Appendix S – Noise and Vibration Report – Cannington Station prepared by ALUA VICTORIA PARK TO CANNING LEVEL CROSSING REMOVAL PROGRAM PTA 200140

NOISE & VIBRATION REPORT CANNINGTON STATION

PTA NUMBER: LXR-ALUA-NV-RPT-00003

ALUA NUMBER: LXR-P2-Z3-CN-PM-EN-RPT-00001

Document Control Record

Document Prepared by: **Armadale Line Upgrade Alliance (ALUA)** Suite 3, 3 Craig Street, Burswood Western Australia 6100

E enquiries@alualliance.com.au

Document Control						
Report Title		Noise & Vibration Report – Cannington Station				
Client		Office of Major Transport Infrastructure Delivery (OMTID)				
Rev	Date	Revision Details / Status	Author	Reviewer	Approver	SEM
А	29-07-22	Reference Design	Rachel Foster	David Peoples	Ben Hoy	Ben Hoy
В	30-05-23	Final Detailed Design	Rachel Foster	David Peoples	Ben Hoy	Ben Hoy
Current Revision		В				

Approval			
Author Signature	Robon.	Checker Signature	Davie Ropela
Name	Rachel Foster	Name	David Peoples
Title	Principal Acoustic Engineer	Title	Technical Director, Consulting and Technology Practice Lead - Australia, New Zealand
Approver Signature		SEM Signature	
Name	Ben Hoy	Name	Ben Hoy
Title	Package Manager	Title	Package Manager

Table of Contents

1	Introduction	4
1.1	Document Exclusions	4
1.2	Abbreviations and Acronyms	4
1.3	Terminologies and Definitions	5
1.4	Scope of this report	7
2	Design Development	8
2.1	Key Changes	8
2.1.1	Reference Design (RD) to Final Design (FD)	8
2.1.2	Final Design (FD) to Issued for Construction (IFC)	8
2.1.3	Deviations	
2.1.4	Departures	8
3	Acoustic Scope and Standards	9
3.1	Acoustic Scope	9
3.2	Design Standards and Codes	9
4	Acoustic Criteria	
4.1	Noise Criteria for Impacts to Surrounding Noise-Sensitive Premises	
4.2	Noise Criteria for Impacts from Station Entry Roads and Bus Movements	
4.3	Noise Criteria for Ambient Noise Levels within Passenger Station Areas	
4.4	Noise and Vibration Ingress into Passenger Station Areas	
4.5	Reverberation within Passenger Station Areas	
4.6	Public Address Systems within Passenger Station Areas	
4.7	Acoustic Sound Insulation within Passenger Station Areas	17
4.8	Occupational Safety and Health	
4.9	Construction Noise and Vibration	
5	Acoustic Solutions	19
5.1	Noise Impacts to Surrounding Noise-Sensitive Premises	
5.1.1	Building Services	
5.1.2	Public Address (PA) System	
5.1.3	Car Park	
5.1.4	Passenger Noise	
5.1.5	Total Station Noise Impact	
5.2	Noise Impacts from Bus Movements	22
5.3	Ambient Noise Levels within Passenger Station Areas	22
5.4	Noise and Vibration Ingress into Passenger Station Areas	24
5.4.1	Noise	
5.4.2	Vibration	25
5.5	Reverberation within Passenger Station Areas	25
5.6	Public Address Systems within Passenger Station Areas	
5.7	Acoustic Sound Insulation	
5.8	Occupational Safety and Health	

Tables

TABLE 1 ABBREVIATIONS AND ACRONYMS	
TABLE 2 TERMINOLOGIES AND DEFINITIONS	5
TABLE 3 DESIGN STANDARDS AND CODES	9
TABLE 4 ASSIGNED LEVELS BY THE WESTERN AUSTRALIAN ENVIRONMENTAL PROTECTION	
(NOISE) REGULATION 1997	11
TABLE 5 ENVIRONMENTAL DESIGN CRITERIA – NOISE-SENSITIVE RECEIVERS	12
TABLE 6 ENVIRONMENTAL DESIGN CRITERIA – MAJOR / SECONDARY ROADS	13
TABLE 7 ENVIRONMENTAL DESIGN CRITERIA – INFLUENCING FACTORS	13
TABLE 8 ENVIRONMENTAL DESIGN CRITERIA - CANNINGTON STATION ASSIGNED NOISE LEVEL,	,
DB(A)	13
DB(A) TABLE 9 ENVIRONMENTAL DESIGN CRITERIA – NEW AND UPGRADED PUBLIC ROADS AND BUS	
LANES	15
TABLE 10 INTERNAL DESIGN CRITERIA - NOISE	15
TABLE 11 INTERNAL DESIGN CRITERIA - REVERBERATION TIME	. 16
TABLE 12 INTERNAL DESIGN CRITERIA – ACOUSTIC SOUND INSULATION	. 17
TABLE 13 – PREDICTED DURATION-ADJUSTED PA SYSTEM NOISE LEVELS	20
TABLE 14 – PREDICTED CAR PARK NOISE LEVELS	21
TABLE 15 PREDICTED PASSENGER NOISE LEVELS	21
TABLE 16 TOTAL PREDICTED NOISE LEVELS FROM CANNINGTON STATION	22
TABLE 17 PREDICTED STATION NOISE LEVELS FROM BUILDING SERVICES	23
TABLE 18 MEASURED NOISE LEVELS FROM TRAIN MOVEMENTS - SHENTON PARK STATION	24
TABLE 19 MEASURED NOISE LEVELS FROM TRAIN MOVEMENTS – COMPLIANCE WITH SWTC	
REQUIREMENTS	25
TABLE 20 PREDICTED REVERBERATION TIMES IN CRITICAL SPACES	26
TABLE 21 WALL TYPE SCHEDULE ACOUSTIC REVIEW	. 29
TABLE 22 DOOR TYPE SCHEDULE ACOUSTIC REVIEW	32

Figures

FIGURE 1 ENVIRONMENTAL DESIGN CRITERIA – LOCATION OF NOISE-SENSITIVE RECEIVERS	. 12
FIGURE 2 CANNINGTON STATION BUS INTERCHANGE BUS ROUTE FREQUENCIES	. 22
FIGURE 3 CANNINGTON STATION REVERBERATION MARK-UP SKETCHES	. 26
FIGURE 4 MINIMUM Rw REQUIRMENTS	. 28

1 Introduction

1.1 Document Exclusions

This report encompasses the acoustic design for the Cannington Station only. The acoustic assessment for other stations is provided in separate reports.

