.5	1		
51	Nambeelup	SCP	12	2.5	68	8.1	1		
52	Nambeelup	SCP	12	2.5	15	1.8	0		
53	Nambeelup	SCP	12	2.5	46	5.5	1		
54	Peel Main Drain	SCP	12	2.5	32	3.9	0		
55	Peel Main Drain	SCP	12	2.5	64	7.6	1		
56	Peel Main Drain	SCP	12	2.5	43	5.1	1		
57	Dirk Brook	SCP	12	2.5	17	2.0	0		
58	Upper Murray	Upland	40	15.0	100	40.0	15		
59	Upper Murray	Upland	40	15.0	93	37.1	13		
60	Upper Murray	Upland	40	15.0	54	21.7	8		
61	Upper Murray	Upland	40	15.0	77	30.6	11		

Table B.8: Riparian zone vegetation parameters derived from model calibration


Catchment ID	Reporting catchment	Location	Max N reduction	Max P reduction	Vegetated	N reduction	P reduction
			(%)	(%)	(%)	(%)	(%)
62	Upper Murray	Upland	40	15.0	27	10.9	4.1
63	Upper Murray	Upland	40	15.0	35	14.1	5.3
64	Upper Murray	Upland	40	15.0	28	11.2	4.2
65	Upper Murray	Upland	40	15.0	46	18.6	7.0
66	Upper Murray	Upland	40	15.0	59	23.6	8.8
67	Upper Murray	Upland	40	15.0	29	11.8	4.4
68	Upper Murray	Upland	40	15.0	39	15.8	5.9
69	Upper Murray	Upland	40	15.0	28	11.0	4.1
70	Upper Murray	Upland	40	15.0	99	39.5	14.8
71	Upper Murray	Upland	40	15.0	65	25.9	9.7
72	Upper Murray	Upland	40	15.0	37	14.7	5.5
73	Upper Murray	Upland	40	15.0	41	16.2	6.1
74	Upper Murray	Upland	40	15.0	70	28.1	10.5
75	Upper Murray	Upland	40	15.0	88	35.2	13.2
76	Upper Serpentine	SCP	12	2.5	31	3.7	0.8
77	Upper Serpentine	Upland	40	15.0	85	33.8	12.7
78	Upper Serpentine	SCP	12	2.5	22	2.7	0.6
79	Upper Serpentine	SCP	12	2.5	61	7.3	1.5
80	Upper Serpentine	SCP	12	2.5	51	6.1	1.3
81	Upper Serpentine	SCP	12	2.5	23	2.7	0.6
82	Upper Serpentine	SCP	12	2.5	22	2.6	0.5
83	Upper Serpentine	SCP	12	2.5	11	1.4	0.3
84	Upper Serpentine	SCP	12	2.5	44	5.3	1.1
85	Upper Serpentine	SCP	12	2.5	34	4.1	0.8
86	Upper Serpentine	SCP	12	2.5	47	5.7	1.2
87	Peel Main Drain	SCP	12	2.5	33	4.0	0.8
88	Upper Serpentine	SCP	12	2.5	36	4.3	0.9
89	Harvey Reservoir & Stirling Dam	Upland	40	15.0	81	32.3	12.1
90	Harvey Reservoir & Stirling Dam	Upland	40	15.0	58	23.0	8.6
91	Harvey Reservoir & Stirling Dam	Upland	40	15.0	99	39.4	14.8
92	North Dandalup Dam	Upland	40	15.0	100	40.0	15.0
93	Serpentine Dam	Upland	40	15.0	100	40.0	15.0
94	Serpentine Dam	Upland	40	15.0	98	39.4	14.8
95	Serpentine Dam	Upland	40	15.0	100	40.0	15.0
96	Serpentine Dam	Upland	40	15.0	100	39.9	15.0
97	South Dandalup Dam	Upland	40	15.0	100	40.0	15.0

B.3 Daily modelled and measured nutrient concentrations

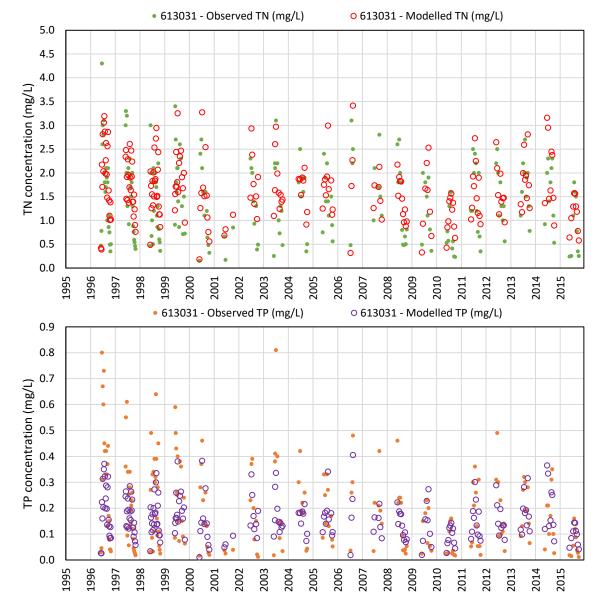

B.3.1 Samson North Drain, Sommers Road (AWRC ref - 613014).

Figure B.1: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Sommers Road (Samson North Drain, AWRC Ref 613014)

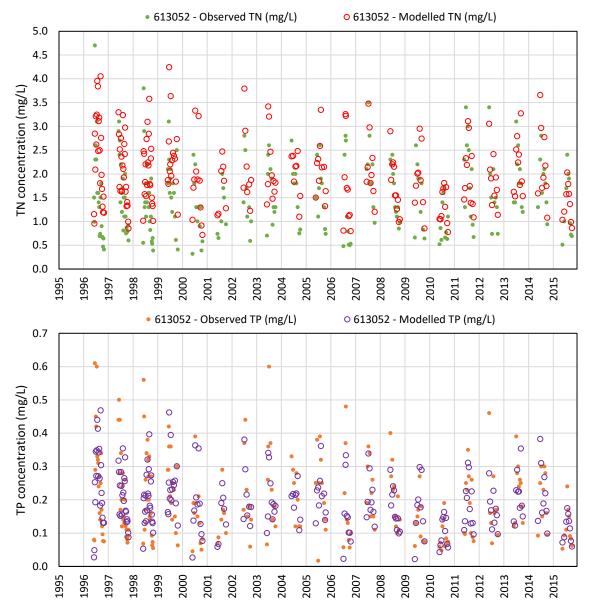

B.3.2 South Coolup Main Drain, Yackaboon (AWRC ref - 613027).

Figure B.2: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Yackaboon (South Coolup Main Drain, AWRC Ref 613027)

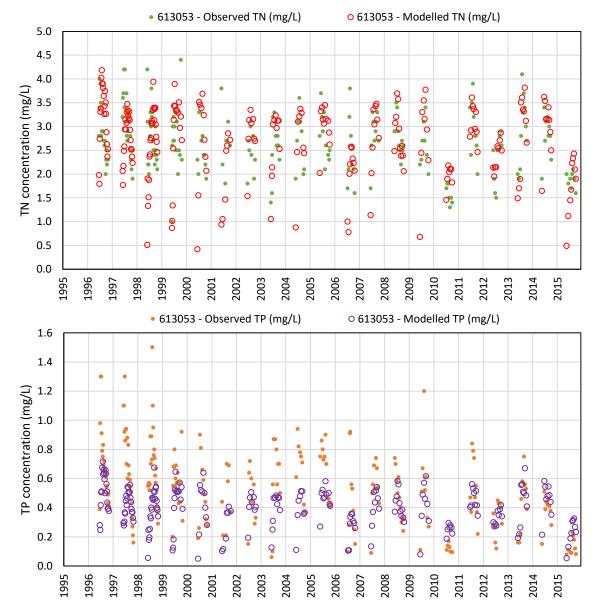

B.3.3 Mayfield Drain, Old Bunbury Road (AWRC ref - 613031).

Figure B.3: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Old Bunbury Road (Mayfield Drain, AWRC Ref 613031)

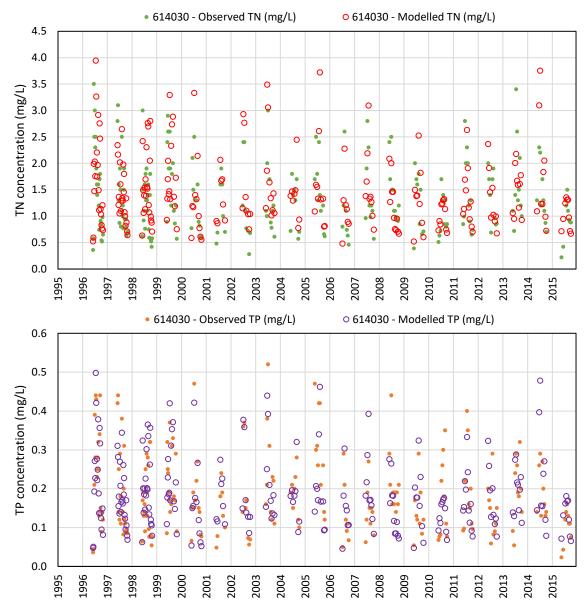

B.3.4 Harvey River, Clifton Park (AWRC ref - 613052).

Figure B.4: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Clifton Park (Harvey River, AWRC Ref 613052)

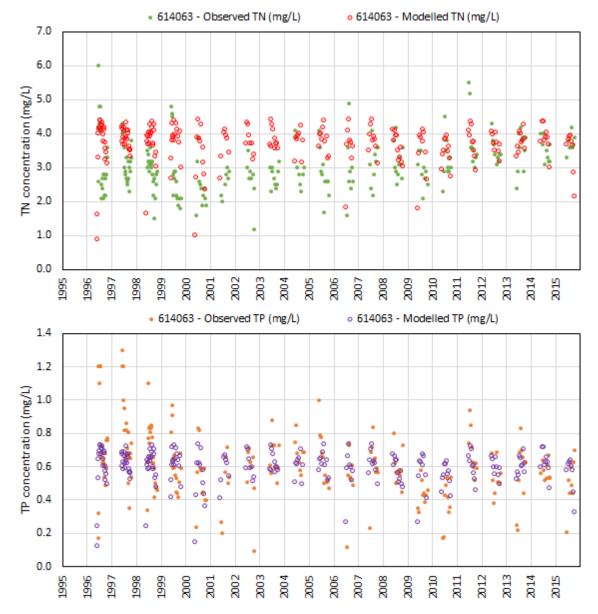

B.3.5 Meredith Drain, Johnston Road (AWRC ref - 613053).

Figure B.5: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Johnston Road (Meredith Drain, AWRC Ref 613053)

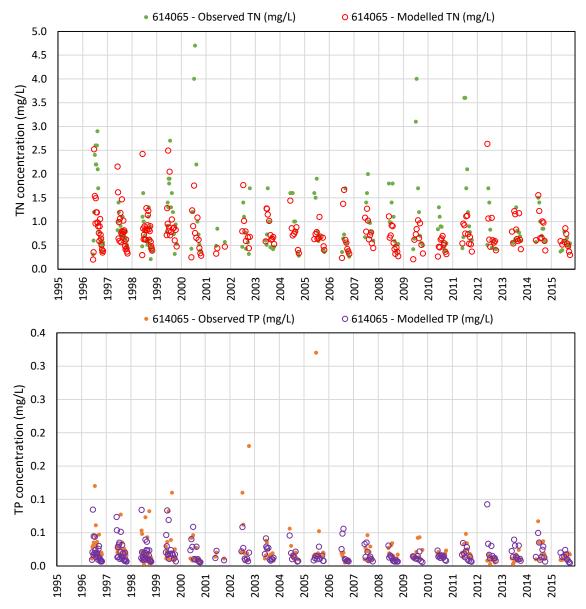

B.3.6 Serpentine Drain, Dog Hill (AWRC ref - 614030).

Figure B.6: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Dog Hill (Serpentine Drain, AWRC Ref 614030)

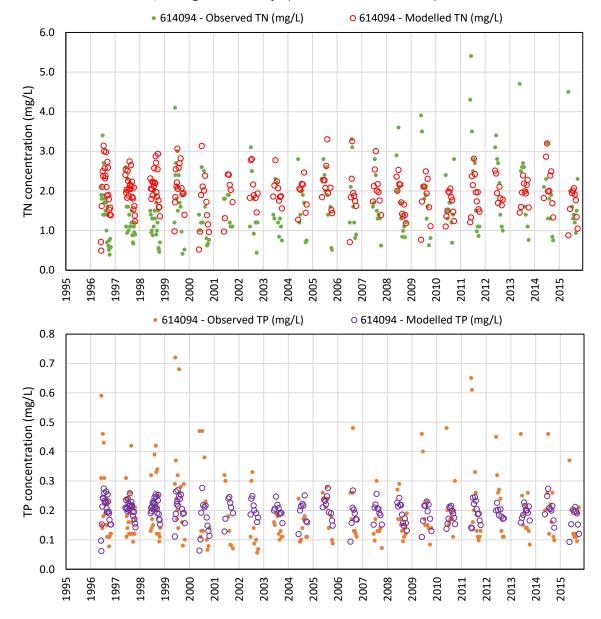

B.3.7 Nambeelup Brook, Kielman (AWRC ref - 614063).

Figure B.7: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Kielman (Nambeelup Brook, AWRC Ref 614063)

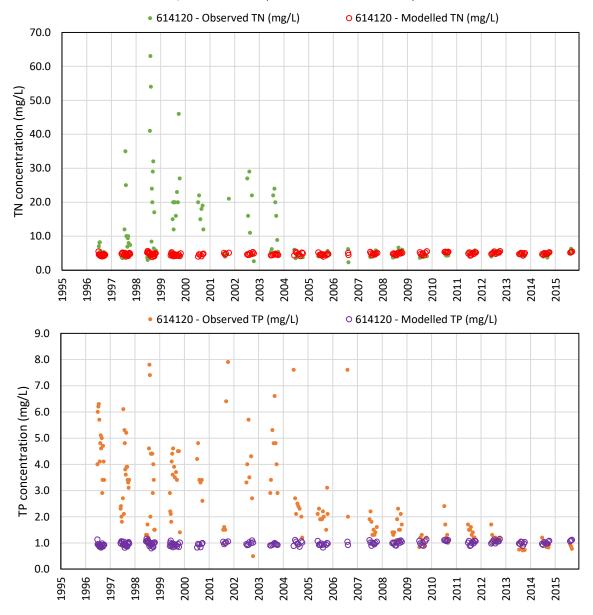

B.3.8 Murray River, Pinjarra (AWRC ref - 614065).

Figure B.8: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Pinjarra (Murray River, AWRC Ref 614065)

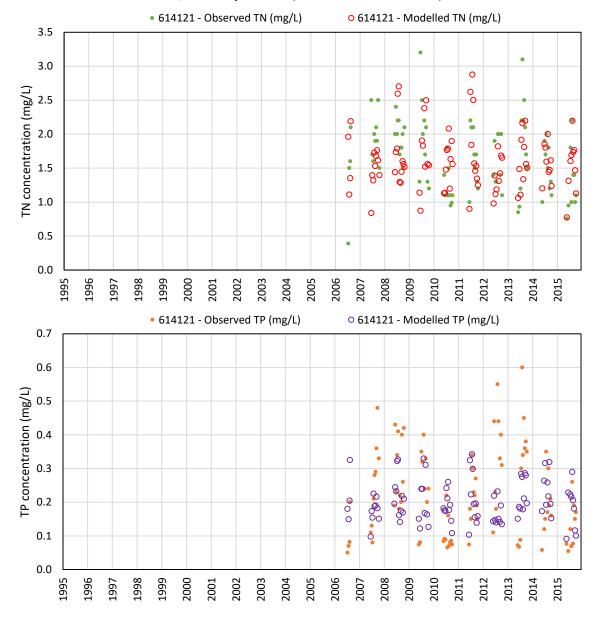

B.3.9 Punrak Drain, Yangedi Swamp (AWRC ref - 614094).

Figure B.9: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Yangedi Swamp (Punrack Drain, AWRC Ref 614094)

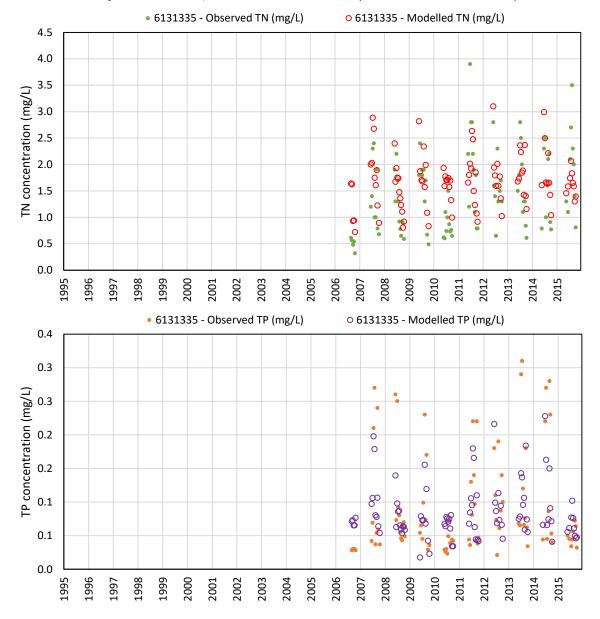

B.3.10 Gull Road Drain, Gull Road (AWRC ref - 614120).

Figure B.10: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Gull Road (Gull Road Drain, AWRC Ref 614120)

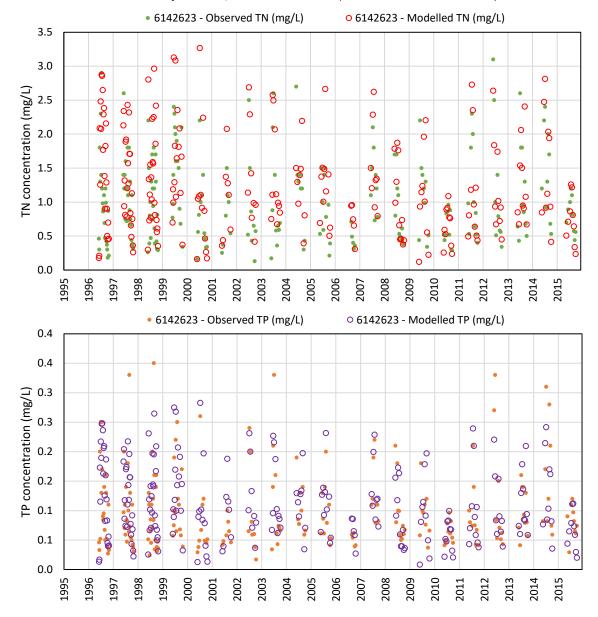

B.3.11 Peel Main Drain, Karnup Road (AWRC ref - 614121).

Figure B.11: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Karnup Road (Peel Main Drain, AWRC Ref 614121)

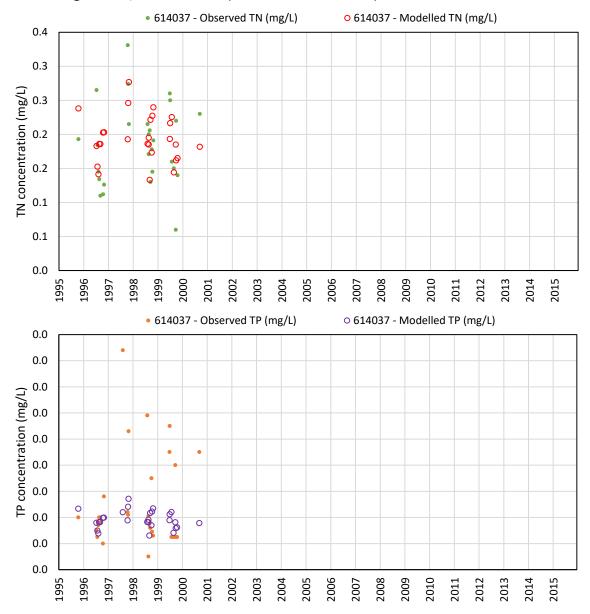

B.3.12 Harvey Catchment, Drakesbrook Drain (AWRC ref - 6131335).

Figure B.12: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Drakesbrook Drain (Harvey Catchment, AWRC Ref 6131335)

B.3.13 South Dandalup River, Patterson Rd (AWRC ref - 6142623).

Figure B.13: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Patterson Rd (South Dandalup River, AWRC Ref 6142623)

B.3.14 Big Brook, Oneil Road (AWRC ref - 614037).

Figure B.14: Measured and modelled total nitrogen (TN, top graph) and total phosphorus (TP, bottom graph) at Oneil Road (Big Brook, AWRC Ref 614037)

Appendix C: Point sources and septic tanks

C.1 Point sources of nutrient pollution

Here we discuss the point sources of pollution that we identified in this project and the rational for their inclusion (or exclusion) in the catchment model. We identified point sources through the land-use mapping process, the state cadastre, the National Pollutant Inventory database, and the department's (formally the Department of Environment Regulation) licences and works approvals database. Excluding landfill sites, there were 84 point sources that were identified in this project (Table C.1). Of these, 64 were included in the model with 54 being in catchments that drain to the Peel-Harvey estuary.

	Abat	ttoir	Bever brev	0	Compo	osting	Fee	dlot	Indus	trial	Pigg	gery	Pou	ıltry	Stock c sale	or	Saw	mill	wv	VTP	То	tal
Reporting catchment	Included	Excluded	Included	Excluded	Included	Excluded	Included	Excluded	Included	Excluded	Included	Excluded	Included	Excluded	Included	Excluded	Included	Excluded	Included	Excluded	Included	Excluded
Coastal North									3	7			4							4	7	11
Coastal Central																				1		1
Coastal South							1													1	1	1
Peel Main Drain													3		1				1		5	
Upper Serpentine					1		1				1		13		3						19	
Dirk Brook							1				1		3								5	
Nambeelup							1														1	
Lower Serpentine											1		3								4	
Upper Murray							3				3		1						2	1	9	1
Lower Murray							1			1			2							1	3	2
Coolup (Peel)							1				1									1	2	1
Coolup (Harvey)											1										1	
Mayfield Drain							1														1	
Harvey			1				1			1								1	1		3	2
Meredith Drain											1										1	
Harvey Diversion Drain	1																		1	1	2	1
Peel-Harvey estuary	0		1		1		10			2	9		25		4			1	4	3	54	6
Total	1		1		1		11		3	9	9		29		4			1	5	10	64	20

Table C.1: Point sources identified in this modelling

Intensive animal uses

We modelled intensive animal land uses (Piggeries & abattoirs, Feedlots & stockyards, Poultry) using the diffuse model described Section 3.1.2 of the main body of the report.

Industrial sites and other point sources

The NPI database contains several facilities that emit nitrogen and/or phosphorus to the environment. Facilities that emitted nutrients to land or water were included in the model and were all located in the Kwinana Industrial area (see Table C.2). Emissions were converted from financial year to calendar year and converted to a daily timestep.

Although emissions of nitrous oxides and/or ammonia to air were the most common form of nutrient emission in the NPI database, these sources were not included in the model. This was due to the lack of a suitable approach for including atmospheric emissions into the model. Note that average annual atmospheric deposition of nutrients is included as a model input and are based on local measurements.