This report represents the acoustic assessment for the Final Design Development phase of the project.

The following items are excluded from this design document, which will be addressed in separate packages:

- Enabling works (Temporary works).
- Road and rail noise and vibration.
- Maintenance, corrective work and replacement work with no design.
- Construction methodology.
- Construction Construction Area Plan (CAP).
- Construction Work Area Plan (WAP).
- Construction Inspection and Test Plans (ITP).
- Commissioning.

1.2 Abbreviations and Acronyms

TABLE 1 ABBREVIATIONS AND ACRONYMS

Abbreviation	Description
AD	Alliance Development
AS	Australian Standard
CER	Communications Equipment Room
EPNR	Environmental Protection (Noise) Regulations
EST	Essential Supply Transformer
FDD	Final Design Development
FSL	Finished Surface Level
IFC	Issued For Construction
IDC	Interdisciplinary Design Check
IDD	Intermediate Design Development
IDR	Interdisciplinary Design Review
IFC	Issued for Construction
IV	Independent Verifier
LCR	Lobby Communications Room

NOISE & VIBRATION REPORT CANNINGTON STATION

Abbreviation	Description
LLPA	Long Line Public Address
LXR	Level Crossing Removal
MCR	Main Cable Route
N&I	Network and Infrastructure
N&V	Noise & Vibration
OMTID	Office of Major Transport Infrastructure Delivery
OSHR	Occupational Safety and Health Regulations
PA	Public Address
ΡΤΑ	Public Transport Authority
PPV	Peak Particle Velocity
RD	Reference Design Development
RFI	Request for Information
RT60	Reverberation Time (60 seconds)
SER	Signalling Equipment Room
SMCR	Station Major Communications Room
SPL	Sound Pressure Levels
SPP 5.4	State Planning Policy 5.4
STI	Speech Transmission Index
SWL	Sound Power Level
SWTC	Scope of Works and Technical Criteria
TSER	Trackside Equipment Room
WAPC	Western Australian Planning Commission
WC	Water Closet

1.3 Terminologies and Definitions

TABLE 2 TERMINOLOGIES AND DEFINITIONS

Term	Definition
'A' weighted	A frequency filter is applied to measured noise levels to represent how humans hear sounds.

Term	Definition
Ambient sound	The all-encompassing sound at a point is a composite of sounds from near and far.
Background sound	The ambient sound in the absence of the sound is under investigation.
'C' weighted	Frequency filter which does not discriminate against low frequencies and measures uniformly over the frequency range of 30 to 10,000 Hz
dB	The decibel (dB) is a logarithmic unit of measurement that is commonly used to express sound pressure level. An increase of 3 dB corresponds to an approximate doubling of sound power. When applied to sound, an increase of 10 dB corresponds approximately to a perceived doubling of loudness; typically 0 dB is the threshold of hearing and 120 dB is the threshold of pain.
dB(A)	'A' weighted overall sound pressure level.
Dw	Weighted Level Difference – Single number that represents the noise reduction for sound passing between two adjoining enclosed spaces. It is a field measurement that relates to the Rw laboratory measurement for the dividing partition, but also includes all building elements and flanking paths and acoustic absorption in the receiving room. The result includes the actual noise reduction for the installed partition and ceiling systems. The higher the Dw, the greater the noise isolation between enclosed spaces.
	D_W has superseded NIC as the Australian Standard for acoustically rating room to room noise isolation.
D _{nc,w} / CAC	Weighted ceiling noise reduction index/ceiling attenuation class. This is the ability of a ceiling to prevent the transmission of sound. The $D_{nc,w}/CAC$ is a measure of sound reduction between rooms with a common ceiling plenum (or space).
D _{nt,w}	Weighted standardised field level difference: the D_W rating normalised to a standard room volume and room absorption (or reverberation time). The higher the $D_{nt,w}$ rating, the better the insulation performance.
Flanking transmission	The noise transmission between two rooms sharing a common partition via all paths except that through the common partition.
Free field	A sound field sufficiently far from solid objects, other than the ground, so as to be free from the effects of sound reflections.
Frequency (Hz)	The human ear responds to sound in the frequency range of 20 hertz (Hz) to 20,000 Hz. A combination of sound pressure and frequency determines perceived loudness. The centre frequency of an octave is double the frequency of the lower octave. Sound measurements are usually taken at 16 one-third octave bands between 50 Hz and 5,000 Hz.
Impact sound transmission level	In a given frequency band, between two rooms situated one above the other: the average octave band sound pressure level, throughout the lower room, is produced by impacts delivered by a standard tapping machine to the floor of the upper room.
Intermittent noise	A noise whose sound pressure level suddenly drops to the background level several times during the period of observation, the time during which the level remains at a constant value different from that of the background level being of the order of 1 s or more.
L'nt,w	The single number quantity is used to characterise the impact sound insulation of floors over a range of frequencies. See bs EN ISO140-7:1998
L ₁₀	The noise level exceeded 10% of the measurement period. This represents the upper intrusive noise level and is often used to represent traffic or music noise.

Term	Definition	
L90	The noise level exceeded 90% of the measurement period. This represents the background noise level excluding nearby sources. The L_{90} level is commonly referred to as the background noise level.	
LAeq,8h	The 8-hour equivalent continuous a-weighted sound pressure level in decibels (dB(A)) i.e. The steady noise level which would, in the course of an 8-hour period, cause the same a-weighted sound energy which would be caused by the actual noise during an actual working day.	
Lc, peak	The C-weighted peak noise level.	
L _{eq}	Energy averaged noise level over the measurement period. This measure is commonly used when comparing the noise level with relevant standards for air conditioning noise.	

1.4 Scope of this report

This report comprises the acoustic deliverable for the Cannington Station. The contents of the report will serve to:

- Confirm with the architectural discipline that the appropriate wall/partition/door/window constructions to achieve the required acoustic separation and external noise ingress requirements have been documented.
- Confirm with the architectural discipline that the appropriate surface materials and treatments to achieve the required reverberation control requirements have been documented.
- Confirm with the communications consultant that the appropriate public address (PA) speaker locations to achieve appropriate speech intelligibility requirements have been documented.
- Confirm with the building services disciplines (mechanical, electrical, hydraulic) that noise mitigation requirements to achieve the internal noise level requirements have been documented.
- Confirm with the traffic and civil design disciplines that noise mitigation requirements (if deemed necessary) to achieve the acoustic standards for car parks and bus interchanges/movements have been documented.
- Confirm that controls required (if deemed necessary) to achieve appropriate noise emission from the station to adjacent noise-sensitive premises have been documented.

2 Design Development

2.1 Key Changes

2.1.1 Reference Design (RD) to Final Design (FD)

- The building services noise and associated environmental noise emissions have been revised in accordance with the FD mechanical services drawings, specifications, and schedules.
- The acoustic design for partition constructions/wall types/surface treatments was reviewed and coordinated with the architects in accordance with the FD architectural services drawings, specifications and schedules.
- The assessment of noise impacts from the station to nearby noise-sensitive receivers from passengers, PA systems, car parking, and bus movements have been assessed and the results have been incorporated into this report.
- Vibration levels in the platform areas have been assessed and the results have been incorporated into this report.

2.1.2 Final Design (FD) to Issued for Construction (IFC)

This section will be developed following the completion of the Final Design development.

2.1.3 Deviations

No non-compliances with standards in relation to acoustics are currently anticipated.

2.1.4 Departures

Expected departures from the SWTC requirements identified are listed below:

• SWTC Book 4 Part 3 Section 13.8.2 "Noise Criteria for Ambient Noise Levels within Passenger Station Areas" as follows:

Area	Scenario	Maximum acceptable noise level (dB)
Platforms, at any position within 1.5m of platform edge or centreline (whichever is closer to track), and more than 8 metres from portals	Moving trains	LASmax 80

This departure is currently being investigated and Departure DEV_0018 will be progressed in the event that non-compliance with this SWTC requirement remains.

3 Acoustic Scope and Standards

3.1 Acoustic Scope

The objective of the acoustic design is to provide an appropriate degree of acoustic comfort for the users, public and operators alike, and to control station and bus/parking noise emissions to nearby noise-sensitive receivers. To achieve this, several items were considered:

- Key acoustic materials and finishes within the station building fabric.
- Partition construction (internal and external).
- Building services (mechanical/hydraulic/electrical) as appropriate.
- Public address (PA) systems.
- Station patrons.
- Car park vehicle movements.
- Bus movements within the station area.
- Car park vehicles and bus movements connecting to the wider traffic network.

The design is developed in accordance with the PTA and SWTC requirements, the relevant Australian Standards and the requirements of the *Environmental Protection (Noise) Policy*.

3.2 Design Standards and Codes

In addition to the *Victoria Park-Canning Level Crossing Removal Scope of Work and Technical Criteria* (SWTC) and the Public Transit Authority of Western Australia (PTA)-specific requirements, the codes and standards required to develop the acoustic design include the following:

TABLE 3 DESIGN STANDARDS AND CODES

Reference	Title
AS 1428.2-1992	Design for access and mobility Part 2: Enhanced and additional requirements - Buildings and Facilities
AS 1670.4 (2018)	Fire detection, warning, control and intercom systems – System design, installation and commissioning Part 4: Emergency warning and intercom systems
AS NZS 1668.1 -1998	The use of ventilation and air conditioning in buildings Part 1: Fire and smoke control in multicompartment buildings
AS / NZS 2107:2016	Acoustics - Recommended design sound levels and reverberation times for building interiors
AS 2436-2010	Guide to noise and vibration control on construction, maintenance and demolition sites
AS 2670.1	Evaluation of human exposure to whole-body vibration - General requirements
AS 2670.2	Evaluation of human exposure to whole-body vibration - Continuous and shock- induced vibration in buildings (1 to 80 Hz)
AS/RISSB 7532:2016	Railway Rolling Stock - Audible Warning Devices
BS 6472	Evaluation of Human Exposure Vibration in Buildings (1 Hz to 80 Hz)
BS 7385.2	Evaluation and Measurement for Vibrations in Buildings – Part 2 Guide to Damage

NOISE & VIBRATION REPORT CANNINGTON STATION

Reference	Title
	Levels from Ground-Borne Vibration
CR NOI TSI	Technical specification for interoperability relating to the subsystem 'rolling stock – noise' of the trans-European conventional rail system, adopted by the Commission Decision 2011/229/EU, April 2011
DevWA Development Policy 3	Development Policy 3 – Sound and Vibration Attenuation
DIN 4150.3	Part 3: Structural Vibration in Buildings: Effects on Structures
EPNR 1997	Western Australia Environmental Protection (Noise) Regulations
ISO GUIDE 98-3	Uncertainty of measurement — Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)
ISO 3095	Acoustics - Railway applications - Measurement of noise emitted by railbound vehicles - Third Edition, August 2013
ISO 3381	Railway applications - Acoustics - Measurement of noise inside railbound vehicles
ISO 8041	Human response to vibration – Measuring instrumentation
ISO 14837	Mechanical vibration - Ground-borne noise and vibration arising from rail systems
ISO/IEC Guide 98-3	Uncertainty of measurement - Part 3: Guide to the expression of uncertainty in measurement (ISO GUM:1995)
NCC	National Construction Code
NSWRING	New South Wales Rail Infrastructure Noise Guideline, NSW EPA, May 2013
OSHR 1996	Western Australia Occupational Safety and Health Regulations
SPP5.4	State Planning Policy No. 5.4 Road and Rail Noise 2019
SPP5.4 Road and Rail Noise Guidelines	Road and Rail Noise Guidelines, September 2019
8190-600-009	American Railway Engineering and Maintenance-of-Way Association (AREMA) Communications and Signals Manual

The above list is not exhaustive but is provided to note the key guides and standards to which the design shall align.

4 Acoustic Criteria

4.1 Noise Criteria for Impacts to Surrounding Noise-Sensitive Premises

The Victoria Park-Canning Level Crossing Removal Scope of Work and Technical Criteria states the following:

Stations and associated infrastructure (e.g. carparks, plant rooms etc) must be designed to comply with the requirements of the Environmental Protection (Noise) Regulations 1997 (WA).

Noise criteria for both steady-state and discrete noise emission from the Cannington Station are nominated in this section. The setting of noise emission criteria is intended to protect the acoustic amenity of nearby sensitive receivers.