Reporting	Coastal Nort	h	Coastal Nort	h	Coastal Nor	th	Coastal Nor	ĥ	
Subcat of discharge	3		3		3		3		
Subcat of site	3		3		3		3		
Model method	Source node S		Source node	•	Source node		Not inluded in model		
Point source type	Industry & chemical		Industry & ch	emical	Industry & ch	emical	Industry & ch	emical	
Facility name	BP Refinery (Kwinana) Pty Ltd		CSBP Kwina Operations	ina	Kwinana Power Station		Kwinana Nickel Refinery		
Data source	NPI		NPI		NPI		NPI		
Discharge to land/water	Water		Water		Water		Land		
Year	N (t/yr)	P (t/yr)	N (t/yr)	P (t/yr)	N (t/yr)	P (t/yr)	N (t/yr)	P (t/yr)	
2006	8.5	1.5	27.5	5.0					
2007	7.7	1.1	35.0	5.2					
2008	5.2	1.2	40.0	4.4			353.6		
2009	3.5	1.6	41.5	2.6			398.9		
2010	4.8	1.9	49.5	2.0			82.7		
2011	5.3	1.8	43.5	3.0			60.4		
2012	6.3	1.5	31.5	4.5			50.6		
2013	7.7	1.5	32.5	4.6	3.2	0.1	55.1		
2014	7.5	2.3	34.0	3.9	5.4	0.1	51.4		
2015	4.1	1.5	16.5	2.1	2.2	0.0	23.9		
Average	6.0	1.6	35.2	3.7	3.6	0.1	134.6		

Table C.2: Industrial emissions to land and water

We included a composting facility in the catchment model by assuming modelled surface water concentrations of 62 mg/L TN and 8.6 mg/L TP. These concentrations were based on measurements taken adjacent to the site. We derived modelled surface water volumes from the 'cleared' hydrological model in modelling catchment 83. We estimated that this 7.1-hectare site had average annual (2006–15) nutrient exports of 48 kg N/ha/yr and 6.7 kg P/ha/yr.

We identified a beverage and brewing site using the departments licences and works approval database (L4404/1991/15). This 116-hectare site irrigates pastures and orchards with treated wastewater. We classified as 'horticulture' in the land use mapping and modelled nutrient export using the diffuse model. As such the nutrient emissions of this site are lumped with all horticultural land uses in the Harvey reporting catchment source separation. We estimated that this site had average annual (2006–15) nutrient exports of 5.2 kg N/ha/yr and 4.5 kg P/ha/yr.

Wastewater treatment plants

We identified 12 operating and 3 decommissioned wastewater treatment plants (WWTP) in the model domain as of 2015 (Table C.3). The East Rockingham WWTP became operational in 2016 (Coastal North catchment) and was not considered in this modelling as it was not operational during the modelling period (up to 2015).

We included four WWTPs (Waroona, Harvey, Williams and Kwinana) in the catchment model:

• Treated wastewater discharge from the Waroona WWTP uses monthly compliance data from the proponent for 2006–15. We infilled missing data using the values from the

previous year. In 2014 a nutrient stripping swale was created to further remove nutrients from treated wastewater discharge prior to entering Drakesbrook Drain (Harvey reporting catchment).

- We estimated treated wastewater discharge from the old Williams WWTP using a monthly water balance (see Table C.4) that was disaggregated into daily data. We assume discharge concentrations of 28 mg/L TN and 8 mg/L TP. The old Williams WWTP was Shire run and was decommissioned in 2012 after the construction of the new Williams WWTP which is operated by the Water Corporation. This new plant detains treated wastewater and has been used to irrigate the town oval (3.56 ha) from 2014 and the hocky oval (1.40 ha) from 2015. The model does not explicitly account for the nutrient inputs from treated wastewater reuse. These WWTPs are in the Upper Murray reporting catchment.
- The Kwinana WWTP infiltrates treated wastewater adjacent to the Spectacle Wetlands. The work of Shams (2000) and McFarlane et al. (2015) suggest that some of the infiltrated wastewater reaches the wetland. McFarlane et al. (2015) only estimated the spatial extent of infiltrated treated wastewater. Shams (2000) estimated the net annual contribution from the WWTP to the lakes to be 0.36 GL/yr, 1.4 tonnes of nitrogen and 0.033 tonnes of phosphorus. We used estimates from Shams (2000) which we disaggregated into daily data using the monthly scaling factors given in Table C.5 and included this contribution in the Peel Main Drain catchment.
- We used 2013-14 compliance data from the proponent (disaggregated using Table C.5) to represent the treated wastewater discharge from the Harvey WWTP, which discharges to the Harvey Diversion Drain.

WWTPs that were not explicitly included in the model are detailed below:

- We didn't include the Woodman Point and Point Perron WWTPs in the model as treated wastewater is discharged via an ocean outlet into the Sepia Depression.
- The Halls Head and Caddadup WWTPs infiltrate treated wastewater onsite and groundwater flows to a well-mixed ocean.
- The Gordon Road WWTP infiltrates treated wastewater onsite, which would predominantly flow west to the Indian Ocean. However, some infiltrated wastewater could flow east and express in Goegrup Lake (Serpentine River). Pavlov (2015) found that infiltrated treated wastewater from the Gordon Road WWTP was moving east but could not conclusively demonstrate any discharge into Goegrup Lake. No published reports that quantified the amount of nutrient discharge from this WWTP to Goegrup Lake were found when developing this model and therefore the WWTP was excluded.
- The Pinjarra and Boddington WWTPs provide all treated wastewater for industrial reuse. Prior to industrial reuse, it is understood that the Pinjarra WWTP discharged treated wastewater to the Murray River catchment (Bradby 1997) and the Boddington WWTP irrigated kikuyu pastures (4.4 ha). The nutrient contributions of these WWTPs have not been included in the model.
- Decommissioned WWTPs (Yunderup and Port Kennedy) were not included in the model due to a lack of data.

Facility name		Effluent disposal	Start	End	Volume	Nitrogen	Phosphorus
			(yr)	(yr)	(ML/yr)	(kg/yr)	(kg/yr)
Caddadup	1, 6	Infiltration (ocean discharge)	-	Current	560	1 014	-
Halls Head	1, 6	Infiltration (ocean discharge)	-	Current	1 100	1 974	-
Kw inana	2	Infiltration (Spectacle Wetlands net discharge)	-	Current	360	1 400	33
Gordon Road	1, 7	Infiltration	-	Current	3 500	17 500	17 500
Point Peron	6	Ocean outfall	-	Current	7 300	292 000	59 750
Woodman Point	6	Ocean outfall	-	Current	51 100	712 000	260 500
Waroona	8	Surface waters	-	Current	86	2 740	140
Harvey	8	Surface waters	-	Current	303	7 900	280
Binningup		Infiltration	-	Current	-	-	-
Williams (old)	3, 7	Surface w aters (decommissioned)	-	2012	7	204	58
Williams (new)		Detention/reuse (POS)	2014	Current	-	-	-
Boddington	3	Reuse (industrial)	2007	Current	183	5 100	1 500
Pinjarra	5	Reuse (industrial)	1998/9	Current	-	-	-
Yunderup	5	Decommissioned	-	1997	-	-	-
Port Kennedy	5	Decommissioned	-	1997	-	-	-

Table C.3: All WWTPs within the Peel-Harvey catchment model domain

Note:

SBR = Sequencing batch reactor

Port Kennedy WWTP was decommissioned between 1995 and 2000

Data sources:

1. Volume of discharge as reported in McFarlane 2015

2. Shams 2000

3. Department of Water and Environmental Regulation (formally the Department of Environment Regulation) licence

data. Accessed 2015/16

4. Assumed water balance

5. Kelsey et al. 2011

6. NPI data

7. Assumed nutrient effluent concentrations

8. 2013-14 data

		Inputs			Outputs	
Month	Wastewater inflows	Rainfall	Total inputs	Evaporation	Discharge to Williams River	Total outputs
	(ML/month)	(ML/month)	(ML/month)	(ML/month)	(ML/month)	(ML/month)
Jan	1.0	0.1	1.1	1.0	0.1	1.1
Feb	0.9	0.0	0.9	0.8	0.1	0.9
Mar	1.0	0.1	1.1	0.7	0.4	1.1
Apr	1.0	0.1	1.1	0.4	0.6	1.1
May	1.0	0.2	1.2	0.3	1.0	1.2
Jun	1.0	0.3	1.2	0.2	1.0	1.2
Jul	1.0	0.4	1.4	0.2	1.2	1.4
Aug	1.0	0.3	1.3	0.3	1.1	1.3
Sep	1.0	0.2	1.2	0.4	0.8	1.2
Oct	1.0	0.1	1.1	0.6	0.5	1.1
Nov	1.0	0.1	1.1	0.8	0.3	1.1
Dec	1.0	0.1	1.1	0.9	0.2	1.1
Total	11.7	2.1	13.8	6.5	7.3	13.8

Table C.4: Water balance of the old Williams WWTP

Note:

Daily wastewater inflow = 0.032 ML/day

(https://www.watercorporation.com.au/about-us/media/media-releases/media-release/\$12m-upgrade-towilliams-wastewater-scheme)

Measured pond area = 4740 m2, assumed pond depth = 2 m, assumed pond volume = 9.48 ML

Climate data taken as the 2000–15 monthly average of subcatchment 72

Assumes initial volume to be full

Table C.5: Monthly scaling of annual treated wastewater discharge data

	Percent of an	nual discharge
Month	Harvey	Kwinana
Jan	2%	6%
eb	2%	4%
<i>l</i> lar	5%	2%
vpr	9%	1%
<i>l</i> lay	13%	1%
un	14%	1%
ul	16%	5%
ug	15%	10%
Sep	11%	20%
Dct	7%	22%
lov	4%	16%
Dec	2%	12%
otal	100%	100%

Rubbish tips and septage disposal sites

There are 34 rubbish tips and septage disposal sites in the catchment which may be contributing nitrogen and phosphorus to groundwater which are listed in Table C.6.The landfill class definitions are:

Class I - unlined, not located near sensitive environments;

- Class II appropriately located, may have lining and leachate collection;
- Class III lined with leachate collection; and
- Class IV double lined with leachate collection or alternative measures as appropriate.

The quantities of rubbish or septage deposited per year are taken from APrince Consulting (2006) and Hirschberg (1992) suggested that ammonium levels in groundwater adjacent to rubbish tips greater than 0.5 mg/l indicates that the site is polluting. He identified four such sites in the Peel-Harvey catchment, which are highlighted in Table C.6. We did not include the discharge from these sites into the catchment model due to the difficulty in estimating groundwater-surface water nutrient exports, as well as there being limited data at the time of constructing this model.

C.2 Septic tanks

Septic tank inputs

We identified unsewered properties using the Water Corporation's sewerage coverage dataset (2016) and the land-use mapping used in this project. We assumed that all unsewered areas used septic tanks which discharged 5.5 kg/person/yr of nitrogen and 1.1 kg/person/yr of phosphorus (Whelan et al. 1981). Each residential septic tank was assumed to service a house with 2.4 people per dwelling (Mandurah statistical area ABS 2011³) or as specified in Table C.7.

Table C.8 gives the nutrient load from septic tank discharge prior to catchment assimilation. We did not include the nutrient contribution of septic tanks in dam catchments or the Upper Murray in the catchment model.

Septic tank exports

Here we describe how we estimated septic tank nutrient loss to surface water after catchment assimilation. We modelled the proportion of septic tank effluent that reached surface waters using an export rate derived from Kelsey et al. (2011) (see Table C.9) and a daily subcatchment outflow modifier. This daily subcatchment outflow modifier scales the daily septic tank export using the ratio of daily subcatchment flow to the average daily flow between 1960–2015. This modifier was necessary to prevent the discharge of highly concentrated nutrients when there is little to no surface flow. We also increased septic tank exports by a factor of 1.4 so that nutrient export load was close to those given Kelsey et al. 2011. The resulting septic tank exports are given in Table C.10.

³ https://quickstats.censusdata.abs.gov.au/census_services/getproduct/census/2011/quickstat/0

Operator or Locality	Activity / Description	Comments
Armadale	Class II or III putrescible landfill site. Natural clay liner. 32,000 T/yr	NH4-N > 0.5 mg/l (1)
Boddington	Putrescible landfill site 3,000 T/yr	
Bibra Lake	Abandoned Landfill	Abandoned, but most likely still leaking waste.
Henderson Landfill, Henderson	Class I inert landfill site, 2nd licence - Class II or III putrescible landfill. Clay, HDPE liner. 20,000T/yr	NPI 2005: emits 1,671kg of ammonia to land
Henderson	Class I Inert Landfill Site 2nd licence - Compost manufacturing and soil blending	
Amcor Packaging Australasia (Spearwood) Cockburn	Class II or III putrescible landfill site, 2nd licence - Pulp, paper or paperboard manufacturing, 3rd licence- Solid waste depot, transfer station, 4th licence- Class I inert landfill site.	
Cuballing	Putrescible landfill and sewage disposal. 500 T/yr	
Popanyinning	Putrescible landfill site – 400 T/yr	
Fremantle cnr Douro Rd and Hampton Rd	Abandoned landfill	Now a shopping centre. NH4-N >10 mg/l (1)
Fremantle Lefroy Rd Quarry	Class I inert landfill site	Not polluting - inert land fill
Harvey	Class II or III putrescible landfill site. 5,000T/yr	
Australind	Closed Landfill	Closed in 1999
Harvey	Septage Disposal Site 680 KL/yr	
Kwinana	Solid Waste Landfill	
Kwinana	Class I inert landfill site, 2nd licence - Class II or Class III putrescible land fill, 3rd licence - Solid waste depot, transfer station	Putrescibles closed in 1995. Still operating as an inert land fill. Big and most likely polluting.
Wellard	Class 1 Inert Landfill, 2nd licence - solid waste depot, transfer station	Not polluting - inert land fill and transfer station
Kwinana	Waste Disposal Site - bauxite processing residues. Lined but type unknown	
Herron	Waste Disposal Site	Getting landfill gas from site
Caddadup	Closed landfill & liquid disposal	Most of the pollution going west to ocean, only a small amount going to Harvey Inlet.
Dawesville	Liquid waste facility Waste Disposal Site	
Pinjarra	Landfill & septics Class I inert landfill site 2nd licence - Used tyre storage	
Pinjarra	Waste Disposal Site Class II or III putrescible waste, Bauxite refining residues	
Pingelly	Class II or III putrescible landfill. Natural clay liner.	
Rockingham	Closed landfill	NH4-N > 10 mg/l (1)
Baldivis	Class II or III putrescible landfill site, Solid waste landfill	Big tip with liquid waste disposal ponds
Byford	Landfill	
Keysbrook	Landfill	NH4-N 0.5 to 3 mg/l (1)
Serpentine - Jarrahdale	Landfill	
Serpentine- Jarrahdale South Cardup Landfill	Class II or III putrescible landfill site, Multilayer clay liner. 12,000T/yr	Big Site. Liquid waste pond
Wandering	Class II or III putrescible landfill site -40T/yr	
Waroona	Landfill & septics Class II or III putrescible landfill site 3,500T/yr	Liquid waste ponds
Waroona	Class II or III putrescible waste	
Williams	Putrescible landfill site – 500T/yr	
Williams	Sewage disposal	

Table C.6: Rubbish tips and septage disposal sites in the Peel-Harvey catchment (Kelsey et al. 2011)

1. Hirschberg (1992)

Landuse category	People per septic tank
Residential - single/duplex dwelling	2.4
Residential - multiple dwelling	2.4
Residential - aged person	2.4
Residential - temporary accommodation	71.1
Caravan park	71.1
Manufacturing / processing	19.9
Storage / distribution	19.9
Commercial / service - centre	10.1
Commercial / service - residential	5.5
Office - without parkland	7.4
Office - with parkland	7.4
Garden centre / nursery	2.4
Community facility - education	246.2
Community facility - non-education	11.9
Recreation - turf	11.9

Table C.7: The assumed number of people per septic tank for land uses other than urban residential.

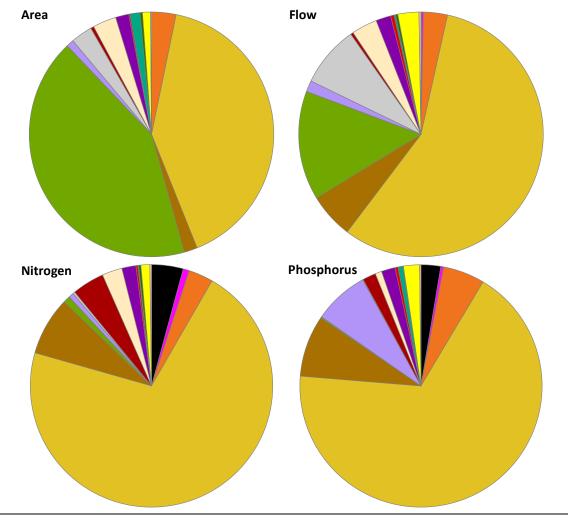
Table C.8: Septic tank inputs by reporting catchment

				Input	
Reporting catchment	Total people	Total septics	Volume	Nitrogen	Phosphorus
			(ML/yr)	(kg/yr)	(kg/yr)
Coastal Central	1 795	744	102	9 873	1 975
Coastal North	22 669	4 838	1 283	124 678	24 936
Coastal South	3 775	1 340	214	20 764	4 153
Coolup (Harvey)	284	115	16	1 560	312
Coolup (Peel)	238	99	13	1 307	261
Dirkbrook	430	175	24	2 362	472
Harvey	6 275	2 229	355	34 510	6 902
Harvey Diversion Drain	805	234	46	4 430	886
Low er Serpentine	3 492	1 206	198	19 208	3 842
Mandurah	1 850	746	105	10 173	2 035
Mayfield Drain	151	63	9	832	166
Meredith Drain	29	12	2	158	32
Murray	4 670	1 172	264	25 683	5 137
Nambeelup	758	316	43	4 171	834
Peel Main Drain	4 267	1 632	241	23 467	4 693
Upper Murray	3 738	781	212	20 558	4 112
Upper Serpentine	11 079	4 187	627	60 936	12 187
Upstream Harvey Reservoir	5	2	0	26	5

Reporting catchment	Volume	Nitrogen	Phosphorus
	(%)	(%)	(%)
Coastal Central	51	51	17
Coastal North	51	51	17
Coastal South	11	11	1.3
Coolup (Harvey)	5.2	5.2	0.5
Coolup (Peel)	5.2	5.2	0.5
Dirkbrook	14	14	3.4
Harvey	6.1	6.1	9.1
Harvey Diversion Drain	21	21	7.8
Lower Serpentine	24	24	3.6
Mandurah	33	33	8.2
Mayfield Drain	6.1	6.1	9.1
Meredith Drain	6.1	6.1	9.1
Murray	15	15	1.2
Nambeelup	2.8	2.8	3.5
Peel Main Drain	14	14	5.2
Upper Serpentine	14	14	3.4

Table C.9: Initial septic tank export rates

Note: The Dirkbrook catchment was assigned the export rates of the Upper Serpentine catchment and the Mayfield and Meredith catchments were assigned the export rates of the Harvey catchment


Table C.10: Average annual (2006–15) modelled septic tank exports

Reporting catchment	Volume	Export	Nitrogen	Export	Phosphorus	Export
	(ML/yr)	(%)	(kg/yr)	(%)	(kg/yr)	(%)
Coastal Central	49	49	4 790	49	325	16
Coastal North	661	52	64 268	52	4 359	17
Coastal South	17	8.2	1 698	8.2	38	0.9
Coolup (Harvey)	1	4.1	63	4.1	1	0.4
Coolup (Peel)	0	3.7	48	3.7	1	0.4
Dirkbrook	3	12	296	13	15	3.1
Harvey	21	5.8	2 012	5.8	605	8.8
Harvey Diversion Drain	9	21	919	21	68	7.7
Lower Serpentine	38	19	3 728	19	110	2.9
Mandurah	32	30	3 064	30	150	7.4
Mayfield Drain	0	5.5	46	5.5	14	8.3
Meredith Drain	0	5.1	8	5.1	2	7.7
Murray	32	12	3 111	12	51	1.0
Nambeelup	1	2.0	91	2.2	23	2.8
Peel Main Drain	31	13	3 019	13	218	4.7
Upper Serpentine	78	12	7 585	12	376	3.1

Appendix D: Source separation

D.1 Peel-Harvey coastal plain catchments

Land use	Colour	Area	1	Flow		Nitrog	en	Phospho	orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)			-	0.2	0.1	23.3	4.2	1.6	2.6
Point sources		1.1	0.0	0.5	0.2	4.5	0.8	0.2	0.4
Horses		84.1	3.2	7.7	3.2	18.1	3.3	3.3	5.6
Beef		1072.4	40.7	138.5	56.8	392.7	71.1	40.1	67.7
Dairy		45.9	1.7	14.6	6.0	43.0	7.8	4.9	8.2
Native vegetation		1112.9	42.2	35.1	14.4	5.1	0.9	0.1	0.2
Cropping		0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Horticulture		25.9	1.0	3.6	1.5	3.7	0.7	4.3	7.3
Industry, manufacturing & transport		75.2	2.9	19.7	8.1	1.5	0.3	0.1	0.1
Intensive animal use		11.1	0.4	0.9	0.4	23.8	4.3	1.0	1.8
Lifestyle block		82.0	3.1	8.3	3.4	14.8	2.7	0.5	0.9
Mixed grazing		45.8	1.7	4.8	2.0	10.3	1.9	1.1	1.8
Offices, commercial & education		4.5	0.2	1.1	0.5	1.4	0.3	0.2	0.4
Plantation		34.5	1.3	0.5	0.2	0.6	0.1	0.4	0.7
Recreation		8.6	0.3	0.7	0.3	1.7	0.3	0.0	0.1
Residential		27.9	1.1	6.8	2.8	6.5	1.2	1.3	2.1
Viticulture		3.4	0.1	0.6	0.3	1.2	0.2	0.1	0.2
Total		2635.5		243.8		552.4		59.3	

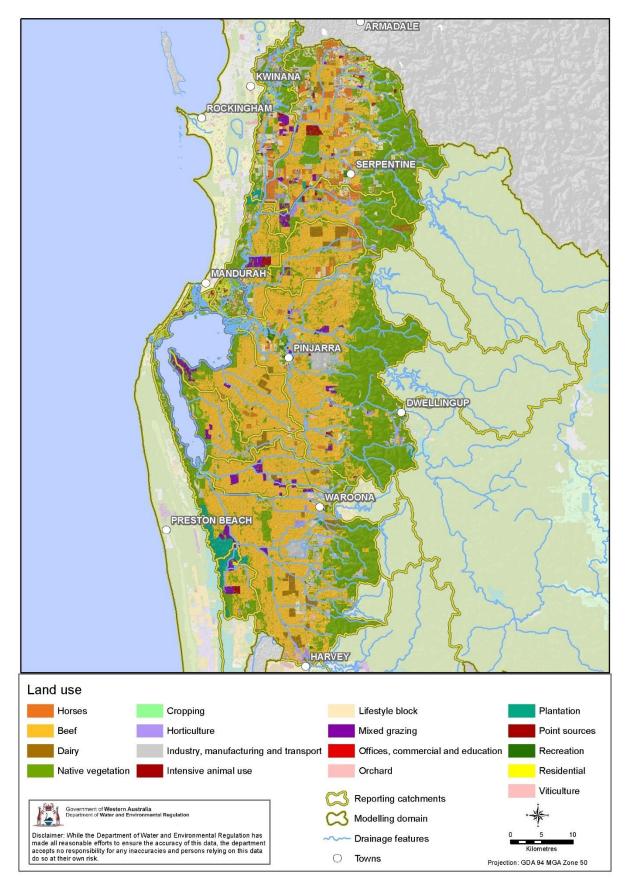
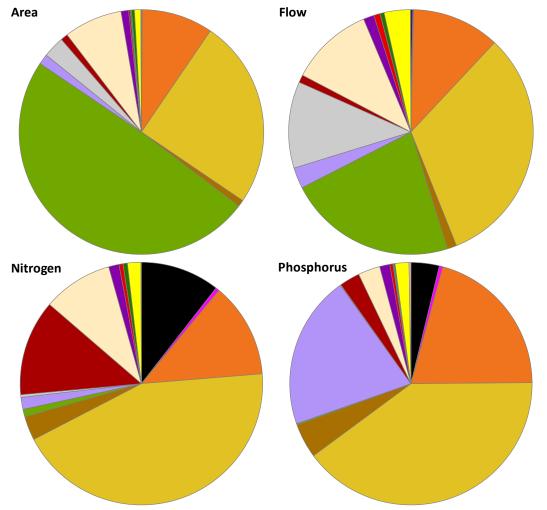