Environmental noise impacts resulting from the Cannington Station are addressed through the Environmental Protection Act 1986 with the prescribed standards detailed in the Western Australia *Environmental Protection (Noise) Regulations* 1997 (EPNR) as shown in Table 4. The regulations are based on maximum allowable noise levels termed the 'assigned noise level'. The regulations require that:

Noise emitted from any premises when received at other premises must not cause, or significantly contribute to, a level of noise which exceeds the assigned level in respect of noise received at premises of that kind.

A noise emission is taken to 'significantly contribute to' a level of noise if the noise emission exceeds a value which is 5 dB below the assigned level at the point of reception.

TABLE 4 ASSIGNED LEVELS BY THE WESTERN AUSTRALIAN ENVIRONMENTAL PROTECTION (NOISE)
REGULATION 1997

Type of premises receiving noise	Time of Day	Environmental Emission Criterion Level dB(A)		
		L _{A,10}	L _{A,1}	L _{A,max}
Nearest noise sensitive receiver: highly sensitive area	0700 to 1900 hours Monday to Saturday	45 + influencing factor	55 + influencing factor	65 + influencing factor
	0900 to 1900 hours Sunday and public holidays	40 + influencing factor	50 + influencing factor	65 + influencing factor
	1900 to 2200 hours all days	40 + influencing factor	50 + influencing factor	55 + influencing factor
	2200 hours on any day to 0700 hours Monday to Saturday and 0900 hours Sunday and public holidays	35 + influencing factor	45 + influencing factor	55 + influencing factor
Noise sensitive premises: any area other than highly sensitive area	All hours	60	75	80
Commercial Premises	All hours	60	75	80
Industrial premises	All hours	65	80	90

The regulations also apply penalties on noise levels that contain annoying characteristics such as tonal components. Where these characteristics do exist and cannot be practicably removed, then the measured levels are adjusted according to the penalties as follows:

- Where tonality is present: +5 dB.
- Where modulation is present: +5 dB.

• Where impulsiveness is present: +10 dB.

The noise adjustments apply up to a maximum cumulative total of 15 dB.

The influencing factor is applied to account for higher noise areas as a result of nearby industrial and commercial areas and major roads. The influencing factor is determined by considering the land use within two circles having a radius of 100 m and 450 m from the noise sensitive premises of concern and proximity to major and minor roads as defined in the EPNR. The nearest noise sensitive receivers on each side of the Cannington Station have been identified and are summarised below in Table 5.

TABLE 5 ENVIRONMENTAL DESIGN CRITERIA – NOISE-SENSITIVE RECEIVERS

Location	Noise Sensitive Receiver	Receiver Type
West	Sevenoaks Senior College	Educational
North east	198C Railway Parade, Queens Park	Residential
East	Skills Australia Institute, East Cannington	Educational
South east	248 Railway Parade, East Cannington	Residential

Note: Selection of noise-sensitive premises is based on Schedule 1 – Part C of the EPNR

FIGURE 1 ENVIRONMENTAL DESIGN CRITERIA – LOCATION OF NOISE-SENSITIVE RECEIVERS

Transport factors of 6 dB(A) and 2 dB(A) are applied to noise-sensitive receivers if major roads are located within 100 m and 450 m respectively. A transport factor of 2 dB(A) is applied to noise sensitive receivers if a secondary road is located within 100 m of a noise-sensitive receiver.

A major road is defined as having vehicle traffic flows in excess of 15,000 vehicles per day. A secondary road is defined as having traffic flows of 6,000 to 15,000 vehicles per day.

The major roads and secondary roads within 100 m and 450 m of the noise-sensitive receivers are identified below in Table 6.

Location	Major Road Within 100 m	Secondary Road Within 100 m	Major Road Within 450 m
West	-	Sevenoaks Street, Wharf Street, Cecil Avenue	-
North east		Sevenoaks Street, Wharf Street	
East	-	Sevenoaks Street	-
South east	-	Sevenoaks Street	-

The area surrounding the Cannington Station is predominantly residential in the vicinity of Wharf Street and Gerard Street, with educational (Sevenoaks Senior College, Skills Institute Australia) and community (Southern Districts Little Athletics Club, Queens Park Soccer Club, Cannington LeisurePlex) premises and commercial properties for the remainder. The road and rail reserves associated with the existing rail corridor, Sevenoaks Street, Wharf Street and Cecil Avenue are considerable. The zoning plans for the City of Canning have been used to identify the zoning around the station. It is considered that the areas zoned "Centre area" are commercial in use. To determine the influencing factor, existing roads and land uses have been considered. The influencing factors at the nearest noise sensitive receivers are summarised in Table 7, and the corresponding environmental noise criteria are as given in Table 8.

TABLE 7 ENVIRONMENTAL DESIGN CRITERIA – INFLUENCING FACTORS

Location	% Industria	al Area Use	% Commerc	ial Area Use	Transport Factor	Influencing Factor
	100 m	450 m	100 m	450 m		
West	36.5	26	25.5	64.5	6	17
North east	41.5	18.5	58.5	33	4	15
East	31	25	69	46	2	13
South east	49	27.5	51	41	2	14

TABLE 8 ENVIRONMENTAL DESIGN CRITERIA - CANNINGTON STATION ASSIGNED NOISE LEVEL, dB(A)

Premises receiving noise	Time of Day	Environmental Emission Criterion Level dB(A)		
		LA,10	La,1	- La,max
West	0700 to 1900 hours Monday to Saturday	62	72	82
	0900 to 1900 hours Sunday and public holidays	57	67	82
	1900 to 2200 hours all days	57	67	72
	2200 hours on any day to	52	62	72

Premises receiving noise	Time of Day	Environme	ntal Emission Criterion	Level dB(A)
	0700 hours Monday to Saturday and 0900 hours Sunday and public holidays			
North east	0700 to 1900 hours Monday to Saturday	60	70	80
	0900 to 1900 hours Sunday and public holidays	55	65	80
	1900 to 2200 hours all days	55	65	70
	2200 hours on any day to 0700 hours Monday to Saturday and 0900 hours Sunday and public holidays	50	60	70
East	0700 to 1900 hours Monday to Saturday	58	68	78
	0900 to 1900 hours Sunday and public holidays	53	63	78
	1900 to 2200 hours all days	53	63	68
	2200 hours on any day to 0700 hours Monday to Saturday and 0900 hours Sunday and public holidays	48	58	68
South east	0700 to 1900 hours Monday to Saturday	59	69	79
	0900 to 1900 hours Sunday and public holidays	54	64	79
	1900 to 2200 hours all days	54	64	69
	2200 hours on any day to 0700 hours Monday to Saturday and 0900 hours Sunday and public holidays	49	59	69

Note: A noise emission from a premises is considered to not significantly contribute to the noise at a receiver if the noise emission is 5 dB below the overall noise emission criteria for the area.

It is noted that the EPNR does not specifically identify that the above environmental noise criteria are applicable to noise from rail passengers and patrons of the Cannington Station; however, an assessment is made to quantify the likely impacts of these sources to adjacent noise-sensitive receivers.

4.2 Noise Criteria for Impacts from Station Entry Roads and Bus Movements

The Victoria Park-Canning Level Crossing Removal Scope of Work and Technical Criteria states the following:

The Alliance must design roads works and any associated noise mitigation controls to meet the requirements of State Planning Policy No. 5.4 Road and Rail Noise (SPP 5.4) (WAPC, 2019).

Table 9 sets out the environmental noise criteria referred to.

TABLE 9 ENVIRONMENTAL DESIGN CRITERIA - NEW AND UPGRADED PUBLIC ROADS AND BUS LANES

Type of premises receiving noise	Time of Day	New Road	Upgraded Road
Noise-sensitive land use (existing and planned	Day (6 am–10 pm)	$L_{Aeq (Day)} = 55 \text{ dB}(A)$	$L_{Aeq (Day)} = 60 \text{ dB}(A)$
development)	Night (10 pm–6 am)	$L_{Aeq (Night)} = 50 \text{ dB}(A)$	L _{Aeq (Night)} = 55 dB(A)

For the Cannington Station, this includes bus movements though the interchange.

It is noted that the assessment of rail noise to adjacent noise-sensitive receivers is being addressed separately for the LXR project, and does not form part of this scope.

4.3 Noise Criteria for Ambient Noise Levels within Passenger Station Areas

The following criteria are based on the requirements set out in the document Victoria Park-Canning Level Crossing Removal Scope of Work and Technical Criteria.

Current NCC, environmental or industry standard criteria at the time of detailed design shall apply, in addition to the indicative criteria summarised in Table 10.

TABLE 10 INTERNAL DESIGN CRITERIA - NOISE

Source	Receiver	Noise criterion, dB(A)	
Building services and plant noise	Ticket sales areas	L _{Aeq} 45	
	General office areas	L _{Aeq} 45	
	Staff crib rooms	L _{Aeq} 45	
	Public waiting areas, kiosks	L _{Aeq} 45	
	Toilets and amenities	L _{Aeq} 45 - 55	
	Parking and waste storage areas	L _{Aeq} 65	
	Plantrooms	L _{Aeq} 85 at 1 m from plant	
		L _{Aeq} 65 overall	
	All other areas	Table 1, AS/NZS 2107:2000* 'Satisfactory' values plus 5dB	
Stationary trains, auxiliary equipment operating as normal	Platforms, at any position within 1.5 m of platform edge or centreline (whichever is closer to	L _{Aeq} 70	
Moving trains	track), and more than 8 metres from portals	L _{ASmax} 80	
Building services and plant (ventilation, etc.)	— -	L _{Aeq} 55	
Emergency smoke fan systems		L _{Aeq} 85	
Hydraulic services in amenities	Publicly accessible area	Inaudible	

Source	Receiver	Noise criterion, dB(A)
Hand dryers in amenities	2 m from amenity entrance	Inaudible

* Note that the 2000 version of AS/NZS 2107 has been superseded by the 2016 version.

4.4 Noise and Vibration Ingress into Passenger Station Areas

The Victoria Park-Canning Level Crossing Removal Scope of Work and Technical Criteria states the following:

The Alliance must comply with the following requirements:

- External noise ingress from all associated road and rail traffic sources controlled according to the requirements of the State Planning Policy No 5.4 Road and Rail Noise (SPP 5.4) (WAPC 2019).
- Floor vibration levels within publicly accessible areas from plant, equipment or external sources not exceed *L_{v,RMS,1s}* 112 dB.
- External noise ingress from adjacent road traffic sources must be assessed and considered when designing and constructing all stations to ensure that the public address systems within passenger station areas achieve the minimum sound level and speech intelligibility requirements of clause 4.3.4 and 4.3.6 of AS 1670.4 for all representative locations, environmental conditions and passenger levels.

The SPP 5.4 provides noise targets for residential buildings. For other noise-sensitive land use and/or development, such as passenger station areas, the SPP 5.4 states that indoor noise targets may be reasonably drawn from Table 1 of AS/NZS 2107:2016.

4.5 **Reverberation within Passenger Station Areas**

The Victoria Park-Canning Level Crossing Removal Scope of Work and Technical Criteria states the following:

The Alliance must comply with the following requirements:

- Within platform areas, the spatial average reverberation time (RT60) values for the full octave bands with centre frequencies 500Hz and 1kHz not exceed 1.3 seconds for the scenario where 100 patrons are present, or 1.6 seconds when empty.
- At all other areas, spatial average reverberation time (RT60) values for the full octave bands with centre frequencies 500Hz and 1 kHz be in accordance with AS/NZS 2107:2000 given the usage of each space.

Therefore, the reverberation time criteria applicable to the Cannington Station are as shown in Table 11.

TABLE 11 INTERNAL DESIGN CRITERIA - REVERBERATION TIME

Criterion	Receiver	Reverberation time criteria at 500 Hz and 1 kHz, seconds
Reverberation	General office	0.4 - 0.6
	Retail	Minimised as far as practicable
	All circulation, back of house areas	-
	Toilets and amenities	-
	Ticket sales areas	0.6 - 0.8
	Platform areas	1.3 with 100 patrons present
		1.6 when empty
	Staff crib rooms	< 0.8

 Criterion
 Receiver
 Reverberation time criteria at 500 Hz and 1 kHz, seconds

 Public waiting areas, kiosks
 Minimised as far as practicable

4.6 Public Address Systems within Passenger Station Areas

The Victoria Park-Canning Level Crossing Removal Scope of Work and Technical Criteria states the following:

The Alliance must ensure that the PA systems achieve the minimum sound level and speech intelligibility requirements of clause 4.3.4 and 4.3.6 of AS 1670.4 for all representative locations, environmental conditions and passenger levels.

AS 1670.4 requires that the A-weighted sound pressure level shall:

- Exceed the ambient sound pressure level by 10 dB(A) when averaged over a period of 60 seconds.
- Shall not be less than 65 dB(A).
- Shall not be more than 105 dB(A).
- When under stand-by power source operation shall not cause audible emergency signals to fall by more than 6 dB sound pressure level below the required sound level when tested after 24 hours of quiescent operation.