Figure D.1: Peel-Harvey coastal plain catchment land use

D.2 Upper Serpentine

Land use	Colour	Area	I	Flow	,	Nitrog	en	Phospho	orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		4187.0	-	0.1	0.2	7.6	10.6	0.38	3.8
Point sources		0.6	0.1	0.0	0.1	0.3	0.5	0.05	0.5
Horses		46.1	9.4	3.9	11.6	9.1	12.7	2.06	20.6
Beef		122.4	25.0	10.9	32.0	31.4	43.7	3.99	40.0
Dairy		4.2	0.9	0.4	1.2	2.3	3.2	0.46	4.6
Native vegetation		240.8	49.1	7.6	22.3	0.7	1.0	0.02	0.2
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		6.7	1.4	0.9	2.8	1.1	1.6	2.04	20.5
Industry, manufacturing & transport		13.9	2.8	3.9	11.4	0.3	0.4	0.01	0.1
Intensive animal use		4.7	0.9	0.3	1.0	9.2	12.8	0.27	2.7
Lifestyle block		37.9	7.7	3.7	11.0	6.7	9.3	0.29	2.9
Mixed grazing		4.9	1.0	0.5	1.4	1.0	1.4	0.13	1.3
Offices, commercial & education		1.0	0.2	0.3	0.8	0.4	0.5	0.04	0.4
Plantation		0.9	0.2	0.0	0.0	0.0	0.0	0.02	0.2
Recreation		1.8	0.4	0.2	0.5	0.4	0.6	0.01	0.1
Residential		4.1	0.8	1.2	3.5	1.3	1.8	0.18	1.8
Viticulture		0.3	0.1	0.0	0.1	0.0	0.1	0.02	0.2
Total		490.4		33.9		71.8		9.97	

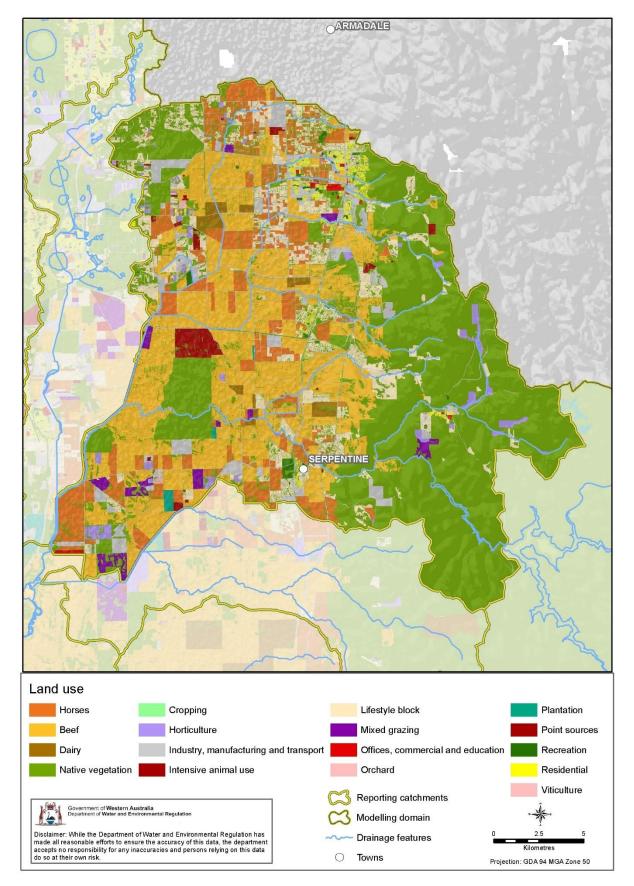
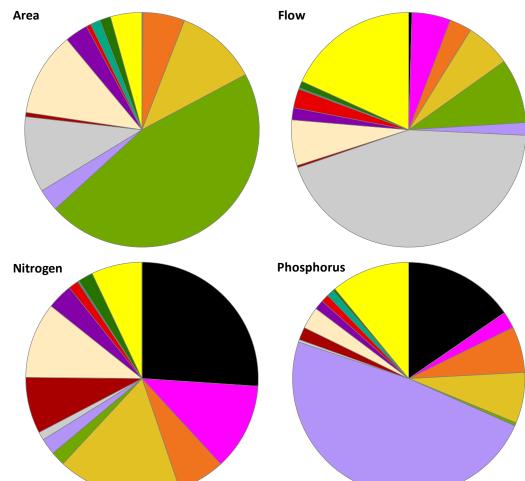



Figure D.2:Land-use of the Upper Serpentine reporting catchment

D.3 Peel Main Drain

Land use	Colour	Area	I	Flow	,	Nitrogen		Phosphorus	
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		1632.0	-	0.0	0.5	3.0	26.1	0.22	15.4
Point sources		0.2	0.1	0.4	5.3	1.4	12.1	0.03	2.3
Horses		7.2	5.8	0.2	3.1	0.8	6.6	0.09	6.4
Beef		14.1	11.3	0.4	6.3	2.0	17.2	0.10	7.1
Dairy		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Native vegetation		57.5	46.0	0.6	8.9	0.2	2.0	0.01	0.4
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		3.8	3.1	0.1	1.7	0.3	2.3	0.69	48.4
Industry, manufacturing & transport		13.1	10.5	3.0	44.0	0.1	1.1	0.00	0.3
Intensive animal use		0.7	0.6	0.0	0.3	0.9	7.8	0.03	1.8
Lifestyle block		14.5	11.6	0.4	6.3	1.2	10.5	0.04	3.1
Mixed grazing		4.0	3.2	0.1	1.7	0.4	3.6	0.02	1.3
Offices, commercial & education		0.8	0.6	0.2	2.6	0.2	1.4	0.02	1.1
Plantation		1.7	1.4	0.0	0.2	0.0	0.2	0.01	1.0
Recreation		1.9	1.5	0.1	0.9	0.2	2.1	0.00	0.3
Residential		5.4	4.3	1.3	18.2	0.8	7.1	0.16	11.0
Viticulture		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Total		124.9		6.9		11.6		1.42	

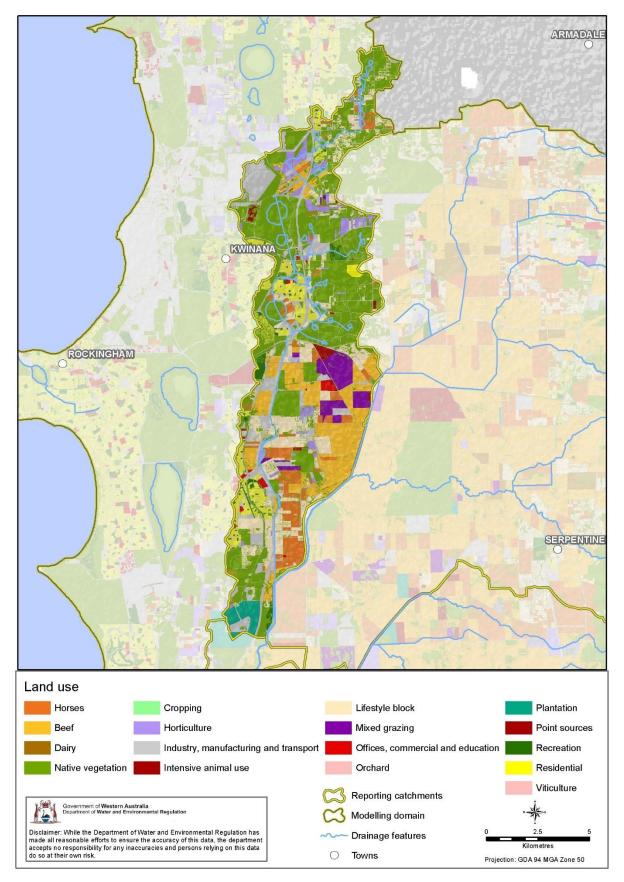
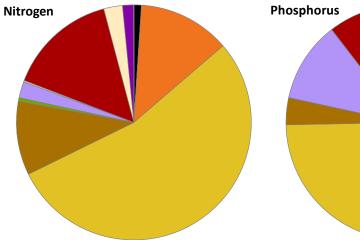



Figure D.3: Land-use of the Peel Main Drain reporting catchment

D.4 Dirk Brook

Land use	Colour	Area	I	Flow	,	Nitrog	en	Phospho	orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		175.0	-	0.0	0.0	0.3	1.0	0.01	0.5
Point sources		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horses		11.5	8.3	1.8	14.2	3.6	12.7	0.44	15.7
Beef		42.0	30.1	6.1	48.3	15.5	54.0	1.62	58.4
Dairy		3.4	2.5	0.7	5.6	2.9	10.2	0.10	3.7
Native vegetation		69.5	49.8	2.0	16.2	0.1	0.5	0.00	0.0
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		3.9	2.8	0.5	4.1	0.6	2.2	0.31	11.1
Industry, manufacturing & transport		2.0	1.4	0.6	4.9	0.1	0.2	0.00	0.0
Intensive animal use		1.1	0.8	0.1	1.2	4.3	15.1	0.22	7.8
Lifestyle block		2.5	1.8	0.5	3.6	0.7	2.6	0.01	0.4
Mixed grazing		3.0	2.1	0.2	1.8	0.4	1.5	0.06	2.1
Offices, commercial & education		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Plantation		0.4	0.3	0.0	0.0	0.0	0.0	0.01	0.2
Recreation		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Residential		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Viticulture		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Total		139.5		12.6		28.7		2.78	
Area		Flov							
Nitrogen			sphor						

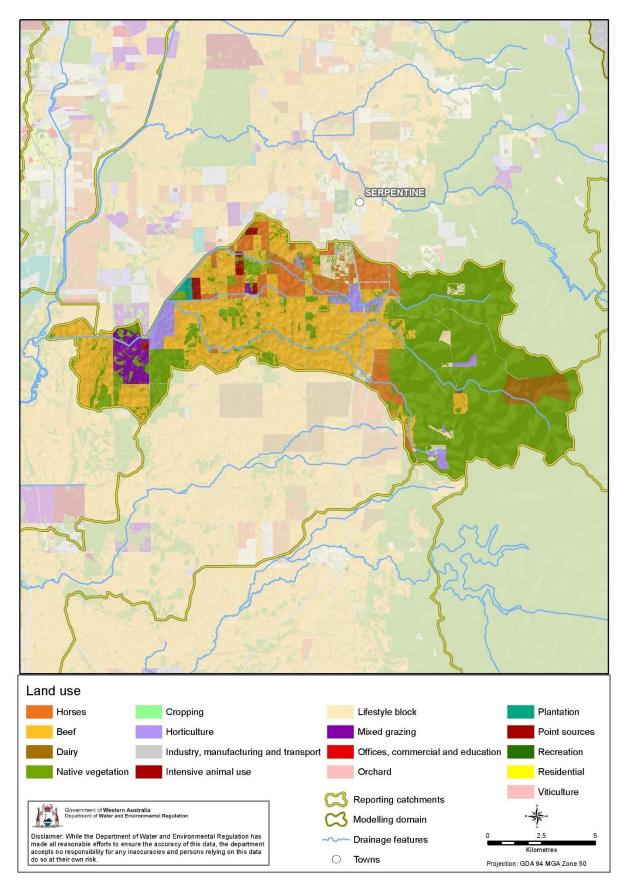


Figure D.4: Land-use of the Dirk Brook reporting catchment

D.5 Nambeelup

Land use	Colour	Area		Flow		Nitrog	en	Phospho	orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		316.0	-	0.0	0.0	0.1	0.2	0.02	0.3
Point sources		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horses		8.8	6.4	0.8	7.8	2.8	6.9	0.36	5.3
Beef		83.4	60.1	7.3	68.9	30.4	75.3	5.08	76.2
Dairy		9.0	6.5	0.9	8.2	5.9	14.7	1.09	16.3
Native vegetation		29.9	21.6	0.4	4.0	0.1	0.2	0.00	0.0
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		0.1	0.1	0.0	0.1	0.0	0.0	0.03	0.4
Industry, manufacturing & transport		3.5	2.5	0.9	8.2	0.1	0.2	0.00	0.1
Intensive animal use		0.1	0.1	0.0	0.1	0.2	0.5	0.02	0.4
Lifestyle block		3.0	2.1	0.2	2.2	0.6	1.4	0.03	0.5
Mixed grazing		0.8	0.6	0.1	0.6	0.2	0.5	0.03	0.5
Offices, commercial & education		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Plantation		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Recreation		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Residential		0.0	0.0	0.0	0.1	0.0	0.0	0.00	0.0
Viticulture		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Total		138.7	0.0	10.6	0.0	40.3	0.0	6.66	0.0

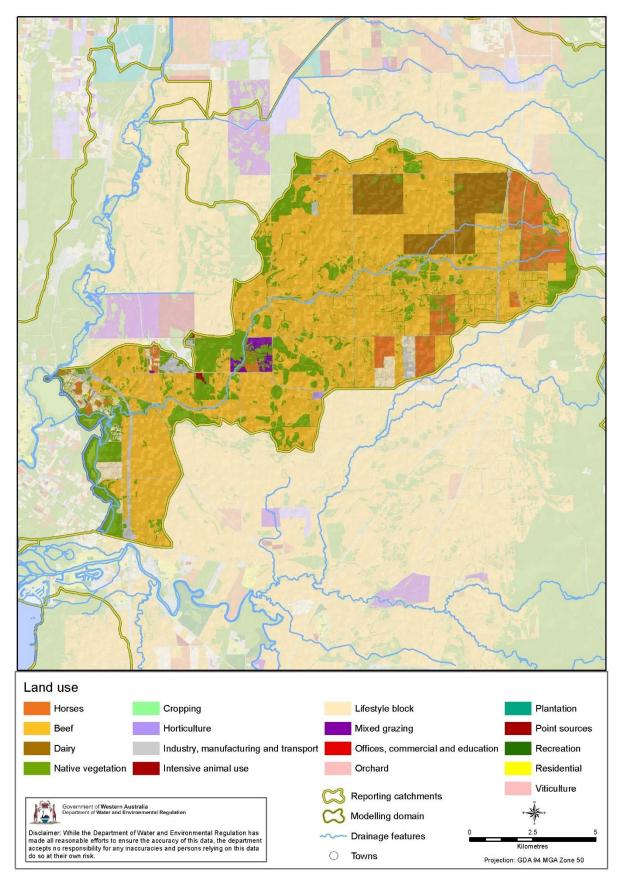
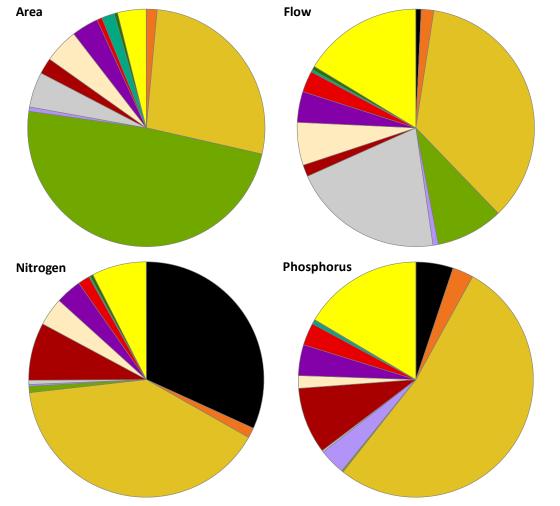



Figure D.5: Land-use of the Nambeelup reporting catchment

D.6 Lower Serpentine

Land use	Colour	Area	I	Flow		Nitrog	en	Phospho	orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		1206.0	-	0.0	0.7	3.7	31.8	0.11	5.1
Point sources		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horses		1.5	1.5	0.1	1.7	0.2	1.4	0.06	2.9
Beef		27.1	27.1	1.9	35.4	4.7	40.0	1.13	52.6
Dairy		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Native vegetation		48.7	48.7	0.5	9.2	0.1	0.9	0.00	0.2
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		0.6	0.6	0.0	0.7	0.0	0.2	0.08	3.6
Industry, manufacturing & transport		4.8	4.8	1.1	20.6	0.1	0.6	0.00	0.2
Intensive animal use		2.2	2.2	0.1	1.6	0.9	7.9	0.20	9.1
Lifestyle block		4.7	4.7	0.3	5.8	0.5	3.9	0.04	1.7
Mixed grazing		3.7	3.7	0.2	4.2	0.4	3.6	0.09	4.2
Offices, commercial & education		0.7	0.7	0.2	2.9	0.2	1.6	0.07	3.1
Plantation		1.8	1.8	0.0	0.3	0.0	0.2	0.01	0.5
Recreation		0.4	0.4	0.0	0.5	0.0	0.4	0.00	0.1
Residential		3.9	3.9	0.9	16.3	0.9	7.5	0.35	16.5
Viticulture		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Total		100.0		5.3		11.7		2.14	

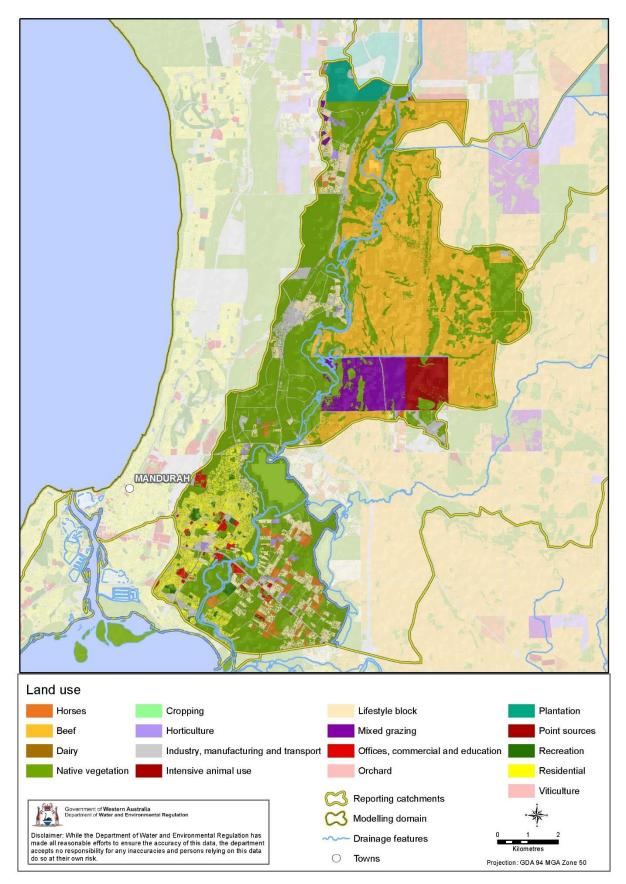


Figure D.6: Land-use of the Lower Serpentine reporting catchment

D.7 Mandurah

Land use	Colour			Flow		Nitrog	en	Phospho	orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		746.0	-	0.0	1.0	3.1	62.1	0.15	29.7
Point sources		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horses		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Beef		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Dairy		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Native vegetation		9.3	38.5	0.1	3.9	0.0	0.5	0.00	0.2
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Industry, manufacturing & transport		4.7	19.2	1.0	31.6	0.0	0.9	0.00	0.4
Intensive animal use		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Lifestyle block		0.0	0.1	0.0	0.1	0.0	0.1	0.00	0.1
Mixed grazing		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Offices, commercial & education		1.1	4.6	0.2	7.6	0.2	4.6	0.06	11.5
Plantation		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Recreation		1.1	4.7	0.1	2.0	0.3	5.1	0.01	1.5
Residential		7.9	32.8	1.7	53.9	1.3	26.6	0.29	56.6
Viticulture		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Total		24.2		3.2		5.0		0.51	

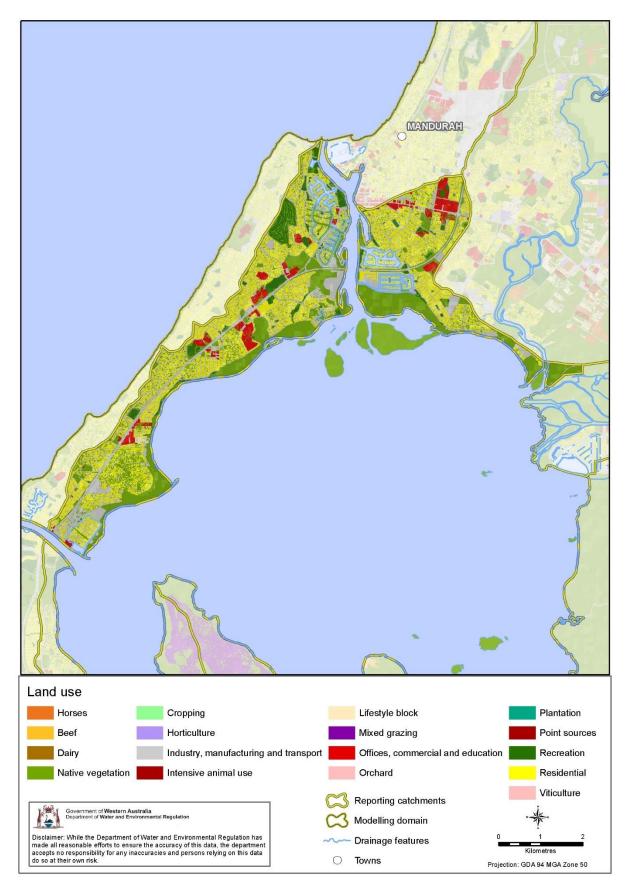


Figure D.7: Land-use of the Mandurah reporting catchment

D.8 Upper Murray

Land use	Colour	Area	1	Flow		Nitrog	en	Phospho	orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		781.0	-						
Point sources		0.1	0.0	0.0	0.0	0.1	0.2	0.04	4.3
Horses		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Beef		0.4	0.0	0.1	0.1	0.1	0.2	0.00	0.2
Dairy		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Native vegetation		2895.6	42.9	13.0	10.4	0.7	0.9	0.00	0.2
Cropping		3577.1	53.0	104.0	83.4	76.0	94.7	0.83	86.6
Horticulture		2.0	0.0	0.1	0.1	0.1	0.1	0.02	2.1
Industry, manufacturing & transport		35.2	0.5	4.8	3.8	0.1	0.2	0.00	0.0
Intensive animal use		2.2	0.0	0.0	0.0	0.2	0.3	0.00	0.3
Lifestyle block		4.5	0.1	0.3	0.3	0.3	0.4	0.00	0.2
Mixed grazing		33.9	0.5	1.4	1.1	1.7	2.1	0.02	2.3
Offices, commercial & education		1.4	0.0	0.2	0.1	0.1	0.1	0.00	0.2
Plantation		196.8	2.9	0.5	0.4	0.4	0.5	0.03	3.2
Recreation		1.1	0.0	0.1	0.1	0.1	0.1	0.00	0.0
Residential		1.1	0.0	0.2	0.1	0.1	0.1	0.00	0.2
Viticulture		1.1	0.0	0.0	0.0	0.0	0.1	0.00	0.1
Total		6752.3	0.0	124.8	0.0	80.2	0.12	0.96	0.12
Nitrogen		Pho	osphor	rus					