Additionally, AS 1670.4 requires that:

- Where ambient noise figures are less than 85 dB(A), the speech transmission index (STI) shall be ≥ 0.5 .
- The average speech SPL shall not exceed 100 dB(A).
- When under stand-by power source operation the CIS index is not to fall below 0.65 (0.45 STI) when tested after 24 hours of quiescent operation.

4.7 Acoustic Sound Insulation within Passenger Station Areas

The Victoria Park-Canning Level Crossing Removal Scope of Work and Technical Criteria states the following:

Airborne sound insulation targets are given in terms of the weighted level difference, D_W between two spaces. The Alliance must ensure that design complies with the following general in-situ airborne sound insulation targets:

 $D_W \ge 35 dB$ between normally occupied enclosed spaces.

 $D_W \ge 28$ dB between normally occupied spaces where the common partition includes a door.

The SWTC also presents criteria which supersede these general requirements for specific occupied spaces. Where two different space types are adjacent to one another, the Alliance must ensure that the more onerous target applies. These are given in Table 12.

TABLE 12 INTERNAL DESIGN CRITERIA – ACOUSTIC SOUND INSULATION

Space Type / Occupancy	Minimum Weighted Sound Level Difference, D _w , dB		
Between normally occupied back of	Generally	40	
house offices and crib rooms	Where the common partition at the interface includes a door	30	
	Generally	42	
Toilets and amenities to nearby public areas	Where the common partition at the interface includes a door	25*	
	Where the common partition at the interface has no door	16*	

* Note that the SWTC requirements are not correct – a partition without a door should have the higher D_W requirement. This has been raised with the SESA team.

The D_w rating is the 'weighted standardised field level difference' and represents the required installed performance between two spaces to achieve the different levels of acoustic separation, inclusive of all flanking paths.

The D_w rating relates to the final installed acoustic performance measured on site. Accordingly, the result will include contribution from noise leaking along flanking paths such as joints between walls and ceilings, joints between walls and other external and internal walls, leakage associated with services penetrations, along ductwork and via glazing and doors.

The difference between the result tested in a laboratory (R_W), and the result achieved on site (D_W) normally varies between 3 and 8 dB depending on how well the flanking paths can be controlled, and the receiving room size and absorptive characteristics. Flanking paths tend to have a greater impact on higher performing partitions – i.e. the impact is likely to be greater for an R_W 50 partition than for an R_W 40 partition.

In order to account for the likely degradation in performance arising from this leakage, a laboratory performance (R_W) has been recommended that is approximately 5 dB higher than the typically required field performance.

In addition to the above separation requirements, walls and doors should be designed to limit noise transmission from noise generating spaces, such as plant rooms, to meet the noise levels presented in Section 4.3.

4.8 Occupational Safety and Health

The Western Australia Occupational Safety and Health Regulations 1996 (OSHR) provides the following exposure standards for noise:

- L_{Aeq,8h} of 85 dB(A).
- L_{C,peak} of 140 dB(C).

These standards are applicable at a measurement position of a person's ear without taking into account any protection which may be provided to the person by personal hearing protectors.

4.9 **Construction Noise and Vibration**

The EPNR clarifies that the environmental noise criteria outlined in Table 8 are not applicable to noise emitted from a construction site where works are carried out between 0700 hours and 1900 hours on any day which is not a Sunday or public holiday if it is shown that the construction works are generally carried out in accordance with the controls identified in Section 4 of AS 2436-2010 *Guide to noise and vibration control on construction, maintenance and demolition sites* and if construction work is carried out in accordance with an approved management plan.

It is noted that a specific construction noise and vibration management plan is being addressed separately for the LXR project, which will include relevant site clearing and construction works associated with the Cannington Station, and does not form part of this scope.

5 Acoustic Solutions

5.1 Noise Impacts to Surrounding Noise-Sensitive Premises

The area surrounding the Cannington Station is predominantly residential in the vicinity of Wharf Street and Gerard Street, with educational (Sevenoaks Senior College) and community (Southern Districts Little Athletics Club, Queens Park Soccer Club, Cannington LeisurePlex) premises and commercial properties for the remainder. The road and rail reserves associated with the existing rail corridor, Sevenoaks Street, Wharf Street and Cecil Avenue are considerable.

These noise-sensitive residences in the vicinity of the Cannington Station are already affected by noise from the existing passenger railway line, station and station car park, and from road traffic on Sevenoaks Street. However, the future environmental noise emissions from the station and associated car parking / bus movements will need to be considered for these receivers adjacent to the station.

5.1.1 Building Services

Mechanical and electrical services plant selections for the Cannington Station comprise:

- Small ducted exhaust fans to ablution facilities and electrical plant spaces.
- Small outdoor air fans.
- Plant room, pump room and electrical room extract systems.
- Air conditioning to comms room, electrical rooms, crib room and offices incorporating split systems with wallmounted indoor units, external condensing units.
- 50/75/100 kVA Essential Supply Transformer (EST).
- Western Power 630 kVA transformer.
- 630 kVA isolation transformer.

The proposed equipment locations and layout are as shown in the following mechanical services drawings:

- 041-A-73-ME0019
- 041-A-73-ME0020
- 041-A-73-ME0021
- 041-A-73-ME0022
- 041-A-73-ME0023
- 041-A-73-ME0024
- 041-A-73-ME0029
- 041-A-73-ME0030

With the specified noise levels and acoustic treatments as identified in the mechanical and electrical specifications (acoustic lining to exhaust ductwork, location of equipment, etc.), the predicted noise levels from all duty equipment in operation at the noise-sensitive receptors are less than 35 dB(A).

Therefore, it is predicted that the night- time environmental noise criteria given in Table 8 will be achieved, and no additional acoustic mitigation is required.

The predicted noise levels from the Cannington Station when equipment is operating in emergency mode (gas suppression exhaust fans) are also less than 40 dB(A): compliant with the night-time environmental criteria for the nearest noise-sensitive receivers given in Table 8, and no additional acoustic mitigation is required.

It is noted that the onus of management of the noise emission from the Western Power substation within the vicinity of the Cannington Station lies with Western Power.

The acoustic performance requirements presented in Section 5.7 provide the minimum acoustic ratings for partitions and doors to control environmental noise emission from the transformers to meet the relevant environmental noise requirements.