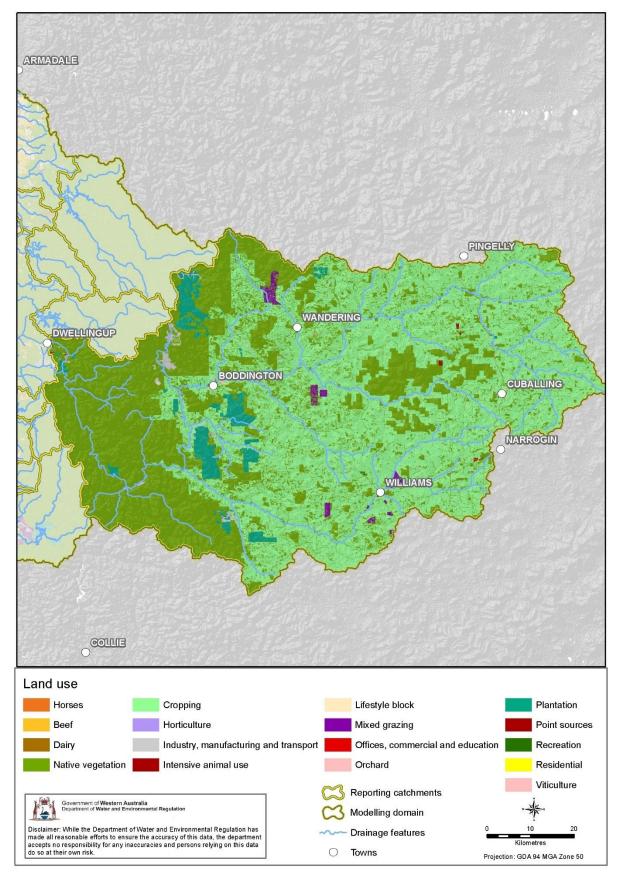
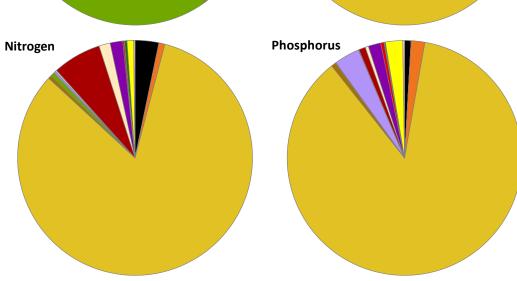



Figure D.8: Land-use of the Upper Murray reporting catchment

D.9 Lower Murray

Land use	Colour	Area		Flow	,	Nitrog	en	Phospho	orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		1172.0	-	0.0	0.1	3.4	3.3	0.06	0.9
Point sources		0.3	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horses		4.6	0.7	0.5	1.0	0.8	0.8	0.12	1.9
Beef		247.6	38.9	36.1	70.7	85.6	82.8	5.38	86.6
Dairy		1.4	0.2	0.1	0.2	0.5	0.4	0.04	0.6
Native vegetation		342.1	53.8	6.4	12.5	0.6	0.6	0.01	0.1
Cropping		0.1	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		3.8	0.6	0.7	1.4	0.3	0.3	0.22	3.5
ndustry, manufacturing & transport		12.0	1.9	3.5	6.8	0.2	0.2	0.00	0.1
ntensive animal use		0.8	0.1	0.2	0.3	6.9	6.7	0.06	0.9
Lifestyle block		8.5	1.3	1.1	2.2	1.6	1.6	0.03	0.4
Mixed grazing		5.6	0.9	0.9	1.8	1.8	1.7	0.11	1.7
Offices, commercial & education		0.6	0.1	0.2	0.3	0.2	0.2	0.03	0.5
Plantation		1.5	0.2	0.0	0.1	0.0	0.0	0.00	0.1
Recreation		2.7	0.4	0.2	0.5	0.4	0.4	0.01	0.1
Residential		3.7	0.6	0.9	1.9	0.9	0.9	0.15	2.4
Viticulture		0.9	0.1	0.1	0.3	0.2	0.2	0.02	0.2
Total		636.1		51.0		103.4		6.21	
Area		Flov	N						

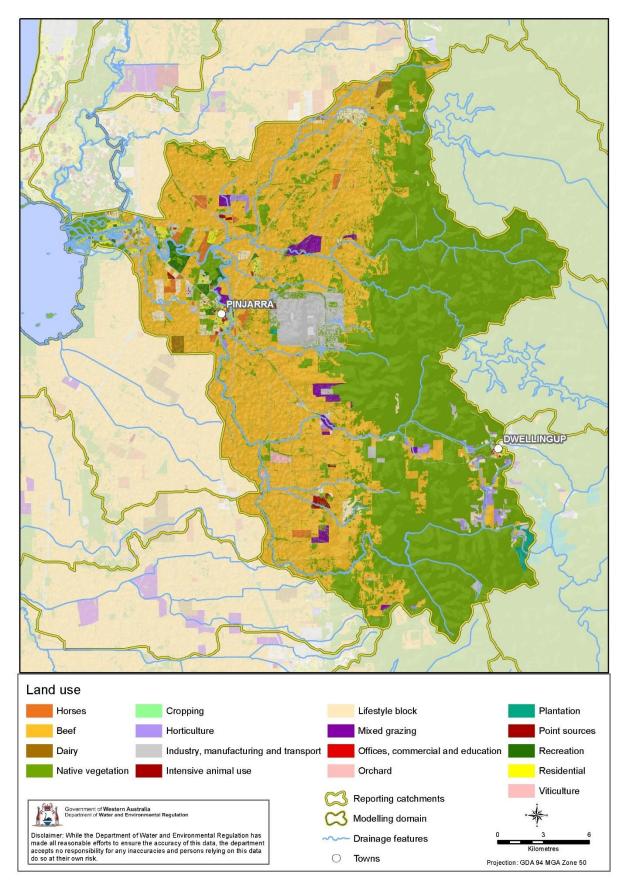
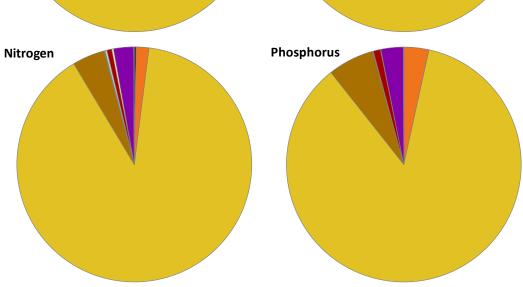



Figure D.9: Land-use of the Lower Murray reporting catchment

D.10 Coolup (Peel)

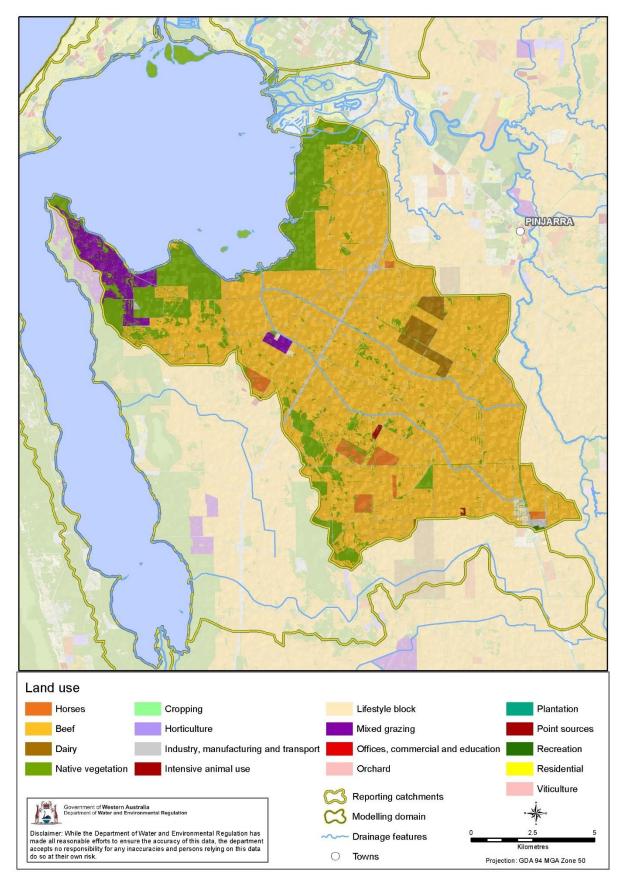
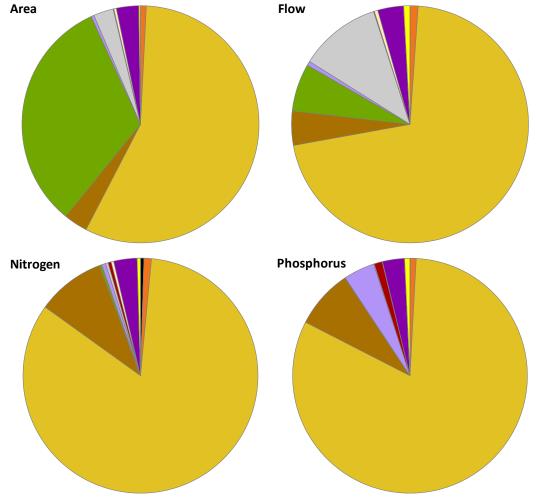



Figure D.10: Land-use of the Coolup (Peel) reporting catchment

D.11 Coolup (Harvey)

Land use	Colour	Area	1	Flow	,	Nitrog	en	Phospho	orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		115.0	-	0.0	0.0	0.1	0.5	0.00	0.1
Point sources		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horses		0.8	0.8	0.1	1.1	0.1	1.0	0.02	0.8
Beef		58.8	56.8	4.5	71.0	11.1	83.4	1.68	81.7
Dairy		3.4	3.2	0.3	4.6	1.3	9.4	0.17	8.1
Native vegetation		33.4	32.3	0.4	6.5	0.0	0.3	0.00	0.1
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		0.4	0.4	0.0	0.6	0.1	0.6	0.09	4.3
Industry, manufacturing & transport		2.8	2.7	0.7	11.1	0.0	0.3	0.00	0.1
Intensive animal use		0.1	0.1	0.0	0.1	0.1	0.4	0.02	1.1
Lifestyle block		0.4	0.3	0.0	0.5	0.0	0.4	0.00	0.1
Mixed grazing		3.2	3.1	0.2	3.5	0.4	3.2	0.06	3.0
Offices, commercial & education		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Plantation		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Recreation		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Residential		0.2	0.2	0.1	0.9	0.1	0.4	0.02	0.7
Viticulture		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Total		103.4		6.3		13.3		2.05	

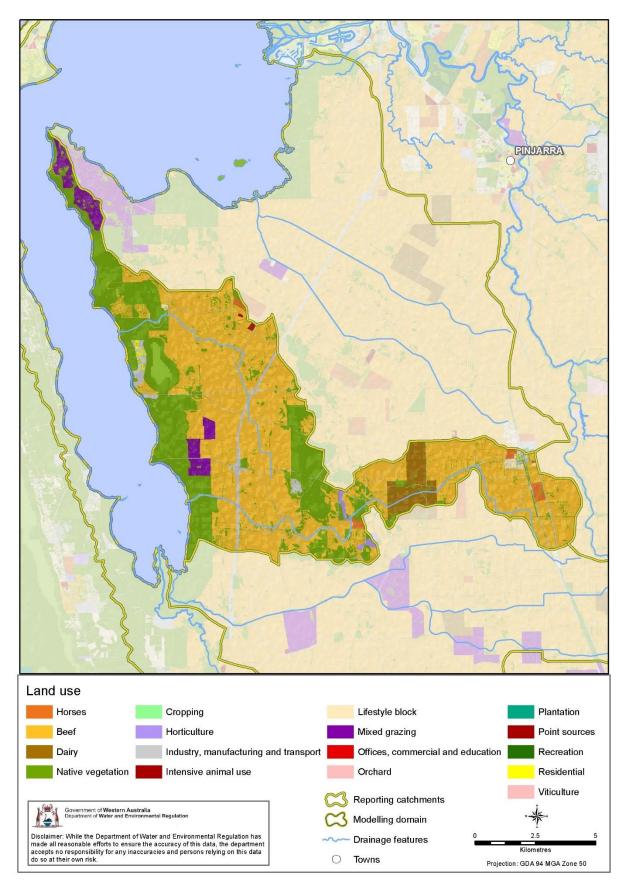
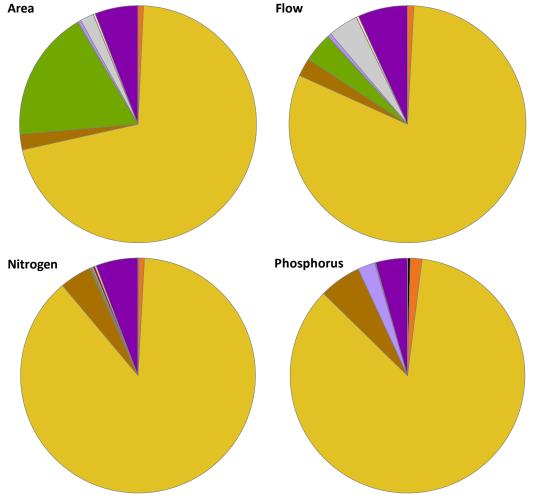



Figure D.11: Land-use of the Coolup (Harvey) reporting catchment

D.12 Mayfield Drain

Land use	Colour	Area	I	Flow	1	Nitrogen		Phosphorus	
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		63.0	-	0.0	0.0	0.0	0.1	0.01	0.4
Point sources		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horses		0.9	0.7	0.1	0.9	0.2	0.7	0.06	1.6
Beef		86.4	70.8	12.1	80.9	29.3	88.0	3.09	85.3
Dairy		2.6	2.1	0.4	2.4	1.5	4.4	0.21	5.8
Native vegetation		21.8	17.9	0.6	4.1	0.1	0.2	0.00	0.0
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		0.5	0.4	0.1	0.5	0.0	0.1	0.09	2.4
Industry, manufacturing & transport		2.3	1.9	0.6	4.1	0.1	0.2	0.00	0.1
Intensive animal use		0.0	0.0	0.0	0.0	0.1	0.2	0.00	0.0
Lifestyle block		0.3	0.3	0.0	0.3	0.1	0.2	0.00	0.0
Mixed grazing		7.2	5.9	1.0	6.8	1.9	5.8	0.16	4.4
Offices, commercial & education		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Plantation		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Recreation		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Residential		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Viticulture		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Total		122.1		15.0		33.3		3.62	

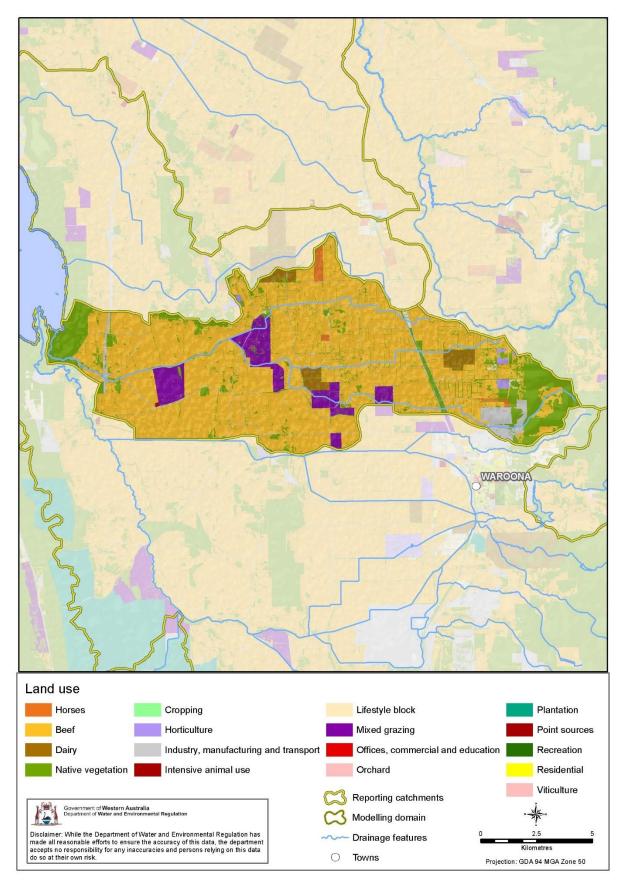



Figure D.12: Land-use of the Mayfield Drain reporting catchment

D.13 Harvey

Land use	Colour	Area		Flow		Nitrog	en	Phospho	orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		2229.0	-	0.0	0.0	2.0	1.0	0.59	2.9
Point sources		0.1	0.0	0.1	0.1	2.8	1.3	0.14	0.7
Horses		0.1	0.0	0.0	0.0	0.1	0.0	0.01	0.1
Beef		263.4	47.6	50.5	57.9	159.3	77.6	15.12	75.2
Dairy		19.1	3.4	11.6	13.3	27.8	13.5	2.62	13.1
Native vegetation		214.1	38.7	15.9	18.2	3.0	1.5	0.05	0.3
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		5.8	1.0	1.1	1.3	1.2	0.6	0.78	3.9
Industry, manufacturing & transport		12.1	2.2	3.4	3.9	0.5	0.2	0.01	0.1
Intensive animal use		0.1	0.0	0.0	0.0	0.2	0.1	0.03	0.1
Lifestyle block		9.6	1.7	1.9	2.2	3.3	1.6	0.07	0.4
Mixed grazing		5.3	1.0	0.9	1.1	2.2	1.1	0.22	1.1
Offices, commercial & education		0.3	0.1	0.1	0.1	0.3	0.1	0.02	0.1
Plantation		17.8	3.2	0.3	0.3	0.2	0.1	0.23	1.2
Recreation		0.6	0.1	0.1	0.2	0.3	0.2	0.01	0.0
Residential		2.5	0.5	0.7	0.8	1.2	0.6	0.12	0.6
Viticulture		2.1	0.4	0.5	0.5	0.9	0.5	0.07	0.3
Total		553.0		87.2		205.5		20.11	
Area		Flov	N						

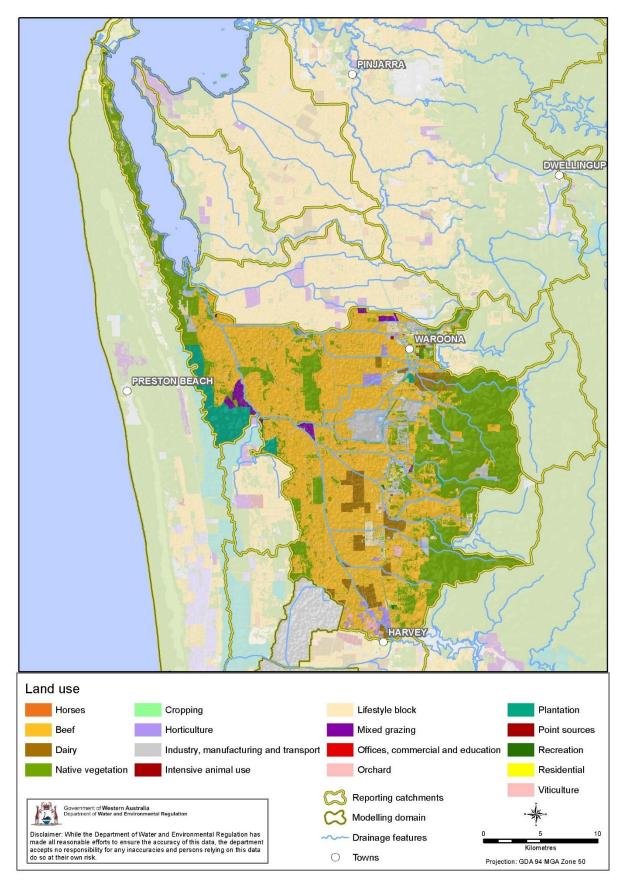
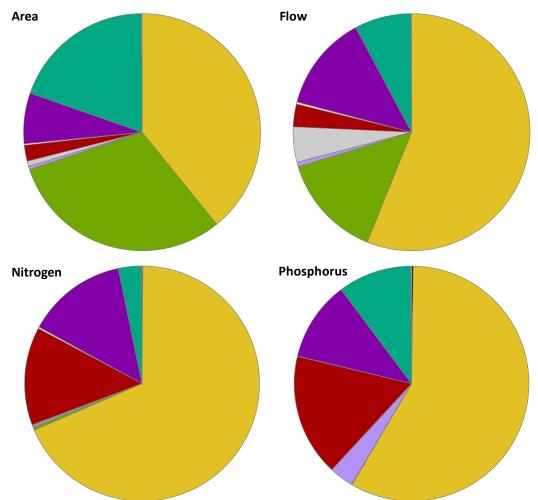



Figure D.13: Land-use of the Harvey reporting catchment

D.14 Meredith Drain

Land use	Colour	Area	l I	Flow	,	Nitrog	en	Phospho	orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		12.0	-	0.0	0.0	0.0	0.1	0.00	0.2
Point sources		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horses		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Beef		20.8	39.2	1.3	56.1	4.6	68.4	0.61	58.3
Dairy		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Native vegetation		16.3	30.7	0.3	14.2	0.0	0.4	0.00	0.1
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		0.2	0.4	0.0	0.6	0.0	0.2	0.03	3.3
Industry, manufacturing & transport		0.4	0.7	0.1	4.8	0.0	0.1	0.00	0.0
Intensive animal use		1.2	2.2	0.1	3.1	0.9	13.5	0.18	16.8
Lifestyle block		0.1	0.2	0.0	0.3	0.0	0.2	0.00	0.1
Mixed grazing		3.7	6.9	0.3	13.1	0.9	13.8	0.11	11.0
Offices, commercial & education		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Plantation		10.4	19.6	0.2	7.7	0.2	3.2	0.11	10.1
Recreation		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Residential		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Viticulture		0.0	0.1	0.0	0.1	0.0	0.1	0.00	0.1
Total		53.1		2.3		6.7		1.04	

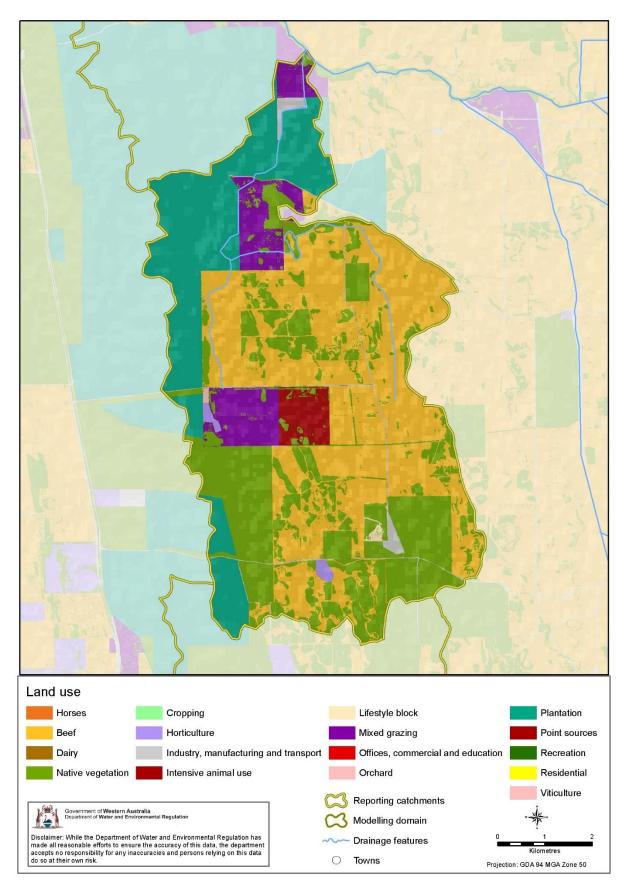
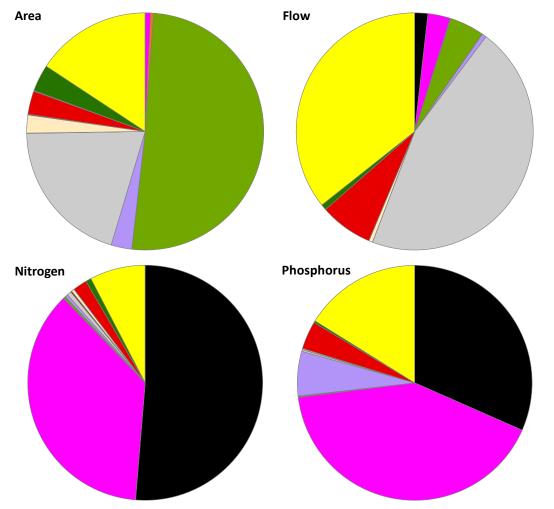



Figure D.14: Land-use of the Meredith Drain reporting catchment

D.15 Coastal North

Land use	Colour	Area		Flow	Flow		Nitrogen		orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		4838.0	-	0.6	1.8	59.6	51.3	4.04	31.6
Point sources		2.7	0.7	1.1	3.1	42.3	36.4	5.30	41.4
Horses		1.6	0.4	0.0	0.1	0.1	0.1	0.02	0.1
Beef		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Dairy		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Native vegetation		185.6	50.6	1.6	4.7	0.3	0.3	0.01	0.1
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		10.4	2.8	0.2	0.6	0.4	0.4	0.78	6.1
Industry, manufacturing & transport		73.6	20.1	15.6	45.5	0.7	0.6	0.03	0.2
Intensive animal use		0.2	0.0	0.0	0.0	0.2	0.2	0.00	0.0
Lifestyle block		9.0	2.4	0.2	0.5	0.5	0.4	0.02	0.1
Mixed grazing		0.4	0.1	0.0	0.0	0.0	0.0	0.00	0.0
Offices, commercial & education		11.6	3.2	2.5	7.2	2.2	1.9	0.49	3.9
Plantation		0.4	0.1	0.0	0.0	0.0	0.0	0.00	0.0
Recreation		13.4	3.7	0.3	0.8	0.9	0.8	0.03	0.3
Residential		57.6	15.7	12.2	35.7	8.9	7.7	2.07	16.2
Viticulture		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Total		366.4		34.3		116.1		12.79	

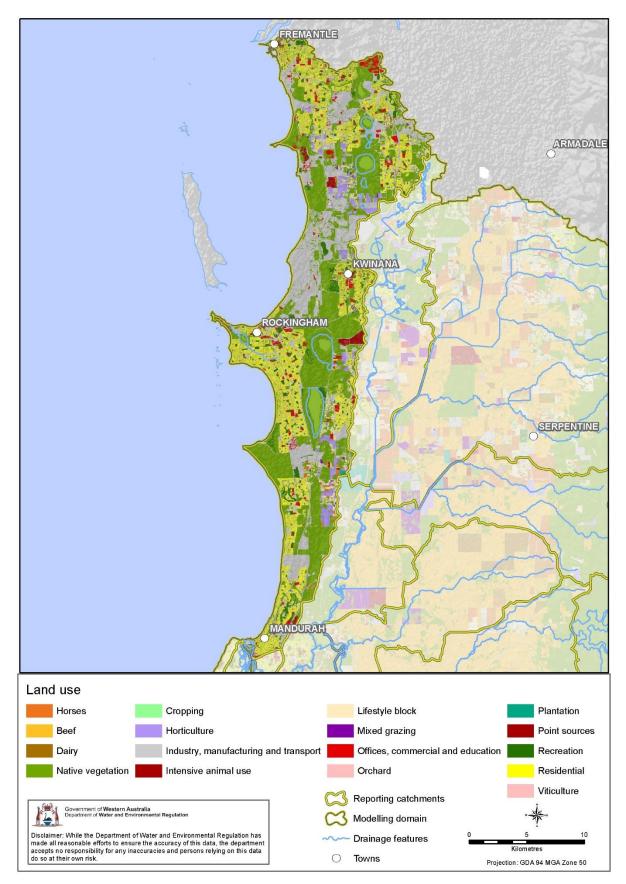
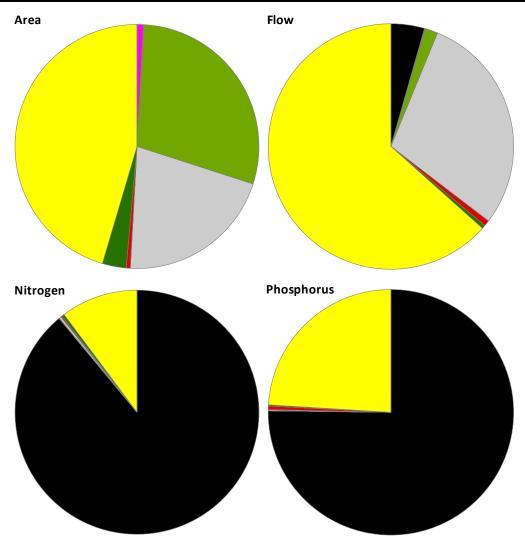



Figure D.15: Land-use of the Coastal North reporting catchment

D.16 Coastal Central

Land use	Colour	lour Area		Flow	Flow		Nitrogen		orus
		(km ²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		744.0	-	0.0	4.4	4.8	89.0	0.32	75.2
Point sources		0.1	0.9	0.0	0.1	0.0	0.0	0.00	0.0
Horses		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Beef		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Dairy		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Native vegetation		2.0	29.1	0.0	1.7	0.0	0.0	0.00	0.0
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Industry, manufacturing & transport		1.5	20.9	0.3	29.2	0.0	0.3	0.00	0.1
Intensive animal use		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Lifestyle block		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Mixed grazing		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Offices, commercial & education		0.0	0.5	0.0	0.8	0.0	0.1	0.00	0.5
Plantation		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Recreation		0.2	3.2	0.0	0.5	0.0	0.3	0.00	0.2
Residential		3.2	45.4	0.7	63.4	0.6	10.2	0.10	24.0
Viticulture		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Total		7.0		1.1		5.4		0.43	

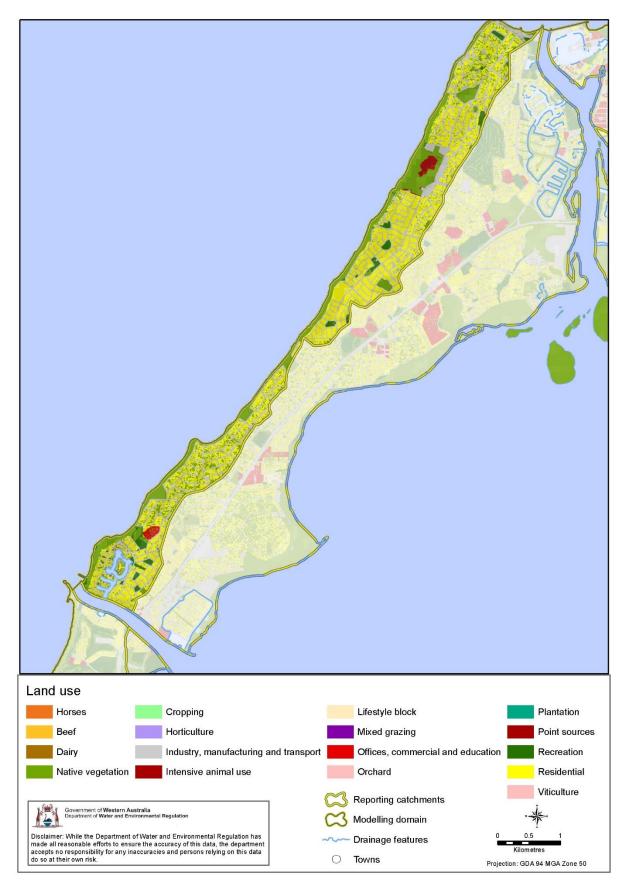
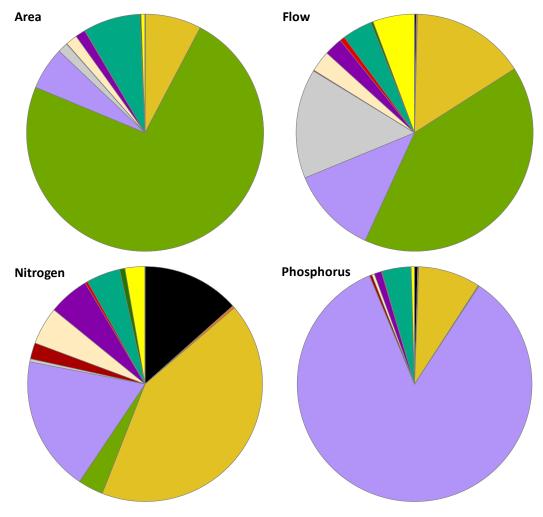



Figure D.16: Land-use of the coastal central reporting catchment

D.17 Coastal south

Land use	Colour	Area		Flow	Flow		Nitrogen		orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		1340.0	-	0.0	0.2	1.7	13.4	0.04	0.4
Point sources		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horses		0.3	0.1	0.0	0.1	0.0	0.3	0.01	0.1
Beef		24.8	7.6	1.2	15.6	5.3	42.2	0.76	8.6
Dairy		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Native vegetation		239.7	73.6	3.2	40.9	0.4	3.5	0.01	0.1
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		19.0	5.8	0.9	11.9	2.4	18.6	7.51	84.5
Industry, manufacturing & transport		4.5	1.4	1.2	14.9	0.1	0.4	0.00	0.0
Intensive animal use		0.2	0.1	0.0	0.1	0.3	2.2	0.03	0.3
Lifestyle block		5.2	1.6	0.2	2.9	0.7	5.2	0.03	0.4
Mixed grazing		4.5	1.4	0.2	2.5	0.7	5.6	0.09	1.0
Offices, commercial & education		0.2	0.1	0.1	0.7	0.0	0.4	0.01	0.1
Plantation		25.2	7.7	0.3	4.1	0.6	4.7	0.35	4.0
Recreation		0.6	0.2	0.0	0.3	0.1	0.7	0.00	0.0
Residential		1.8	0.5	0.4	5.7	0.3	2.7	0.04	0.5
Viticulture		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Total		325.9		7.8		12.6		8.89	

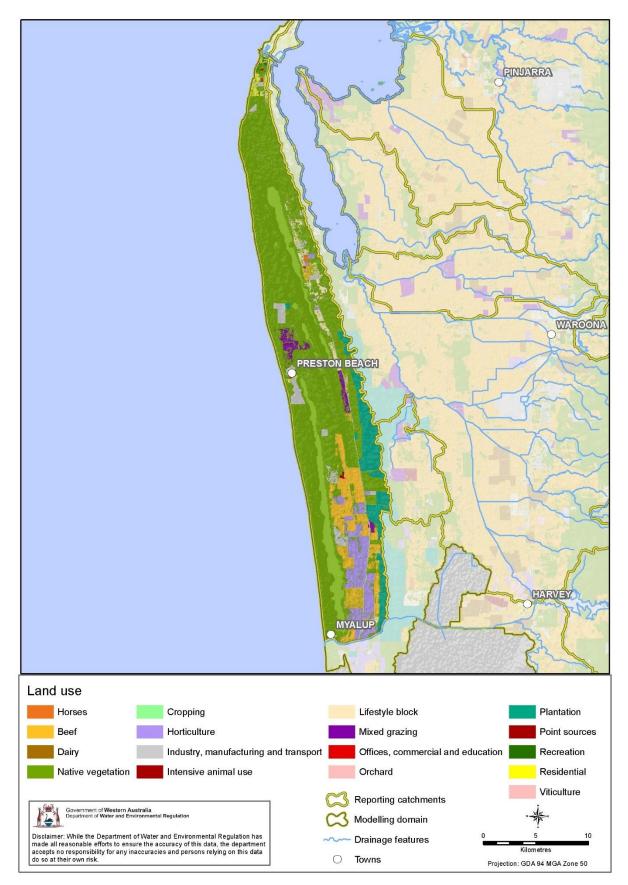
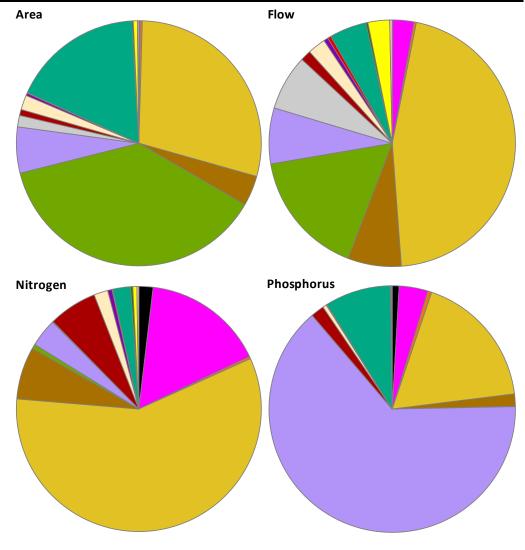



Figure D.17: Land-use of the coastal south reporting catchment

D.18 Harvey Diversion Drain

Land use	Colour	Area		Runo	ff	Nitrogen		Phospho	orus
		(km²)	(%)	(GL)	(%)	(tonnes)	(%)	(tonnes)	(%)
Septic (#)		234.0	-	0.0	0.1	0.9	1.9	0.07	0.9
Point sources		0.3	0.2	0.3	2.8	7.9	16.1	0.28	3.8
Horses		0.5	0.3	0.0	0.3	0.1	0.3	0.04	0.5
Beef		49.6	28.9	5.4	45.7	28.5	58.1	1.35	17.8
Dairy		6.8	4.0	0.8	7.0	3.4	6.9	0.12	1.6
Native vegetation		64.8	37.7	2.0	16.5	0.3	0.6	0.00	0.1
Cropping		0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
Horticulture		10.4	6.1	0.9	7.3	1.8	3.7	4.85	64.1
Industry, manufacturing & transport		2.6	1.5	0.9	7.3	0.0	0.1	0.00	0.0
Intensive animal use		1.4	0.8	0.2	1.4	3.2	6.4	0.13	1.8
Lifestyle block		3.3	1.9	0.3	2.4	0.9	1.8	0.04	0.5
Mixed grazing		0.6	0.3	0.1	0.6	0.3	0.6	0.01	0.1
Offices, commercial & education		0.2	0.1	0.1	0.5	0.1	0.1	0.00	0.0
Plantation		29.7	17.3	0.6	4.9	1.2	2.4	0.66	8.7
Recreation		0.3	0.2	0.0	0.3	0.1	0.3	0.00	0.0
Residential		0.9	0.5	0.3	2.8	0.3	0.5	0.01	0.1
Viticulture		0.3	0.2	0.0	0.3	0.1	0.3	0.01	0.1
Total		171.7		11.9		49.1		7.57	

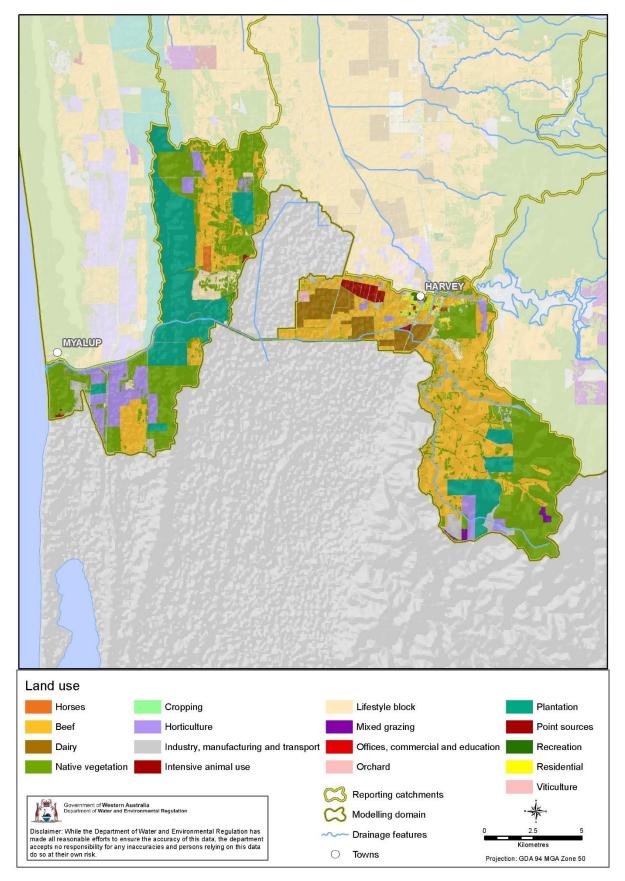


Figure D.18: Land-use of the Harvey Diversion Drain reporting catchment

Appendix E: Catchment targets

E.1 Summary of catchment targets for Western Australian estuaries

System	Nitrogen target	Phosphorus target	Publication
_	Long-term 2.0 mg/L TN Short-term 1.0 mg/L TN	Long-term 0.2 mg/L TP Short-term 0.1 mg/L TP	SRT, 2008
Swan- Canning	0.5–1.0 mg/L TN depending on flow yield	0.05–0.1 mg/L TP depending on flow yield	Kelsey et al. 2010a SRT 2009
	-	10-year median phosphorus load of 75 tonnes	EPA 1992
Peel-Harvey	-	0.1 mg/L TP	EPA 2008
	1.2 mg/L TN	Median phosphorus load of 75 tonnes	Kelsey et al. 2011
Leschenault	1.0 mg/L TN for lowland catchments 0.45 mg/L TN for upland catchments	0.1 mg/L TP for lowland catchments 0.02 mg/L TP for upland catchments	Hugues-dit-Ciles et al. 2012
Geographe Bay	1.0 mg/L TN	0.1 mg/L TP	Hall, 2009
Hardy - Scott River	1.0 mg/L TN (based on recent data)	0.1 mg/L TP (based on historic data at 609002 before Lyngbya blooms manifested)	White 2012

E.2 The EPP phosphorus targets

The statutory Environmental Protection Policy (EPP) (EPA 1992) sets out environmental quality objectives for the protection of the Peel-Harvey estuary. These are stated in the EPP in Part 2 Clause 7 as:

The environmental quality objectives to be achieved and maintained in respect of the Estuary are a median annual load (mass) of phosphorus flowing into the estuary of less than 75 tonnes with -

- a) the median load (mass) of total phosphorus flowing into the Estuary from the Serpentine River being less than 21 tonnes;
- b) the median load (mass) of total phosphorus flowing into the Estuary from the Murray River being less than 16 tonnes; and
- c) the median load (mass) of total phosphorus flowing into the Estuary from the Harvey River being less than 38 tonnes.

The EPP also stated in Clause 8(2):

The environmental quality objectives are to be achieved and maintained through —

- a) implementation of the Planning Policy by local authorities through their relevant town planning schemes, and by the State Planning Commission through the Metropolitan Region Scheme;
- b) appropriate land management by landholders and management authorities in the policy area;
- c) government extension services including the provision of advice to land holders in the policy area; and
- d) local authorities and the State ensuring that decisions and actions are compatible with the achievement and maintenance of the environmental quality objectives.

That is, all government and private activities in the catchment must contribute to reaching these targets.

The EPP targets were derived by considering limitation to Nodularia spumigena growth in the estuary prior to the Dawesville Channel, and thus have an ecological basis (EPA 1992; Kinhill Engineers 1988). Even though Nodularia no longer blooms in the estuary because of its sensitivity to salinity, it still blooms in the estuarine reaches of the rivers.

We used our catchment model to assess against the EPP phosphorus targets using modelled 10-year median phosphorus loads from 2006 to 2015:

Serpentine River:	28 tonnes (target of 21 tonnes)								
Murray River:	13 tonnes (target of 16 tonnes)								
Harvey River: 34 tonnes (target of 38 tonnes)									
Peel-Harvey estuary: 74.6 tonnes (target of 75 tonnes									

The EPP does not specify if the Peel-Harvey estuary target is to be calculated as a 10-year median from the total annual river catchment time-series or the summation of the 10-year median calculated for each individual river catchment (

Table E.2). This is evidently important as these two calculation methods either result in an estuary target failure (79 tonnes calculated from total annual time-series) or the estuary target is marginally met (74.6 tonnes summation of river catchment median).

E.3 The Peel Harvey water quality improvement plan

The Water quality improvement plan for the rivers and estuaries of the Peel-Harvey system – phosphorus management (PHWQIP) (EPA 2008) used a winter median phosphorus concentration target of 0.1 mg/L derived for the Swan and Canning streams (SRT 1999; SRT 2007). The LASCAM modelling that was used to support the PHWQIP (Zammit et al. 2006) used this concentration target method to derive winter median load targets and load reduction targets for individual catchments. Winter was defined as 1 June to 31 October. Figure E.1 gives the modelled winter median concentrations by reporting catchment from our model for the period of 2006 to 2015.

Year	Serpentine River catchment	Murray River catchment	Harvey River catchment	Total (Peel-Harvey estuary)
	(tonnes)	(tonnes)	(tonnes)	(tonnes)
2006	8.8	4.3	10	23
2007	38	15	35	87
2008	35	13.2	37	85
2009	35	16	37	88
2010	6.6	2.5	6.0	15
2011	34	12.5	34	80
2012	13	6.5	17	36
2013	30	13.4	48	92
2014	25	12.7	39	77
2015	8.9	2.6	6.1	18
Median of timeseries	28	13	34	79
Sum of catchment medians	-	-	-	74.6
EPP target	21	16	38	75

Table E.2: Annual modelled phosphorus loads from the Serpentine (include Mandurah), Murray (includes Coolup (Peel)) and Harvey (includes Mayfield and Coolup (Harvey)) river catchments and comparison to the EPP phosphorus targets.

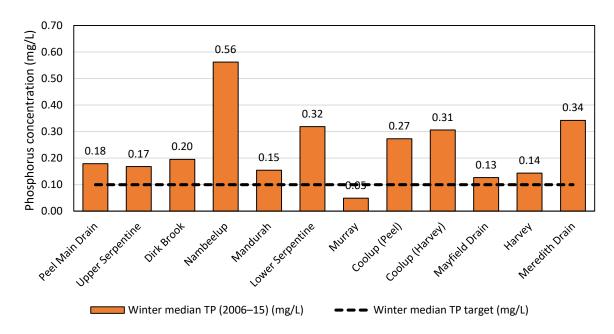


Figure E.1: Modelled reporting catchment winter median total phosphorus concentrations and the PHWQIP concentration target for the period of 2006–15

Appendix F: Supporting information for the management scenario modelling

F.1 Overseer modelling

We used the Overseer lot-scale model to estimate the reduction in phosphorus export from beef and dairy farms from various scenarios. Four Overseer models were developed (beef low PRI, beef high PRI, dairy low PRI, dairy high PRI) and were run for the following:

- **Current management (basecase).** Highly soluble phosphorus fertilisers are applied at 'typical' rates and soil phosphorus content is based on average soil measurements from the Peel-Harvey catchment. Livestock are assumed to have access to waterways.
- **Best-practice fertiliser management using traditional fertilisers**. Farms utilise excess soil phosphorus until concentrations are at an optimum for growing profitable pastures. Soluble phosphorus fertilisers are then applied to maintain optimum soil phosphorus concentrations.
 - Best-practice fertiliser management using low-water-soluble phosphorus fertilisers. We modelled the same scenario described above but used low-water-soluble phosphorus fertilisers rather than highly soluble phosphorus fertilisers.
- **Stock exclusion**: We modified the basecase model to exclude livestock from waterways to simulate waterway fencing.
- **Soil amendment**: We increased the phosphorus retention of low-PRI soils in the basecase model to represent soil amendments.

For all Overseer modelling we used a web-based tool that was last accessed in December 2018. In 2019 the version of Overseer that we used was replaced by OverseerFM, which is a more streamlined tool for farm managers but without some of the functionality used in our modelling. OverseerSci currently has the same functionality as the version that was used in this modelling.