5.1.2 Public Address (PA) System

The design of the public address system will be described in detail in the Communications reporting (report LXR-P2-Z3-CN-SN-SC-RPT-00003 / LXR-ALUA-EC-RPT-00014), and is not repeated here. The published noise data for the selected speaker types are as follows:

- Ceiling speakers: CM20DTS: Maximum continuous SPL 88 dB at 5m.
- Column speakers: RayOn 70: Maximum continuous SPL 103 dB at 1m.

Ambient Noise Compensation devices and associated microphones are installed in the station's public areas (Platforms and Concourse). These devices allow the LLPA speakers to be dynamically adjusted to the ambient noise and to remain at a defined level (generally between 3 and 10 dB) above the ambient noise level. Figure 19 of the Communications reporting indicates an average sound pressure level on the platform area of 75 dB. Based on this speaker output, the predicted maximum continuous noise levels from the speakers at the nearest noise-sensitive receivers is as follows:

West	75 dB(A)
North east	66 dB(A)
East	82 dB(A)
South east	69 dB(A)
	North east East

However, the predicted levels represent the noise levels at the noise-sensitive receivers for the PA system in continuous operation. The EPNR requires a "representative assessment period" of not less than 15 minutes or more than 4 hours. As the PA system operation is intermittent rather than continuous, consideration is given to the actual duration of PA announcements across the day and night periods.

The PTA uses the LLPA for different types of announcements-:

- Next service departure (2, 5 and 10 min before departure)
- Non-smoking message (every 5 min)
- Luggage unattended type message (every 5 min)
- Other scheduled or unscheduled messages for specific train operations
- Unscheduled messages for safety, security or other purposes

The average announcement duration is given as 5 seconds.

Announcements are muted at night-time to minimise disturbance to the neighbours. Only messages for critical purposes (from the Central Monitoring Room) or safety (non-stopping train approaching) are allowed during these times.

The PTA's design guidelines 8803-700-005 *GUIDELINE Public Address and Voice Evacuation for PTA Facilities* for these systems include procedural mitigation to manage the use of PA speakers when passenger numbers are low (as would be expected outside of daytime hours). Specifically, the Guidelines state that:

The Passenger Information Network (PIN) uses the timetable and track sensors to estimate when a train is arriving/departing at a station and controls the PA system to play automated messages. This system is turned off when the station is frequented by fewer than 5 passengers / 30 minutes.

These result in the worst-case normal operational duration-adjusted noise levels at the nearest noise-sensitive receivers as presented in Table 13.

TABLE 13 – PREDICTED DURATION-ADJUSTED PA SYSTEM NOISE LEVELS

Location	Predicted Noise Level L _{Aeq,15min} (Day)	Predicted Noise Level L _{Aeq,15min} (Night)
West	44 dB(A)	40 dB(A)
North east	35 dB(A)	30 dB(A)
East	51 dB(A)	46 dB(A)
South east	38 dB(A)	34 dB(A)

These predicted noise levels achieve the day and night environmental noise criteria outlined in Table 8.

5.1.3 Car Park

The car parking associated with the Cannington Station is proposed to have a maximum capacity of over 150 bays. The PTA's 'SmartParker' system outputs for the current Cannington Station indicate that the highest night-time car park movements (10pm to 7am) occur between 6am and 7am (34 movements); the highest day time movements (7am to 10pm) occur between 7am and 8am (92 movements). With a future capacity of 191 bays, these equate to 42 and 114 movements for the peak night and day hours respectively. On the basis that these movements are proportionally distributed across the three car parking areas (northern, south eastern and south western), the predicted noise levels for the car parks are as follows.

TABLE 14 - PREDICTED CAR PARK NOISE LEVELS

Location	Predicted Noise Level L _{Aeq,15min} (Day)	Predicted Noise Level L _{Aeq,15min} (Night)
West	38 dB(A)	31 dB(A)
North east	49 dB(A)	42 dB(A)
East	29 dB(A)	22 dB(A)
South east	35 dB(A)	30 dB(A)

The presented noise levels take into account a full parking movement, including vehicle movement, shunting, door/boot opening/closing and engine start-up.

These predicted noise levels achieve the day and night environmental noise criteria outlined in Table 8.

5.1.4 Passenger Noise

The Cannington Station is anticipated to have around 18,070 passengers per day by 2051. The highest passenger volume is expected during the morning peak hour period, with 443 boardings and 368 alightings between 07:45 and 08:00 a.m. This equates to around 811 passengers on the station platform for the peak 15-minute period.

The highest passenger volume for the night-time period occurs from 06:45a.m. to 07:00a.m., having 187 boardings and 63 alightings. This equates to around 250 passengers on the station platform for this 15-minute period.

On the basis that the gender split is 50%/50%, and that half the passengers would be speaking in normal voices at any one point in time, the predicted noise levels from passengers at the nearest noise-sensitive receptors are as given in Table 15.

TABLE 15 PREDICTED PASSENGER NOISE LEVELS

Location	Predicted Noise Level LAeq,15min (Day)	Predicted Noise Level L _{Aeq,15min} (Night)
West	39 dB(A)	34 dB(A)
North east	31 dB(A)	26 dB(A)
East	47 dB(A)	42 dB(A)
South east	37 dB(A)	31 dB(A)

These predicted noise levels are below the day-time and night time environmental noise criteria given in Table 8 for all receivers and therefore noise from passengers on the Cannington Station platform is not expected to cause disturbance to the nearby noise-sensitive receivers.

5.1.5 Total Station Noise Impact

The total predicted noise levels at the nearest noise-sensitive receivers to the Cannington Station are presented in Table 16.

TABLE 16 TOTAL PREDICTED NOISE LEVELS FROM CANNINGTON STATION

Location	Predicted Noise Level L _{Aeq,15min} (Day)	Predicted Noise Level L _{Aeq,15min} (Night)
West	45 dB(A)	41 dB(A)
North east	49 dB(A)	42 dB(A)
East	52 dB(A)	48 dB(A)
South east	42 dB(A)	38 dB(A)

These predicted noise levels are below the daytime and night-time environmental noise criteria given in Table 8 for all receivers, and therefore noise from the Cannington Station is not expected to cause disturbance to the nearby noise-sensitive receivers.

5.2 Noise Impacts from Bus Movements

The bus movements through the Cannington Station are required to be assessed against the road traffic requirements of the SPP 5.4.