F.1.1 Whole-farm nutrient mapping dataset

The DPIRD whole-farm nutrient mapping dataset contains the soil test results of farms that were part of programs from 2009 to 2020 to improve fertiliser use and agricultural productivity in sensitive estuary catchments, such as the Peel-Harvey estuary. This dataset includes soil testing funded by the Western Australian state governments Regional Estuaries Initiative (REI) which operated from 2016 to 2020. We used the whole-farm nutrient mapping dataset in two different ways in this modelling project:

 Parameterising the soil phosphorus content and phosphorus retention properties of beef and dairy farms in Overseer. We used a subset of the dataset (2009–18) as not all of the REI funded soil testing data had been collected when undertaking this modelling. Paddocks that were sampled in multiple years were retained in the analysis. We used data from paddocks in estuary catchments on the coastal plain and the Harvey Diversion Drain catchment. We describe this parameterisation in Section F.1.2.

2. Estimating the long-term phosphorus load reduction from government-funded soil-testing programs in the Peel-Harvey catchment. We calculated the area of farmers engaged in soil-testing programs for all estuary catchments on the coastal plain (excludes the Upper Murray and the Harvey Diversion Drain). Areas were given by funding program: Regional Estuaries Initiative (REI) funded soil testing (2016–20) and all programs including the REI (2009–2020). We retained the most recent soil testing data of paddocks that were sampled in multiple years.

Note that the updated DPIRD dataset (2009–20) had less than a \pm 5% difference in the soil test values that we used to parameterise the Overseer model.

F.1.2 Model setup for the basecase Overseer farm models (current management)

We first describe the overarching design of beef and dairy models. We gave these models uniform soil properties typical of either low or high PRI soils in the Peel-Harvey catchment, which is described separately.

Beef farm models

We modelled beef farms in Overseer to have a farm area of 120 ha and were stocked with black angus cattle (0.86 head/ha). Livestock were populated using the Overseer breeding stock tool using a breeding stock of 40. The pasture used was a mix of clover and ryegrass with medium levels of clover. No feed was imported or exported from the farm and there was no irrigation. All stock had access to waterways.

We based nutrient inputs (e.g. feed, fertiliser) on local farm-gate nutrient budget survey data (Ovens et al. 2008; Weaver et al. 2008). Beef farms were fertilised using 13 kg P/ha/yr of soluble phosphorus and nitrogen inputs were from clover fixation (43 kg N/ha/yr) and atmospheric deposition (2 kg N/ha/yr). The resulting farm-gate nutrient budget of the Overseer beef model was similar to local studies for phosphorus. However, for nitrogen, the Overseer beef model tended to have lower inputs (less fixation) and outputs than local studies (see Table F.1).

Dairy farm models

We modelled dairy farms in Overseer to have a farm area of 165 ha and were stocked with 230 Friesian milking cows (1.4 head per hectare). This 165-hectare farm consisted of a 163-hectare non-dairy effluent block (traditionally fertilised and used for pasture production) and a 2-hectare effluent block. We used default Overseer milk production values and a lactation length of 335 days per year.

We assumed that dairy effluent was managed using a holding pond with 'regular spray irrigation' and 'annual solid spreading' onto the effluent block. Overseer assumes bestpractice effluent management and does not estimate the nutrient loss resulting from poorly constructed or managed dairy effluent systems. All stock had access to waterways and thus directly deposited 0.1 kg/ha/yr of phosphorus.

We based fertiliser and feed inputs on local farm-gate nutrient budget survey data. These were generally comparable in terms of total inputs and outputs (see Table F.1). Total nutrient inputs in the model were 147 kg N/ha/yr and 29 kg P/ha/yr, which was comprised of:

- Fertiliser: 25 kg N/ha/yr and 23 kg P/ha/yr on non-effluent blocks and 8 kg P/ha/yr on effluent blocks.
- Feed inputs: Feed inputs to the entire farm (effluent and non-effluent blocks) were 34 kg N/ha/yr and 5 kg P/ha/yr from 'Grains and oats' (150 tonnes dry matter) and 'silage' (150 tonnes dry matter).
- Atmospheric inputs: 2 kg N/ha/yr (Overseer default).
- **Pasture fixation:** 59 kg N/ha/yr on the non-effluent block and 12 kg N/ha/yr on the effluent block.
- Irrigation: Inputs of 28 kg N/ha/yr and 1 kg P/ha/yr on all farm areas from 'boarder dyke' irrigation and default inflow concentrations (2.5 mg/L TN and 0.1 mg/L TP). Rivers (2012) measured local irrigation inflow concentrations, which were similar to the Overseer default values.

	Dairy						Be	ef	
Farm		Nitrogen	(kg/ha/yr)	Phosphoru	ıs (kg/ha/yr)	Nitrogen	(kg/ha/yr)	Phosphorus (kg/ha/yr)	
budget	Category	WA surveys	Overseer modelling	WA surveys	Overseer modelling	WA surveys	Overseer modelling	WA surveys	Overseer modelling
	Livestock	0.1	-	0.04	-	0.7	0.0	0.26	0.00
	Feed	54	34	9.1	5.0	0.3	-	0.1	-
	Fertiliser	25	25	15.9	23.0	1.7	0.0	12.3	13.0
Input	Pasture	65	58	-	0	83.6	43.0	-	0
	Other	0.4	30	0.4	1.0	0.0	2.0	0.1	0.0
	Total	145	147	25.5	29.0	86.4	45.0	12.7	13.0
	Livestock & milk	23	31	5.4	5.0	7.5	4.0	1.4	1.0
Output	Feed	0.1	0.0	0.01	-	0.1	-	0.01	-
	Total	24	31	5.4	5.0	7.6	4.0	1.4	1.0
Surplus	Total	122	116	20.1	24.0	78.8	41.0	11.3	12.0

Table F.1: Farm-gate nutrient budgets of beef and dairy farms that were modelled in Overseer and from local surveys (Ovens et al. 2008; Weaver et al. 2008)

Soil phosphorus parameterisation

We parameterised Overseer using soil testing data (2009–18) in coastal catchments that drain to the Peel-Harvey estuary and the Harvey Diversion Drain catchment. We calculated the average soil test values⁴ of beef and dairy farms on low and high PRI soils using the modelling land use spatial dataset. Overseer uses Olsen P rather than Colwell P which predominantly used in the southwest of Western Australia. We converted Colwell P to Olsen P using a relationship for various PBI ranges that was developed by the DPIRD (see Table

⁴ Colwell P, phosphorus buffering index (PBI) and fertility index values (85% and 95%)

F.2). Table F.3 gives the soil properties that were derived from the DPIRD database (2009– 18) and were used in the Overseer models of beef and dairy farms for low and high PRI soils.

Low-PRI soils of beef and dairy farm models used 'sandy high P export' soils. The phosphorus retention (anion storage capacity) of low PRI beef and dairy was 1 % and 2% respectively. High-PRI soils of beef and dairy models used 'sedimentary' soils with a phosphorus retention of 20. All Overseer farm models use were assumed to have the phosphorus maintenance fertiliser rates derived from 'sedimentary' soils.

PBI class	Equation
<35	10 ^{0.882 * log(Colwell P) - 0.155)}
35–139	10 ^{0.874*} log(Colwell P) - 0.23)
140–279	10 ^{0.89*} log(Colwell P) – 0.32)
>280	10 ^{0.89*} log(Colwell P) - 0.38)

Table F.2: The conversion of Colwell P to Olsen P (derived by DPIRD)

Table F.3: Assumed soil properties of beef and dairy farms that were derived from the
DPIRD whole-farm nutrient mapping dataset (2009–18)

Farm model	Area (ha)	РВІ	Current colwell P (mg/kg)	Current Olsen P (mg/kg)	Fertility index	Target Colwell P (mg/kg)	Target Olsen P (mg/kg)
Beef (low PRI)*	7 092	45	29	11	1.8	16	7
Beef (high PRI)*	11 080	126	53	19	2.5	21	8
Dairy (low PRI)¥	730	53	56	20	2.0	27	10
Dairy (high PRI)¥	1 934	204	81	24	2.2	37	12

* Fertility index for 85% of maximum productivity

¥ Fertility index for 95% of maximum productivity

F.1.3 Model setup for the Overseer scenarios

Best-practice fertiliser management using traditional fertilisers

In this scenario we assume that beef and dairy farms rundown their available soil phosphorus content to critical values (fertility index of 1) by applying lower (or no) phosphorus fertilisers. We represented this by modifying the soil Olsen P content to target concentrations (see Table F.3). We then ran the model with single superphosphate being applied at Overseer maintenance rates for sedimentary soils, which were:

- Beef maintenance phosphorus: 6 kg P/ha/yr as single super phosphate.
- **Dairy** maintenance phosphorus: **12 kg P/ha/yr** as single super phosphate (feed and irrigation inputs were unchanged in this scenario and amounted to 7 kg P/ha/yr.

All other model parameters were the same as the basecase farm models including feed inputs and dairy effluent management.

Best-practice fertiliser management using low-water-soluble phosphorus fertilisers.

This scenario is identical to the scenario above with the exception that low-water-soluble phosphorus (LWSP) fertilisers are used in place of single superphosphate. Overseer allows users to input multiple fertiliser sources, including reactive phosphate rock which has a very low solubility and is the only fertiliser type that reduces phosphorus export in Overseer. An approximate blend of **60% reactive phosphate rock** (as elemental phosphorus) and **40% highly soluble phosphorus** was used to represent low-water-soluble phosphorus fertilisers.

Thus, the application of phosphorus fertilisers in this scenario were:

- **Beef** maintenance phosphorus: **6 kg P/ha/yr** as low-water-soluble phosphorus fertiliser.
- **Dairy** maintenance phosphorus: **12 kg P/ha/yr** as low-water-soluble phosphorus fertiliser (feed and irrigation inputs were unchanged in this scenario and amounted to 7 kg P/ha/yr)

Stock exclusion

Here we estimate the benefit of excluding stock access to waterways to prevent the direct deposition of nutrients from urine and faeces and bank erosion. This scenario used the same parameterisation of the basecase scenario with the exception that stock access to streams was unchecked. Stock exclusion reduced nutrient exports by:

- Beef: 0 kg N/ha/yr (0% reduction) and 0.1 kg P/ha/yr (11% to 50% reduction)
- Dairy: 1 kg N/ha/yr (1 to 2% reduction) and 0.1 kg P/ha/yr (1 to 2% reduction)

Soil amendments

We modelled soil amendments in Overseer by modifying the phosphorus retention parameter in low PRI beef and dairy farm models. The effect of a 20 tonne per hectare soil amendment was assumed to increase soil phosphorus retention by 3% compared to the basecase. Phosphorus retention was increased from 1% to 4% for beef and from 2% to 5% for dairy. The modelled reduction in phosphorus export was:

- Beef: 56% reduction in phosphorus export
- Dairy: 30% reduction in phosphorus export

F.1.4 Overseer parameter and result summaries

Table F.4: Overseer beef (low PRI) basecase and s	scenario model parameterisation and results
---	---

		Base case		Fertiliser m	nanagement	Low water soluble	phosphorus fertilisers	Soil amendment			
Variable	Units	Farm	otal	Farm	n total	Farr	n total	Farm total			
Area	ha	12	0	1:	20		120	120			
Number of cows		10	4	1	04	:	104	104			
Climate	-	Average annual (1900- sit)-2017) at Pinjarra met ite		0-2017) at Pinjarra met site	Average annual (1900-2017) at Pinjarra met site			
Irrigation method		No irrig	ation	No irri	igation	No ir	rigation	Noirr	rigation		
Do animals have access to streams?	Yes/no	Ye	s	Y	'es		Yes	1	Yes		
Pasture and clover levels		Very	nigh	Very	/ high	Ver	y high	Ver	y high		
Maximum pasture yield	t DM/ha/yr	4.	L	4	.1		4.1	4	4.1		
Supplements made	t DM/yr	Silage 12 tonnes	(used on farm)	Silage 12 tonne	es (used on farm)	Silage 12 tonn	es (used on farm)	Silage 12 tonne	es (used on farm)		
Soils & drainage											
Soil description	-	Sand (high	P export)	Sand (high	h P export)	Sand (hij	gh P export)	Sand (hig	gh P export)		
Soil drainage class and characteristics	-	Moderately well - Drai	nage always soaks in	Moderately well - Dra	ainage always soaks in	Moderately well - Dr	ainage always soaks in	Moderately well - Dr	ainage always soaks in		
Top soil texture	-	Sar	d	Sa	and	S	and	Si	and		
Maximum rooting depth	cm	20)	2	20		20		20		
Soil phosphate retention (PR)	Percent	1		:	1		1		4		
PBI		45		4	45		45		45		
Colwell P	mg/kg	29)	1	16		16		29		
Fertiliser index (85% productivity)	Fraction	1.	3	:	1		1.8	:	1.8		
Olsen P	mg/kg	1:			7		7		11		
Maintenance P (P required to maintain Olsen P content)	kg/ha/yr	22 (assumed 12 based	on sedimentary soils)	15 (assumed 6 based	on sedimentary soils)	15 (assumed 6 base	d on sedimentary soils)	21 (assumed 12 base	d on sedimentary soils)		
Proportion of maximum pasture yield with maintenance P	% of max	91 (Assumed to be~97)		81 (Assume	ed to be~ 85)	81 (Assum	ed to be~85)	91 (Assumed to be~ 97)			
Proportion of maximum pasture yield current P input	% of max	90 (Assumed	l to be~97)	79 (Assume	ed to be~ 85)	79 (Assum	ed to be~85)	90 (Assum	ed to be~97)		
Farm nutrient budget		Nitrogen	Phosphorus	Nitrogen	Phosphorus	Nitrogen	Phosphorus	Nitrogen	Phosphorus		
Timing and amount of fertilisation (SSP or RPR)	Apr (kg/ha/yr)	0	13 (SSP)	0	6 (SSP)	0	1 (SSP) 4 (RPR)	0	13 (SSP)		
Nutrient inputs											
Fertiliser	Kg/ha/yr	0	13	0	6	0	6	0	13		
Rain	Kg/ha/yr	2	0	2	0	2	0	2	0		
Pasture nitrogen fixation	Kg/ha/yr	43	0	43	0	43	0	43	0		
Nutrient outputs											
Farm produce (animals, milk etc.)	Kg/ha/yr	4	1	4	1	4	1	4	1		
Exported effluent	Kg/ha/yr	0	0	0	0	0	0	0	0		
Supplements or crop outputs	Kg/ha/yr	0	0	0	0	0	0	0	0		
To atmosphere	Kg/ha/yr	24	0	23	0	23	0	23	0		
To water	Kg/ha/yr	18	0.9	18	0.5	18	0.4	18	0.4		
leaching - Urine patches	Kg/ha/yr	8	0.0	8	0.0	8	0.0	8	0.0		
Leaching - other	Kg/ha/yr	10	0.0	10	0.0	10	0.0	10	0.0		
Runoff	Kg/ha/yr	0	0.8	0	0.4	0	0.3	0	0.3		
Animal contact with streams	Kg/ha/yr	0	0.1	0	0.1	0	0.1	0	0.1		
Direct pond discharge	Kg/ha/yr	0	0.0	0	0.0	0	0.0	0	0.0		
Boarder dyke outwash	Kg/ha/yr	0	0.0	0	0.0	0	0.0	0	0.0		
Septic tank outflow	Kg/ha/yr	0	0.0	0	0.0	0	0.0	0	0.0		
Change in plant and soil stores											
Plant material	Kg/ha/yr	0	0	0	0	0	0	0	0		
Organic pool	Kg/ha/yr	-1	21	-1	15	-1	15	0	21		
Inorganic mineral	Kg/ha/yr	0	-3	0	-3	0	-3	0	-3		
Inorganic soil pool	Kg/ha/yr	0	-8	0	-8	0	-8	0	-7		
morganic son poor	ng/ild/yl	U	-0	U	-0	Ű	-0	U	-/		

Table F.5: Overseer beef (high PRI) basecase and scenario model parameterisation and results

		Base	ecase	Fertiliser m	anagement
Variable	Units		total		total
Area	ha		20		20
Number of cows			04		04
Climate	-		I-2017) at Pinjarra met ite		-2017) at Pinjarra met te
Irrigation method		No irr	igation	No irri	gation
Do animals have access to streams?	Yes/no	Y	es	Y	es
Pasture and clover levels		Very	/ high	Very	high
Maximum pasture yield	tonnes dry matter/	4	.1	4	.1
Supplements made	tonnes dry matter	Silage 50 tonne	s (used on farm)	Silage 50 tonne	s (used on farm)
Soils & drainage					
Soil description	-	Sedim	ientary	Sedim	entary
Soil drainage class and characteristics	-		th naturally high dwater)		th naturally high Iwater)
Top soil texture	-	Clayloa	m (heavy)	Clay loa	m (heavy)
Maximum rooting depth	cm	2	20	2	0
Soil phosphate retention (PR)	Percent	2	20	2	0
PBI		1	25	1	25
Colwell P	mg/kg	5	53	2	1
Fertiliser index (85% productivity)	Fraction		.5		1
Olsen P	mg/kg	1	19		8
Maintenance P (P required to maintain Olsen P content)	kg/ha/yr		12		2
Proportion of maximum pasture yield with maintenance P	% of max		96		16
Proportion of maximum pasture yield current P input	% of max		96		6
Farm nutrient budget	70 01 max	Nitrogen	Phosphorus	Nitrogen	Phosphorus
Timing and amount of fertilisation (SSP or RPR)	Apr (kg/ha/yr)	0	13 (SSP)	0	6 (SSP)
Nutrient inputs	Api (Kg/11d/yr)	0	13 (331)	0	0 (551)
Fertiliser	Kg/ha/yr	0	13	0	6
Rain	Kg/ha/yr	2	0	2	0
Pasture nitrogen fixation	Kg/ha/yr	44	0	44	0
Nutrient outputs	Kg/IId/yi	44	U	44	0
Farm produce (animals, milk etc.)	Kg/ha/yr	4	1	4	1
		4	0	4	0
Exported effluent	Kg/ha/yr	0	0	-	0
Supplements or crop outputs	Kg/ha/yr	-	-	0	
To atmosphere	Kg/ha/yr	26	0	26	0
To water	Kg/ha/yr	17	0.2	17	0.1
leaching - Urine patches	Kg/ha/yr	7	0.0	7	0.0
Leaching - other	Kg/ha/yr	10	0.0	10	0.0
Runoff	Kg/ha/yr	0	0.1	0	0.1
Animal contact with streams	Kg/ha/yr	0	0.1	0	0.1
Direct pond discharge	Kg/ha/yr	0	0.0	0	0.0
Boarder dyke outwash	Kg/ha/yr	0	0.0	0	0.0
Septic tank outflow	Kg/ha/yr	0	0.0	0	0.0
Change in plant and soil stores					
Plant material	Kg/ha/yr	0	0	0	0
Organic pool	Kg/ha/yr	-1	11	-1	6
Inorganic mineral	Kg/ha/yr	0	0	0	-1
Inorganic soil pool	Kg/ha/yr	0	1	0	0

Table F.6: Overseer dairy (low PRI) basecase and scenario model parameterisation and results

			В	asecase				Fer	tiliser mar	nagemen	t		Low	water sol	uble phos	sphorus	fertilisers				Soil amen	dment		<u> </u>
Variable	Units	Non-effluent b	loci Efflu	ent bloc	c Farm	n total	Non-efflue	nt block	Effluent	block	Farm to	otal	Non-effluen	t block	Effluent l	block	Farm to	otal	Non-efflue	nt block	Effluent	block	Farm to	otal
Area	ha	163		2	1	65	16	3	2		165		163		2		165		163		2		165	
Number of milking cows and type		2	30 milkin	g cows (F	riesian)			230 m	nilking cov	vs (Friesi	an)			230 mil	lking cow	s (Friesia	an)			230 n	nilking cov	ws (Friesi	ian)	
Climate	-	Average ann	nual (1900	-2017) a	t Pinjarra n	net site	Average	annual ((1900-201	L7) at Pin	jarra met	tsite	Average a	annual (1	900-201	7) at Pinj	jarra met	site	Average	annual	(1900-201	17) at Pin	jarra met	site
		Holding pond	l: Irrigatio	n and sp	reading of	olids to	Holding	pond: Irri	igation an	d spread	ling of soli	ids to	Holding po	ond: Irriga	ation and	lspreadi	ingofsoli	ds to	Holdingr	ond: Irri	gation an	d spread	ling of soli	ds to
Effluent management	-	effl	uent bloc	c in April	each year			effluent	block in A	pril each	nyear		e	ffluent b	lock in Ap	oril each	year		1	effluent	block in A	April each	nyear	
Effluent irrigation	mm per milking day	None	>	24 mm			Non	ie	>24 m	im 🛛			None		>24 m	m			Non	e	>24 m	nm		
Irrigation method		Boarder dy	ke: defau	lt nutrier	it concentr	ations	Boarde	er dyke: d	default nu	trient co	ncentrati	ons	Boarder	dyke: de	fault nuti	rient cor	ncentratio	ons	Boarde	r dyke: c	lefault nu	trient co	ncentratio	ons
Months irrigated and amount	mm/month	No	ov–March	(227 mm	/month)			Nov-M	/larch (227	' mm/mo	nth)			Nov–Ma	rch (227 i	mm/moi	nth)		1	Nov–N	larch (227	7 mm/mo	onth)	
Do animals have access to streams?	Yes/no			Yes					Yes						Yes						Yes	5		
Pasture and clover levels		Ryegrass/	white clo	ver with l	ow clover l	evels	Ryegr	ass/whit	e clover w	ith low c	loverleve	els	Ryegra	ss/white	clover wi	ith low c	lover leve	els	Ryegra	ass/whit	e clover v	vith low o	clover leve	als
Maximum pasture yield	tonnes dry matter/ha/yr	6.3		6.3	e	5.3	6.3	3	6.3		6.3		6.3		6.3		6.3		6.3		6.3		6.3	
Soils & drainage																								
Soil description	-		Sand (ł	igh P exp	ort)			Sa	and (high P	export)				San	d (high P	export)			1	Sa	nd (high F	P export)		
Soil drainage class and characteristics	-	Moderate	ely well - I	Drainage	always soa	ks in	Mode	erately w	vell - Drain	age alwa	ays soaks	in	Moder	ately wel	ll - Draina	ige alwa	ys soaks i	in	Mode	rately w	ell - Drair	nage alwa	ays soaks i	in
Top soil texture	-			Sand					Sand	b					Sand				1		San	d		
Maximum rooting depth	cm			20					20						20				1		20			
Soil phosphate retention (PR)	Percent			2					2						2				1		5			
PBI				53					53						53				1		53			
Colwell P	mg/kg			56					27						27				1		56			
Fertiliser index (85% productivity)	Fraction			2					1						1				1		2			
Olsen P	mg/kg			20					10						10				1		20			
Maintenance P (P required to maintain Olsen P content)	kg/ha/yr	43 (assume 1	.9)	Not giv	en by mode	el	25 (assu	me 12)	No	t given b	y model		25 (assum	e 12)	No	t given b	y model		12 (assun	ne 19)	No	ot given b	y model	
Proportion of maximum pasture yield with maintenance P	% of max	. 98			en by mode		89 (assui			ot given b			89 (assum				, by model		. 98			ot given b		
Proportion of maximum pasture yield current P input	% of max	97		97		97	89 (assu		97		97		89 (assum						97		97		97	
Farm nutrient budget		N P	N	Р	N	Р	Ň	P	N	Р	N	Р	N	P	N	Р	N	Р	N	Р	N	Р	N	Р
Timing and amount of fertilisation (SSP or RPR)	Apr (kg/ha/yr)	25 15 (S		0	0		0	6 (SSP)	0	0			0	2 (SSP)	0	0			25 1	E (CCD)	0	0		
ming and amount orier tinsation (35P of KPK)	Api (kg/iia/yi)	25 15 (5	58)	0	0		0	0 (33P)	0	0				4 (RPR)	U	0			25 1	5 (55P)	U	0		
	September (kg/ha/yr)	0 8 (S	SP)	0	8		0	6 (SSP)	0	0			0 2	(SSP) 4 (RPR)	0	0			0	8 (SSP)	0	8		
Nutrient inputs																			1					
Fertiliser	Kg/ha/yr	25	23	0	8 25	23	0	12	0	0	0	12	0	12	0	0	0	12	25	23	0	8	25	23
Rain	Kg/ha/yr	2	0	2	0 2	0	2	0	2	0	2	0	2	0	2	0	2	0	2	0	2	0	2	0
Pasture nitrogen fixation	Kg/ha/yr	59	0	12	0 58	0	67	0	7	0	66	0	67	0	7	0	66	0	59	0	12	0	58	0
Irrigation	Kg/ha/yr	28	1	28	1 28	1	28	1	28	1	28	1	28	1	28	1	28	1	28	1	28	1	28	1
Effluent	Kg/ha/yr	0	0 8	45 1	20 NA	NA NA	0	0	717	72	0	0	0	0	717	72	0	0	0	0	845	120	NA	NA
Supplements	Kg/ha/yr	34	5	34	5 34	5	34	5	34	5	34	5	34	5	34	5	34	5	34	5	34	5	34	5
Nutrient outputs																								
Farm produce (animals, milk etc.)	Kg/ha/yr	31	5	31	5 31	5	31	5	31	5	31	5	31	5	31	5	31	5	31	5	31	5	31	5
Exported effluent	Kg/ha/yr	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Supplements or crop outputs	Kg/ha/yr	0	1	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
To atmosphere	Kg/ha/yr	57	0 1	17	0 60	0	53	0	105	0	57	0	53	0	105	0	57	0	57	0	117	0	60	0
To water	Kg/ha/yr	66	9.9 4	01 11	.4 70	10.1	64	6.3	332	7.3	68	6.5	64	5.8	332	7.3	68	6.0	66	7.4	401	9.7	70	7.1
leaching - Urine patches	Kg/ha/yr	29	0.0	57 0	.0 29	0.0	29	0.0	52	0.0	29	0.0	29	0.0	52	0.0	29	0.0	29	0.0	57	0.0	29	0.0
Leaching - other	Kg/ha/yr	20	0.0 2	98 0	.0 23	0.2	18	0.0	240	0.0	21	0.2	18	0.0	240	0.0	21	0.2	20	0.0	298	0.0	23	0.2
Runoff	Kg/ha/yr	0	6.5	29 8	.0 0	6.5	0	3.0	22	4.0	0	3.0	0	2.5	22	4.0	0	2.5	0	4.0	29	6.3	0	3.5
Animal contact with streams	Kg/ha/yr		0.2		.2 1		1	0.1	1	0.1	1	0.1	1	0.1	1	0.1	1	0.1	1	0.2	1	0.2	1	0.2
Direct pond discharge	Kg/ha/yr		0.0		.0 0		0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Boarder dyke outwash	Kg/ha/yr			16 3			16	3.1	16	3.1	16	3.1	16	3.1	16	3.1	16	3.1	16	3.1	16	3.1	16	3.1
Septic tank outflow	Kg/ha/yr		0.0		.0 0		0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Change in plant and soil stores	G. 11			-																				
Plant material	Kg/ha/yr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
Organic pool	Kg/ha/yr		35 3		21 -10		-35	21	303	12	-21	22	-35	21	303	12	-21	22	-24	35	351	35	-10	36
Inorganic mineral	Kg/ha/yr		-3		-3 0		0	-3	0	-3	0	-3	0	-3	0	-3	0	-3	0	-2	0	-2	0	-2
			- 1 I	-	- I	5		_	-	-	-	2	-	-	-	-	-	5		-	2	-	-	~

Table F.7: Overseer dairy (high PRI) basecase and scenario model parameterisation and results

		1		Basec	350			1	En	rtiliser ma	nagemo	nt	
Variable	Units	Non-efflue	- + -			Farm to		Non-effluer			-	Farm t	
Area	ha	Non-emue		Emuent 2	DIOCK	Farm to 165		163		Emuent 2	DIOCK	Farm t	
Area Number of milking cows and type	na	103		z nilking cov				103		2 milking cov			>
		A		-				A		-			
Climate	•					njarra met ding of sol				(1900-20: rigation an			
Effluent management	-			t block in A			ius to			t block in A			nus to
Effluent irrigation	mm per milking day	Non	e	>24 n	nm			None	е	>24 m	ım		
Irrigation method		Boarde	r dyke:	default nu	trient co	oncentrati	ons	Boarde	r dyke:	default nu	trient c	oncentrat	ions
Months irrigated and amount	mm/month		Nov-N	March (227	7 mm/m	onth)			Nov-f	March (227	/ mm/m	onth)	
Do animals have access to streams?	Yes/no			Yes						Yes			
Pasture and clover levels		Ryegra	ass/whit	te clover v	vith low	cloverlev	els	Ryegra	ıss/whi	te clover v	vith low	clover lev	rels
Maximum pasture yield	tonnes dry matter/ha/yr	6.3		6.3		6.3		6.3		6.3		6.3	
Soils & drainage													
Soil description				Sedime	ntary					Sedime	ntary		
Soil drainage class and characteristics			Poor -	Rainfall m	iostly ru	ns off			Poor -	Rainfall m	iostly ru	ns off	
Top soil texture			Clay	loam - He	avy text	ure			Clay	loam - He	avy text	ure	
Maximum rooting depth	cm			20						20			
Soil phosphate retention (PR)	Percent			20						20			
PBI				204	1					204	1		
Colwell P	mg/kg			81						37			
Fertiliser index (85% productivity)	Fraction			2.2						1			
Olsen P	mg/kg			24						12			
Maintenance P (P required to maintain Olsen P content)	kg/ha/yr	19		No	ot given	by model		12		Not gi	ven	12	
Proportion of maximum pasture yield with maintenance P	% of max	98		No	ot given	by model		92		91		~9:	L
Proportion of maximum pasture yield current P input	% of max	98		98		98		92		91		91	
Farm nutrient budget		N	Р	N	Р	N	Р	N	Р	N	Р	N	Р
Timing and amount of fertilisation (SSP or RPR)	Apr (kg/ha/yr)	25 1	.5 (SSP)	0	0			0	6 (SSP)	0	0		
											-		
	September (kg/ha/yr)	0	8 (SSP)	0	8			0	6 (SSP)	0	0		
Nutrient inputs													
Fertiliser	Kg/ha/yr	25	23	0	8	25	23	0	12	0	0	0	12
Rain	Kg/ha/yr	2	0	2	0	2	0	2	0	2	0	2	
Pasture nitrogen fixation	Kg/ha/yr	58	0	1	0	58	0	66	0	1	0	66	C
Irrigation	Kg/ha/yr	28	1	28	1	28	0	28	1	28	1	28	C
Effluent	Kg/ha/yr			845	124	0	1			838	100	0	1
Supplements	Kg/ha/yr	34	5	34	5	34	5	34	5	34	5	34	5
Nutrient outputs													
Farm produce (animals, milk etc.)	Kg/ha/yr	31	5	31	5	31	5	31	5	31	5	31	5
Exported effluent	Kg/ha/yr	0	0	0	0	0	0	0	0	0	0	0	C
Supplements or crop outputs	Kg/ha/yr	0	0	0	0	0	0	0	0		0	0	C
To atmosphere	Kg/ha/yr	65	0	20	0	70	0	67	0	127	0	67	C
To water	Kg/ha/yr	56	5.8	369	6.3	60	6.0	58	4.6	364	5.0	58	4.6
leaching - Urine patches	Kg/ha/yr	19	0.0	45	0.0	19	0.0	19	0.0	44	0.0	19	0.0
Leaching - other	Kg/ha/yr	20	0.0	297	0.0	23	0.2	22	0.2	293	0.0	22	0.2
Runoff	Kg/ha/yr	0	2.4	10	2.9	0	2.4	0	1.1	10	1.7	0	1.1
Animal contact with streams	Kg/ha/yr	1	0.2	1	0.2	1	0.2	1	0.1	1	0.1	1	0.1
Direct pond discharge	Kg/ha/yr	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Boarder dyke outwash	Kg/ha/yr	16	3.1	16	3.1	16	3.1	16	3.1	16	3.1	16	3.1
Septic tank outflow	Kg/ha/yr	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
Change in plant and soil stores													
Plant material	Kg/ha/yr	0	0	0	0	0	0	0	0	0	0	0	0
Organic pool	Kg/ha/yr	-26	15	361	15	-11	16	-21	11	360	10	-21	11
Inorganic mineral	Kg/ha/yr	0	-3	0	-3	0	-3	0	-3	0	-3	0	-3
Inorganic soil pool	Kg/ha/yr	0	4	0	112	0	5	0	1	0	87	0	1

F.2 Low-water-soluble phosphorus fertilisers: Literature review

Here we summarise relevant literature on the effect of low-water-soluble phosphorus fertiliser use on phosphorus export. We have mainly focused on local studies, with most being undertaken in the Peel-Harvey catchment.

Context and a list of cited literature

In 1976 the Western Australian state government launched a government funded investigation into the problematic algal growth in the Peel-Harvey. The use of highly soluble phosphorus fertilisers (typically > 77% soluble) was identified as a potential cause and required further investigation. This initiated a series of studies on lower soluble phosphorus fertilisers:

- A commercial low-water-soluble phosphorus fertiliser called 'coastal super' was developed. This fertiliser had a solubility of <27% and was made from a blend of ordinary single superphosphate, phosphate rock and elemental sulphur.
- Ritchie et al. (1985) tested the phosphorus leaching from single superphosphate and coastal superphosphate using unvegetated column trials over a simulated 10-year period. Rates of nutrient rundown and fertiliser management advice were derived from this work.
- Plot and small catchment field trials by Schofield et al. (1985a) and Silberstein & Schofield (1990) measured pasture yield, runoff and phosphorus export from the use of response to single superphosphate, coastal super and no fertiliser application.
- Pasture yield field trials by Bolland et al. (1995) using single superphosphate, coastal super, rock phosphate and calcium phosphate.

In later years, more local studies were initiated:

- Column and field trials of RedCoat (single superphosphate coated with bauxite residue) (Summers et al. 2000). Phosphorus leaching was measured in column trials and pasture yield was measured in plot-scale field trials.
- Column and plot-scale field trials of a newer low-water-soluble phosphorus product by Maddern (2016). Column trials of phosphorus leaching were attempted using unvegetated perlite and a combination of vegetated and unvegetated soils from the Peel-Harvey catchment. Field trials measured pasture yield and tissue phosphorus content.

Other cited literature:

• Nguyen et al. (2002) was a New Zealand column trial study that tested reactive phosphate rock and single superphosphate. This study informed the efficacy of reactive phosphate rock fertilisers in the Overseer phosphorus model (McDowell 2005).

Ritchie & Weaver column trials

The column trial work by Ritchie et al. (1985) was subsequently published in Weaver et al. (1988 a & b) and Ritchie & Weaver (1993). This collective body of work demonstrated that in bare sand columns, coastal super reduced phosphorus leaching by 50% initially. However,

after 10 years of simulated climate and fixed fertiliser applications (10 kg P/ha/yr), coastal super had phosphorus leaching that was approaching that of single superphosphate. This finding, in conjunction with other related experiments lead the authors to conclude:

- Coastal super has the potential to build up in the soil and could result in similar rates of leaching as ordinary single superphosphate after 10-15 years of excessive application. Thus, coastal super may not be required every year.
- Phosphorus fertilisation is only required if soil bicarbonate levels are less than:
 - < 12 ppm for Bassendean sands
 - <18 ppm for sandy duplex soils
- Phosphorus rundown of soils with excessive soil bicarbonate phosphorus concentrations may take 2-5.5 years for Bassendean sands and more than 7 years for sandy duplex soils.

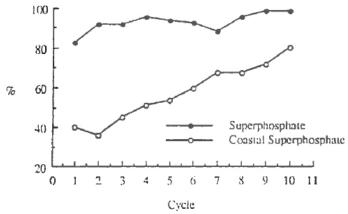
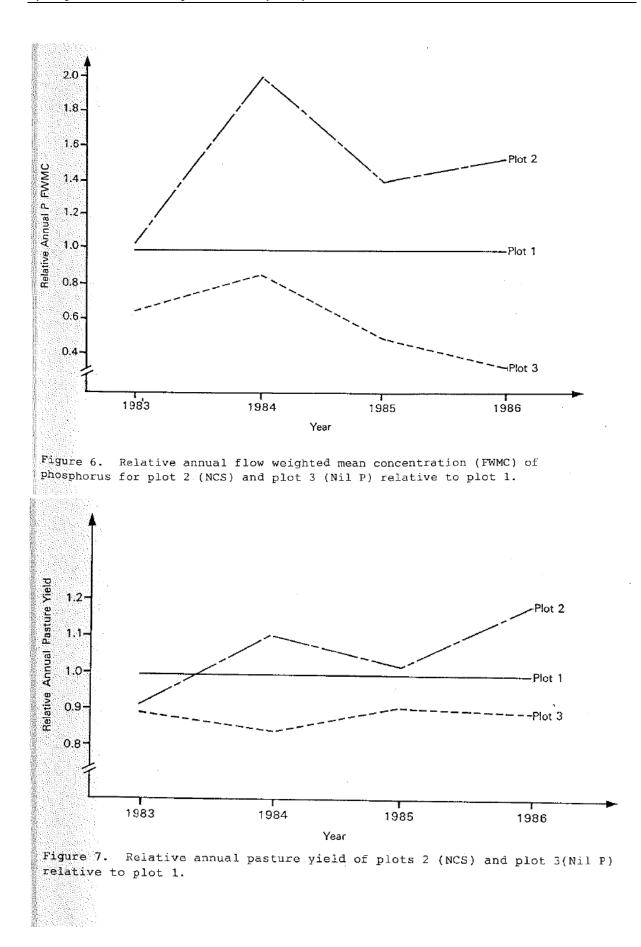


Fig. 7. Cumulative fertilizer P lost as a percentage of the cumulative fertilizer P added continuously at 10 kg P ha^{-1} as superphosphate (\odot) or coastal superphosphate (\bigcirc). (Modified from [9].)

Plot and small catchment studies

A series of plot and small catchment studies were undertaken by Schofield et al. (1985a) and Silberstein & Schofield (1990). They measured pasture yield, runoff and phosphorus export in response to applications of fertiliser or no fertiliser at the following trial sites:


- **Caratti catchment:** Three five-hectare catchments were monitored in 1984 in response to applications of ordinary single superphosphate, new coastal superphosphate and no fertiliser application. A detailed write-up of the methods and results of these sites has not been found, apart from a brief description of the experimental site and results given in Schofield et al. (1985a).
- Hodgson and Jenkins experiments: Two sets of four 200 m² plots testing the effect of no fertiliser, single superphosphate, lime and lime + superphosphate. A detailed write-up of the methods and results of these sites has not been found, apart from a brief description of the experimental sites in Schofield et al. (1985a).

- The paired Talbot catchments (traditional fertilisers only): The catchment-scale (~62.3 ha) response to single superphosphate application and no fertiliser application for 1983–84 (Schofield et al. 1985b).
- The Stacey experiment is discussed below.

A study site called the 'Stacey experiment' was located in the Coolup catchment which had sandy duplex soils. The study measured pasture response and surface water from plots of pasture that were treated with single superphosphate (plot 1), coastal super (plot 2) and no fertiliser (plot 3) (Silberstein & Schofield 1990). The experiment ran for four years (1983–86) and fertiliser was applied at 18 kg P/ha/yr. Potassium and sulphur were applied annually to all plots. Flow-weighted phosphorus concentrations of surface water and pasture yield tended to be the greatest from the coastal super plots. Silberstein & Schofield (1990) could not explain this result.

However, it appears that coastal super was not used according to what would later be defined as best-practice fertiliser management. It seems likely that no fertiliser was required for the duration of the experiment Stacey experiment. The bicarbonate extractable phosphorus of the soils were >29 ppm for all plots at the start of and end of the experiment. Using the recommendations of Ritchie et al. (1985), no fertiliser should have been applied to these soils until bicarbonate extractable phosphorus was 18 ppm. Also, Ritchie stated that soil phosphorus rundown could take more than 7 years, which is also consistent with the findings from the unfertilised plots.

Despite these possible experimental flaws, the Stacy experiment helped to understand the effect of zero phosphorus fertiliser application on phosphorus export and pasture yield. After four years without fertiliser application, phosphorus export (flow-weighted phosphorus concentration) was 61% lower than exports from the single superphosphate plots while pasture yield was 90% of the single superphosphate plots. Additionally, pasture tissue phosphorus content (0.34%) did not fall below the minimum recommended values for clover (0.3%) or ryegrass (0.24%) (DPIRD 2018).

Distant Margaret and 1		1 1 1 1 1 1			
riot itedinents i	Plot 1 - Superp	phosphate (18kg	P/nal. Plot	2 - Slow-P-releas	e NCS (18kg P/ha).
	그는 아이는 아이는 아이는 것이라. 것을 만큼 하는 것이 같아.				

	Piot	3 -	NO P.												
PLOT	1	1983 2	3	1	1984 2	3		1985 2	1911	1	1986 2	127 127 (S. 192) - 3	mean 1	2	के के किस की जिसके 3
Pre-treatment Rain(mm) Runoff(m ³) P load(g) F.W.X P conc. (mg/L)	321 330 150 .44	350 220 .63	470 200 .42	460 730 270 .37	460 480 1.05	600 200	358 430 490 1.15	300 410 1.38	580 340 .59	407 130 110 .83	180 200 .10	200 70 .12	386 400 260 .70	360 330 1.04	460 200 .42
Post-treatment Rain Runoff(m ³) P load(g) F.W.X P conc. (mg/L)	412 1020 640 .63	1370 800 .58	2160 760 .35	238 530 240 .46	440 240 .55	500 170 .33	248 600 410 .68	500 640 1.26	1600 660 .41	218 580 410 .70	420 470 1.14	1310 350 .27	279 680 420 .62	680 540 .88	1390 480 .34
<u>Total Period</u> Rain(mm) Runoff(m ³) P load(g) F.W.X P conc. (mg/L)	733 1350 790 .58	1760 1020 .59	2630 960 .36	763 1260 510 .40		1100 370 .34	606 1080 980 .91	800 1040 1.31	2180 1000 .46	625 710 520 .72	590 670 1.13	1520 420 .28	682 1100 700 .65	1020 860 .96	1860 690 .36
Pasture Yield (t/ha)	3.8	3.5	3.4	4.6	5.1	3.9	7.8	8.0	7.1	6.3	7.4	5.7	5.6	6.0	5.0
Tissue P%	.31	.38	.34	.42	.46	.38	.40	.37	.34	.36	.38	.31	.37	.40	.34
Soil Bic. P(ug/g)	31	2.9	30	34	34	30	38	37	31	39	41	35	36	35	32

Bolland et al. (1995) pasture yield field trials

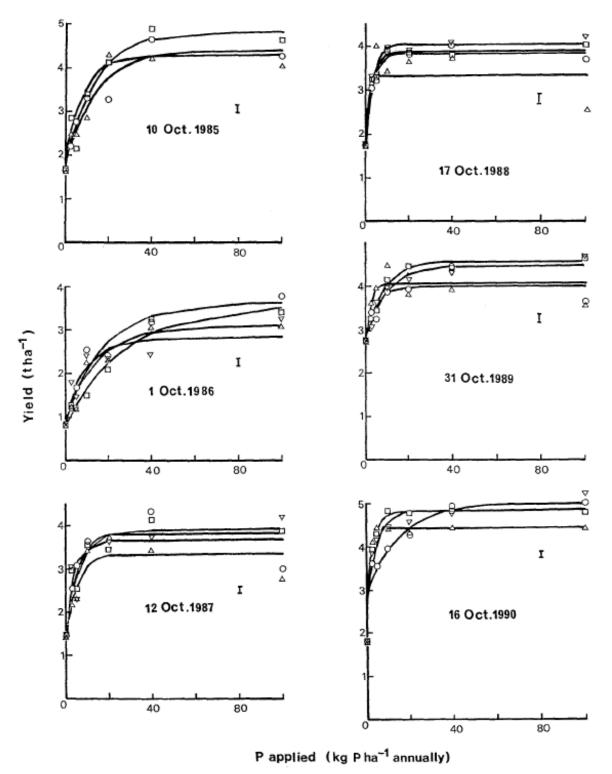
Bolland et al. (1995) measured the pasture yield in response to 0-100 kg P/ha/yr applications of the following fertilisers

- Single superphosphate (80% water soluble),
- Coastal superphosphate (27% water soluble),
- Island rock phosphate (<1% water soluble). This was a 50% mixture of apatite from Nauru and the Christmas Islands.
- Calciphos 'rock phosphate' (<1% water soluble). This was produced by heating phosphate rock (C grade ore) from the Christmas Islands.

These pasture yield trials were undertaken from 1985 to 1991 at three sites (Denmark, west Harvey and Cookernup which is north of Harvey). All sites had sandy acidic peaty soils with negative PRI values (-1.8 to -0.4) and low Colwell P content (2–5 ppm).

The authors used the relative effectiveness (RE) statistic to compare the pasture yield of single superphosphate with the pasture yield resulting from low-water-soluble phosphorus fertilisers. A relative effectiveness score of 1 means that a low-water-soluble phosphorus fertiliser produced the same yield as single superphosphate for that time period. Values greater than 1 mean that the low-water-soluble phosphorus fertiliser had greater pasture yields than single superphosphate.

Coastal Super generally resulted in the greatest pasture yield of the fertilisers that were tested, regardless of site. Island rock phosphate and Calciphos were more effective than single superphosphate at West Harvey and Denmark.


Table 5. Relative effectiveness (RE) values for the Type 1 experiments, in which P was applied annually, when RE was
measured more than once in any one year. RE was calculated from Mitscherlich equation (1) fitted to the relationship
between yield (kg ha ⁻¹) and the level of P applied annually (kg P ha ⁻¹), by dividing the initial slope (bc) for each P
fertilizer by bc for single superphosphate (see Analysis of data section for details). Thus the RE for single superphosphate
is always 1.00

Year	Denmark	:			West Ha	rvey		Cookernup						
	Datea	CSPb	IRP	Cal	Datea	CSPb	IRP	Cal	Datea	CSPb	IRP			
1985					6 Aug	0.15	0.33							
					10 Oct	1.94	1.16							
1986					4 Sept	0.28	0.62	0.07						
					1 Oct	1.09	0.67	1.25						
1988	15 Aug	1.11	0.61	0.53	29 Aug	1.24	1.05	0.96	25 Aug	1.76	0.84			
	11 Oct	2.17	0.67	0.91	17 Oct	1.39	1.15	1.10	13 Oct	2.85	2.02			
1 989	10 July	1.06	0.36	0.58										
	25 Oct	1.82	0.97	1.20										
1990	28 June	6.03	0.82	0.83	30 July	2.08	3.21	9.23	26 July	0.58	0.48			
	4 Oct	7.21	0.77	1.65	18 Sept	0.74	0.93	4.81	17 Sept	1.31	0.75			
					16 Oct	1.55	1.24	3.10	16 Oct	1.06	0.92			
1991	6 Aug	8.79	1.33	1.76	12 Aug	0.59	1.15	0.59						
	11 Oct.	5.23	1.00	1.49	25 Sept	1.12	1.24	1.77						
Percentage of observations		100	20	50		62	62	55		88	25			
when RE > 1.00 ^c														

^aDate yields measured in the years listed;

^bCSP, coastal superphosphate; IRP, Island rock phosphate; Cal, Calciphos;

^cThis is for all data in all years, and is a measure of when the fertilizers were more effective than single superphosphate, because RE of all fertilizers was calculated relative to single superphosphate so that the RE of single superphosphate is always 1.00.

Fig. 1. Relationship between yield of dried clover herbage and the level of P applied per year for the Type 1 experiment at West Harvey for 1985 to 1990. In each case: single superphosphate (\bigcirc), coastal superphosphate (\triangle), Island rock phosphate (IRP) (\square), and Calciphos (∇). Lines are fits to Mitscherlich equation 1. Bars are Ls.d. (p = 0.05)

RedCoat (Summers et al. 2000)

Summers et al. (2000) investigated the leaching and pasture response to ordinary single superphosphate and single superphosphate that was coated with bauxite residue. Two types of studies were undertaken:

- **Glasshouse trials:** The mass of phosphorus leaching and clover yield were measured in columns filled with sandy acidic soils. This study compared the effect of ordinary and coated (5-40% by weight) single superphosphate fertilisers applied at 20 and 40 kg/ha/yr of phosphorus. A 20 t/ha top dress amendment of bauxite residue using ordinary single superphosphate was also investigated. A total of 1200 mm of water was applied to the columns over the 8-week study.
- Field trials: Field trials measuring clover yields were undertaken in Denmark (WA) which had humic sandy soils (PRI not specified). Ordinary and coated (25% by weight) single superphosphate were compared at applications of 0-80 kg/ha/yr of phosphorus. The trial was conducted for three years.

From these trials single superphosphate coated with 25–30% bauxite residue (by weight) was found to:

- Reduce leaching of phosphorus by ~50% compared to ordinary single superphosphate. This coated fertiliser was as effective as a 20 t/ha bauxite residue amendment using traditional single superphosphate fertiliser.
- Resulted in greater phosphorus uptake and pasture yield than ordinary single superphosphate in the second and third year of the study

This led to the development of the RedCoat product, which was considered as a low-watersoluble phosphorus fertiliser in the Fertiliser action Plan and had a water-soluble phosphorus content of 39%.

Maddern (2016): Low-water-soluble superphosphate fertiliser

Maddern (2016) investigated the phosphorus leaching and pasture yield of a low-watersoluble superphosphate product (termed LWSSP here). This LWSSP product was a blend of the following fertiliser components:

- Monobasic calcium phosphate (MCP) which is 99.9% water soluble
- Dibasic calcium phosphate (DCP, also called Dicalc phosphate) which is 36.2% water soluble.
- Tribasic calcium phosphate (TCP) which is 0.01% water soluble.

This LWSSP blend had a calculated water solubility of 51.3%.

Table 3.10 Total predicted solubility of each treatment applied to glasshouse	,
experiment 1.	

	-			
Fertiliser	MCP (%)	DCP (%)	TCP (%)	Total calculated solubility (%)
MCP	100	0	0	99.9
DCP	0	100	0	36.2
TCP	0	0	100	0.01
SSP	86	9	5	89.2
LWSSP	35	45	20	51.3

Monobasic calcium phosphate (MCP), dibasic calcium phosphate (DCP), tribasic calcium phosphate (TCP), single superphosphate (SSP) and low water-soluble superphosphate (LWSSP). Calculations used to determine total calculated solubility are based on 40 L of water outlined in Appendix 9.3.2.3 (Kotz *et al.* 2003).

Four main experiments were undertaken where plant yield or phosphorus leachate were measured in response to single superphosphate, LWSSP and the three previously mentioned fertiliser components. These four experiments were:

- 1. Hydroponic plant yields trials
- 2. Unvegetated perlite column leaching
- Vegetated column leaching using three soil types that are common to the Peel-Harvey catchment
- 4. Field pasture yield trials and an unvegetated sand leaching column.

The unvegetated leaching experiments 2 and 4 showed that LWSSP fertiliser leached half as much phosphorus as single superphosphate.

Experiment 3 had results that were unusual. The unfertilised heavy soil column had the largest cumulative phosphorus leachate, which was mainly caused by leaching in the first three measurements. It is not clear if leachate was filtered prior to chemical analysis or if an inert filter media was used at the base of columns to prevent particulate leaching. Thus, it is possible that particulate phosphorus was collect and measured, which would overstate phosphorus leachate mass of this experiment. The results from experiment 3 are not discussed further here due to this possible issue,

The pasture yield experiments (equal portions of ryegrass and clover) of experiment 4 found that there was little difference in fertiliser type or application rate for both sites over the threeyear period. This indicates that these LWSSP blends were as effective as single superphosphate.

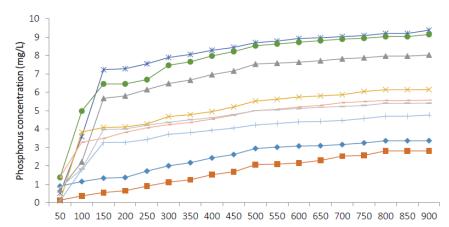


Figure 5.6 Cumulative totals of phosphorus in leachate from the heavy soil, rainfall is displayed along the X axis. * nil (nil-P), × nil (low watersoluble superphosphate), ● nil (single superphosphate), □ clover (nil-P), ◊ clover (low water-soluble superphosphate), △ clover (single superphosphate), ○ ryegrass (nil-P), + ryegrass (low water-soluble superphosphate), − ryegrass (SSP). The least significant difference for comparing phosphate forms between treatments (lsd = 1.1).

Overseer and Nguyen et al. (2002)

Reactive phosphate rock (RPR) fertilisers are the only fertiliser type that had lower phosphorus export in Overseer. These RPR fertilisers are intended to be used in acidic sandy soils or areas with high phosphorus export risk, such as inundated areas. The Overseer phosphorus model (McDowell et al. 2005), references the work of the work of Nguyen et al. (2002) when discussing reactive phosphate rock.

This New Zealand study used columns of bare silt loam soils from an experimental dairy to measure the nutrient exports from superphosphate or reactive phosphate rock applied at 35 kg/ha. The study used simulated rainfall events of 50 mm over an hour at days 3,10 and 32 after fertilisation. The study measured soluble and particulate P in runoff and drainage. The main findings were:

- Phosphorus mass in surface runoff: Reactive phosphate rock exported 61% less P (soluble + particulate phosphorus) than superphosphate (cumulative export from days 3–32). Note that this data was not explicitly given by Nguyen et al. (2002) and was calculated from using the results for soluble and particulate P in runoff (Tables 4 & 6 in Nguyen et al. 2002). The sum of soluble and particulate data was assumed to constitute all surface runoff phosphorus losses. Table F.8 gives this annotated and calculated data.
 - Soluble P mass in surface runoff: Reactive phosphate rock exported 96% less soluble P than superphosphate.
 - **Particulate P mass in surface runoff**: Reactive phosphate rock exported 40% less particulate P than superphosphate.
- **Phosphorus concentration in subsurface drainage**: Concentrations in drainage were about 39% lower when using reactive phosphate rock compared to single superphosphate. This was inferred from at day 32 in Figure 6B (Nguyen et al. 2002).

Table F.8: Cumulative surface runoff phosphorus export mass resulting from applications of
single superphosphate (SSP) reactive phosphate rock (RPR) and no fertiliser application
from Nguyen et al. (2002)

Soil/site	Fertiliser	Soluble phosphorus export	Reduction from SSP	Particulate phosphorus export	Reduction from SSP	Total phosphorus export	Reduction from SSP
		(µg)	(%)	(µg)	(%)	(µg)	(%)
WM1/1	Control	343		22 415		22 758	
	SSP	20141		34 846		54 987	
	RPR	845	96%	21 611	38%	22 456	59%
S block	Control	466		20 309		20 775	
	SSP	22 516		36 114		58 630	
	RPR	914	96%	21 248	41%	22 162	62%
WM1/1	Control	383		19 847		20 230	
	SSP	21 047		33 432		54 479	
	RPR	806	96%	20 137	40%	20 943	62%
Organic	Control	453		19 533		19 986	
	SSP	21 395		34 026		55 421	
	RPR	858	96%	19 633	42%	20 491	63%
All sites	Average		96%		40%		61%
	Min		96%		38%		59%
	Max		96%		42%		63%

F.3 Dairy effluent management supporting information

Table F.S	: Dairy survey	[,] criteria
-----------	----------------	-----------------------

Insert farmer name:	Date:		
	Date.		
Water use efficiency	Yes	No	Not assessed
Water off roof diverted			
Platecooler water recycled			
Other water diverted away			
Water use audit done			
water use at or below industry median?			
Nozzle types high vol/low pressure			
Result: meets industry standards			
Result: partially meets industry standards			
Result: does not meet industry standards			
Effluent containment			
Solids trap/sump or collection ditch			
Hold 2-3 days effluent			_
Result:			
Storage of effluent			
Lined			
Sufficent winter capacity			
Result:			
Effluent application system			
Infrastructure in place eg pump, main line, irrigator			_
Equipment operational/commissioned			
Waterways > 100m from application areas			
Application area adequate (liquids)			
Area soil tested			
Fertiliser adjusted Solids spread away from shed			_
Result:			
Management & Maintenance			
Equipment serviced /maintained			_
Trap cleaned on regular basis (not as needed)			
Pond emptied before winter			_
Pond desludged periodically			
Solids stockpiled on pad			_
Irrigator shifted regularly			
Current Eff Mngt Plan			
Result:			
Effluent prevented from entering surface or groundwater			

Dairy effluent management: Literature review

Here we summarise the available literature on the effect of dairy effluent management on P export that was used to inform the dairy effluent management scenario. Ideally, Overseer or other suitable models would be used to model the effect of improving dairy effluent management practices. However, Overseer assumes that dairy effluent management is undertaken according to best practice and does not model: dairy effluent being discharged directly to streams, ineffective or leaking wastewater ponds or the over irrigation of nutrient rich wastewater.

A literature review undertaken by Ecotones & Associates (2005) for the Peel-Harvey SSPRED model cited nutrient load reductions of 4-95% based on various animal industry wastewater pond intervention studies.

The Leschenault WQIP estimated that best practice effluent management would reduce nutrient exports from dairy sheds by 60% (Hugues-dit-Ciles et al. 2012).

A literature review undertaken by Haine et al. (2011) found that effluent treatment ponds resulted in nutrient reductions of 0-73% for nitrogen and 14% for phosphorus. However, when coupled with land application, dairy effluent loads could be reduced by 90% for nitrogen and 98% for phosphorus.

Given the above and the generally low standard of dairy effluent management in the Peel-Harvey catchment, best-practice dairy shed effluent management was assumed to reduce the nitrogen and phosphorus exports of dairy sheds by 60%. Dairy sheds contribute 10% of dairy farm (shed + paddock) nitrogen exports and 40% of phosphorus exports. The nutrient export from dairy paddocks was unchanged by this scenario.

F.4 Summary of the catchment model management scenario results

Lable F 10: Nutrogen load removal	trom all individual and combined	management scenarios
Table F.10: Nitrogen load removal		

				Catchment revegetation				Dairy effluent		Intensive sources						ww.	гр	Septic tank removal								
Reporting catchment	Basecase	Load reduction target		Native vegetation		Plantations		management		Intensive animal industries			Intensive horticulture		All intensive sources		management		Targeted removal					Scenario 4: Remove all septic tanks		
	Load to estuary	Load red	uction	Load rer	Load removed L		Load removed		Load removed		Load removed		Load removed		Load removed		Load removed		noved	Load removed		Load removed		Load removed		
	(kg)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	
Peel Main Drain	11 586	3 306	29	1 283	11	1 160	10	0	-	863	7.4	242	2.1	1 105	10	0		0	-	548	4.7	577	5.0	3 019	26	
Upper Serpentine	71 844	31 125	43	5 325	7.4	5 025	7.0	429	0.6	8 719	12	1 037	1.4	10 080	14	0		0	-	5	<0.1	2 105	2.9	7 585	11	
Dirk Brook	28 748	13 667	48	0	-	0	-	51	0.2	4 111	14	541	1.9	4 653	16	0		0	-	0	-	0	-	296	1.0	
Nambeelup	40 302	27 616	69	14 638	36	14 724	37	270	0.7	192	0.5	7	<0.1	199	0.5	0		0	-	0	-	0	-	91	0.2	
Mandurah	5 007	1 129	23	0	-	0	-	0	-	0	-	0	-	0	-	0		3 011	60	3 024	60	3 099	62	3 111	62	
Lower Serpentine	11 724	5 396	46	182	1.6	170	1.5	0		884	7.5	21	0.2	904	7.7	0	-	380	3.2	1 048	8.9	1 054	9.0	3 728	32	
Upper Murray	80 210	24 069	30	6 674	8.3	6 016	7.5	0	-	197	0.2	61	<0.1	257	0.3	143	0.2	0	-	0	-	0		0	-	
Lower Murray	103 388	42 137	41	0	-	0	-	42	<0.1	6 572	6.4	84	<0.1	6 657	6.4	0	-	0	-	0	-	1 012	1.0	3 380	3.3	
Coolup (Peel)	20 999	9 567	46	8 125	39	8 163	39	146	0.7	134	0.6	0	-	134	0.6	0		0	-	0	-	0		50	0.2	
Coolup (Harvey)	13 349	5 763	43	3 532	26	3 549	27	116	0.9	54	0.4	71	0.5	125	0.9	0		0	-	0	-	0		63	0.5	
Mayfield Drain	33 299	15 294	46	13 840	42	13 879	42	117	0.4	77	0.2	18	<0.1	95	0.3	0		0	-	0	-	0		45	0.1	
Harvey	205 464	100 840	49	37 530	18	36 740	18	1 116	0.5	176	<0.1	420	0.2	1 166	0.6	830	0.4	201	<0.1	494	0.2	817	0.4	1 957	1.0	
Meredith Drain	6 739	4 030	60	0	-	0		0		863	13	13	0.2	876	13	0	-	0	-	0	-	0		8	0.1	
Estuary (coastal plain)	552 447	259 869	47	84 455	15	83 409	15	2 288	0.4	22 646	4.1	2 454	0.4	25 994	4.7	830	0.2	3 593	0.7	5 119	0.9	8 665	1.6	23 334	4.2	
Estuary (total)	632 657	283 938	45	91 129	14	89 425	14	2 288	0.4	22 842	3.6	2 514	0.4	26 251	4.1	973	0.2	3 593	0.6	5 119	0.8	8 665	1.4	23 334	3.7	
								Ripar	ian zone	managem	ent		Combined scenarios					1								
1				WSUD in	existing	Constru	Icted									AU 4										

Reporting catchment		Load reducti	on target	WSUD in e urban a		Constru wetla		Stock exclusion (fencing only)		Fencing		Best-pra agricult		Non-agric actior		All actions (agricultural & non agricultural)		
	Load to estuary	Load red	uction	Load rer	Load removed		Load removed		Load removed		Load removed		noved	Load rem	noved	Load removed		
	(kg)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	
Peel Main Drain	11 586	3 306	29	549	4.7	3 476	30	1 017	8.8	1 913	17	863	7.4	3 443	30	4 163	36	
Upper Serpentine	71 844	31 125	43	933	1.3	21 553	30	5 020	7.0	14 203	20	9 147	13	19 224	27	26 563	37	
Dirk Brook	28 748	13 667	48	1	<0.1	8 624	30	1 935	6.7	5 021	17	4 163	14	5 022	17	8 457	29	
Nambeelup	40 302	27 616	69	5	<0.1	12 091	30	3 488	8.7	9 265	23	462	1.1	20 542	51	20 898	52	
Mandurah	5 007	1 129	23	817	16	0	-	0	-	0		0	-	3 829	76	3 829	76	
Lower Serpentine	11 724	5 396	46	504	4.3	0	-	641	5.5	1 127	10	884	7.5	2 090	18	2 889	25	
Upper Murray	80 210	24 069	30	120	0.1	0	-	7 046	8.8	13 150	16	0	-	0	-	0	-	
Lower Murray	103 388	42 137	41	674	0.7	0	-	4 130	4.0	9 812	9.5	6 614	6.4	10 422	10	16 409	16	
Coolup (Peel)	20 999	9 567	46	8	<0.1	0	-	1 704	8.1	4 940	24	280	1.3	11 160	53	11 375	54	
Coolup (Harvey)	13 349	5 763	43	27	0.2	0	-	1 040	7.8	3 034	23	171	1.3	5 784	43	5 916	44	
Mayfield Drain	33 299	15 294	46	1	<0.1	9 990	30	1 070	3.2	7 570	23	193	0.6	18 265	55	18 414	55	
Harvey	205 464	100 840	49	818	0.4	61 639	30	18 097	8.8	41 390	20	1 292	0.6	72 173	35	73 205	36	
Meredith Drain	6 739	4 030	60	0	-	2 022	30	584	8.7	1 558	23	863	13	1 558	23	2 222	33	
Estuary (coastal plain)	552 447	259 869	47	4 337	0.8	119 394	22	38 726	7.0	99 834	18	24 933	4.5	173 512	31	194 339	35	
Estuary (total)	632 657	283 938	45	4 457	0.7	119 394	19	45 772	7.2	112 984	18	24 933	3.9	173 512	27	194 339	31	

				Catchment revegetation				Fertili	50 r	Fertiliser		Dairy eff	uent					Intensive s	ources			wwt	ъ		
Reporting catchment	Basecase Load reduction		on target	t Native vegetation		Plantations		management			management with LWSP fertilisers		nent	Soil amer	ndment	Intensive animal industries		Intensive horticulture		All intensive sources					
	Load to estuary	Load redu	ction	Load rei	moved	Load rem	ioved	Load ren	noved	Load rer	noved	Load rem	oved	Load rer	noved	Load rem	noved	Load rem	noved	Load rer	noved	Load rem	noved		
	(kg)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)		
Peel Main Drain	1 418	728	51	83	5.8	45	3.2	47	3.3	54	3.8	0	-	34	2.4	24	1.7	649	46	672	47	0			
Upper Serpentine	9 975	6 581	66	1 444	14	997	10	1 945	20	2 364	24	136	1.4	2 215	22	258	2.6	1 911	19	2 214	22	0			
Dirk Brook	2 777	1 520	55	0	<0.1	0	<0.1	746	27	923	33	19	0.7	883	32	205	7.4	286	10	491	18	0	-		
Nambeelup	6 664	5 607	84	2 714	41	2 716	41	2 621	39	3 272	49	53	0.8	3 614	54	23	0.3	22	0.3	45	0.7	0			
Mandurah	514	190	37	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-		
Lower Serpentine	2 139	1 611	75	49	2.3	32	1.5	496	23	629	29	0	-	662	31	186	8.7	66	3.1	252	12	0	-		
Upper Murray	960	0	0	73	7.6	24	2.5	1	0.1	1	0.1	0	-	0	-	3	0.3	18	1.8	21	2.2	41	4.3		
Lower Murray	6 212	1 108	18	0	-	0	-	2 445	39	2 955	48	14	0.2	2 555	41	54	0.9	190	3.1	244	3.9	0	-		
Coolup (Peel)	2 747	1 795	65	1 934	70	1 935	70	1 108	40	1 359	49	47	1.7	1 288	47	26	0.9	0	-	26	0.9	0	-		
Coolup (Harvey)	2 053	1 421	69	843	41	844	41	803	39	994	48	39	1.9	1 007	49	22	1.1	82	4.0	104	5.1	0			
Mayfield Drain	3 619	2 119	59	2 607	72	2 607	72	1 466	41	1 773	49	48	1.3	1 597	44	1	0.0	79	2.2	80	2.2	0	-		
Harvey	20 109	11 391	57	9 942	49	9 000	45	7 387	37	8 724	43	669	3.3	6 728	33	25	0.1	204	1.0	723	3.6	71	0.4		
Meredith Drain	1 045	819	78	0	-	0	-	268	26	340	33	0	-	362	35	167	16	31	3.0	198	19	0			
Estuary (coastal plain)	59 272	34 890	59	19 615	33	18 176	31	19 332	33	23 387	39	1 027	1.7	20 945	35	990	1.7	3 521	5.9	5 050	8.5	71	0.1		
Estuary (total)	60 231	34 890	58	19 689	33	18 200	30	19 333	32	23 388	39	1 027	1.7	20 945	35	993	1.6	3 538	5.9	5 070	8.4	112	0.2		
						Se	eptic tan	k removal							Ripari	ian zone r	manageme	ent	Combined scenarios						
Reporting catchment	Basecase	Load reduction	on target	Scenario 1: septic tank	0	Scenario 2: lots clos waterwa	e to	Scenario : less thar		Scenario 4: all septic		WSUD in e urban a	•	Constru wetla		Stock exc (fencing		Fencing revegeta		Best-pra agricul		Non-agrice action		All act (agricultura) agricult	al & non-
	Load to estuary	Load redu	ction	Load rer	moved	Load rem	ioved	Load ren	noved	Load rer	noved	Load rem	Load removed		Load removed		noved	Load removed		Load removed		Load removed		Load removed	
	(kg)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)	(kg)	(%)
Peel Main Drain	1 418	728	51	0	-	40	2.8	42	2.9	218	15	79	5.6	709	50	39	2.7	37	2.6	93	6.5	194	14	226	16
Upper Serpentine	9 975	6 581	66	0	-	0	0.0	104	1.0	376	3.8	107	1.1	4 987	50	262	2.6	353	3.5	3 677	37	1 849	19	4 248	43
Dirk Brook	2 777	1 520	55	0	-	0	-	0	-	15	0.5	0	0.0	1 388	50	65	2.3	85	3.1	1 531	55	85	3	1 569	57
Nambeelup	6 664	5 607	84	0	-	0	-	0	-	23	0.3	1	0.0	3 332	50	191	2.9	253	3.8	4 992	75	2 865	43	5 514	83
Mandurah	514	190	37	148	29	148	29	152	30	153	30	161	31	0	-	0	-	0	-	0	-	309	60	309	60
Lower Serpentine	2 139	1 611	75	11	0.5	31	1.4	31	1.5	110	5.1	189	8.9	0	-	41	1.9	37	1.7	1 106	52	283	13	1 329	62
Upper Murray	960	0	0	0	-	0	-	0	-	0	-	2	0.2	0	-	82	8.5	153	16	0	-	0	-	0	-
Lower Murray	6 212	1 108	18	0	-	0	-	17	0.3	55	0.9	83	1.3	0	-	90	1.4	111	1.8	4 142	67	192	3	4 260	69
Coolup (Peel)	2 747	1 795	65	0	-	0	-	0	-	1	0.0	1	0.0	0	-	74	2.7	107	3.9	1 984	72	1 966	72	2 340	85
Coolup (Harvey)	2 053	1 421	69	0	-	0	-	0	-	1	0.1	7	0.3	0	-	55	2.7	77	3.7	1 484	72	895	44	1 655	81
Mayfield Drain	3 619	2 119	59	0	-	0	-	0	-	14	0.4	0	0.0	1 810	50	40	1.1	136	3.8	2 508	69	2 645	73	3 029	84
Harvey	20 109	11 391	57	60	0.3	149	0.7	246	1.2	588	2.9	66	0.3	10 055	50	649	3.2	773	3.8	12 214	61	10 455	52	14 320	71
Meredith Drain	1 045	819	78	0	-	0	-	0	-	2	0.2	0	-	522	50	30	2.9	40	3.9	667	64	40	4	682	65
Estuary (coastal plain)	59 272	34 890	59	219	0.4	367	0.6	591	1.0	1 557	2.6	694	1.2	22 803	38	1 536	2.6	2 009	3.4	34 397	58	21 778	37	39 480	67
Estuary (total)	60 231	34 890	58	219	0.4	367	0.6	591	1.0	1 557	2.6	696	1.2	22 803	38	1 618	2.7	2 162	3.6	34 397	57	21 778	36	39 480	66

Table F.11: Phosphorus load removal from all individual and combined management scenarios