Current bus routes servicing the Cannington Station are Routes 34 (to/from Perth), Route 201 (to/from Curtin University), Routes 202/203 (to/from Carousel Shopping Centre), Route 229 (to/from Maddington Central) and Route 507 (to/from Bull Creek Station). The total number of bus movements into or out of the station during the day (6 a.m. to 10 p.m.) is approximately 315; the total number of bus movements at night (10 p.m. to 6 a.m.) is approximately 15, as counted from these current bus timetables.

The current and future (estimated) bus trips at Cannington Station are given in the Armadale Line Access Strategy Report, Table 9-1, as summarised below:

#	Station	Existing Bus Trips (2017)	Targeted Increase in Trips	Target Bus Trips (2031)	% Change	Bus Routes	Formal Bus Rail Interchange Facility ^{1, 2, 3}
7	Cannington	1,075	884	1,959	82%	507, 508, 202, 203, 229	Yes

Table 9-1: Summary of existing and future bus demand

FIGURE 2 CANNINGTON STATION BUS INTERCHANGE BUS ROUTE FREQUENCIES

Bus frequencies are therefore anticipated to increase by 82% i.e. up to approximately 575 daytime movements and 28 night-time movements.

Nevertheless, the noise levels from the bus interchange will be significantly lower than the $L_{Aeq (Day)}$ 55 dB(A) and $L_{Aeq (Night)}$ 50 dB(A) SPP 5.4 criteria.

5.3 Ambient Noise Levels within Passenger Station Areas

Ambient noise levels within the Cannington Station areas will be dominated by road and rail traffic noise intrusion and by building services such as fans and air conditioning.

The mechanical services being provided to the Cannington Station are identified in Section 5.1.1. Utilising the data in the mechanical services specification and incorporating the acoustic mitigation advice documented (additional duct lengths, internal duct lining) the predicted noise levels within the Cannington Station are as shown in Table 17.

TABLE 17 PREDICTED STATION NOISE LEVELS FROM BUILDING SERVICES

Room		Predicted Noise Level dB(A)	Criterion dB(A)
Normal Operation	-		
Staff WC	CAN-CC-SAM1	40	55
Staff Crib	CAN-CC-SCF1	44	45
CER	CAN-CC-SCR	58	65
Mech	CAN-CC-MPR2	63	65
Public UAT	CAN-CC-DAM1	42	55
Public UAT	CAN-CC-DAM3	31	55
LCR	CAN-CC-LCR	58	65
ESC Ctrl	CAN-CC-EQR1	54	65
CSO	CAN-CC-PTA	54	45
Kiosk	CAN-CC-KSK	46	45
SMCR	CAN-CC-SMC	52	65
Main Elec	CAN-CC-SRR	52	65
Public Female Amenities	CAN-CC-FAM1	44	55
Staff Male Amenities	CAN-CC-SAM6	44	55
Staff Crib	CAN-CC-SCF2	44	45
Drivers WC	CAN-PF-SAM1	34	55
Elec	CAN-PF-SAM1	34	65
Elec	CAN-PF-PER2	57	65
Staff Office	CAN-PF-PTA	48	45
Platform	-	< 55	55
Emergency Operation			
Main Electrical	CAN-CC-SRR	70	85
SCMR	CAN-CC-SMC	0	85

Therefore, noise levels in these areas served by mechanical services are predicted to achieve the relevant internal noise criteria given in Table 10. The exceptions are the occupied spaces CSO (CAN-CC-PTA), Kiosk (CAN-CC-KSK) and Staff Crib (CAN-CC-SCF2) which are controlled by the fan coil units serving these spaces; in the event that the occupants find the noise levels uncomfortable, the fan coil units can be operated at a lower fan speed.

EASE modelling has also shown that the acoustic requirements of AS 1670.4 are achieved for the PA system operating in emergency mode (refer to the Communications report (LXR-P2-Z3-CN-SN-SC-RPT-00003 / LXR-ALUA-EC-RPT-00014).

5.4 Noise and Vibration Ingress into Passenger Station Areas

5.4.1 Noise

The acoustic performance requirements presented in Section 5.7 provide the minimum acoustic ratings for partitions and doors to control noise ingress from road and rail noise to meet the relevant internal noise level requirements.

Noise measurements undertaken at Shenton Park Station on 24 January 2023 gave the following results:

Train Movement	Train Series	Measurement Location (1.5m from platform edge)		
		Eastern Platform End	Centre of Platform	Adjacent Doors/Air Conditioning Equipment
Through trains	А	L _{ASmax} 82 - 83 dB	-	-
	В	L _{ASmax} 74 - 83 dB	L _{ASmax} 82 - 83 dB	-
Stopping trains – arrival/departure	А	L _{ASmax} 72 – 85 dB	L _{ASmax} 75 – 89 dB	-
	В	L _{ASmax} 72 – 81 dB	L _{ASmax} 72 – 84 dB	-
Stopping trains – idling	В	-	-	L _{Aeq} 62 – 70 dB

TABLE 18 MEASURED NOISE LEVELS FROM TRAIN MOVEMENTS - SHENTON PARK STATION

The data indicates, and observations on site confirmed, that the "B" series trains were quieter than the "A" series trains for the normal stopping pattern.

For the "through" trains, the measurements indicate that the "B" series trains continue to exceed the L_{Amax} 80 dB criterion. It is noted however that this represents only a very small sample (5 trains), and will occur only occasionally on the future LXR line.

The highest noise levels measured for the "B" trains are above the L_{Amax} 80 dB criterion; however, these correspond to two isolated measurements which included brake release noise from departing trains whilst the train was still in the station and had not started moving. When these two measurements are removed from the summary, the results of the "B" series trains when in the stopping pattern achieve the L_{Amax} 80 dB criterion.

The conclusion in relation to compliance with the SWTC requirements outlined in Table 10 is therefore as presented in Table 19, below.

TABLE 19 MEASURED NOISE LEVELS FROM TRAIN MOVEMENTS - COMPLIANCE WITH SWTC REQUIREMENTS

SWTC requirement	Situation	Criterion	Train Series	Satisfied?
Platforms, at any position within 1.5m of the platform edge	Stationary trains, and auxiliary equipment operating as normal	L _{Aeq} 70 dB	A	Satisfied (refer Queens Park Station measurements)
or centreline (whichever is closer		В	Satisfied	
to the track), and more than 8 metres	and Moving trains	L _{ASmax} 80 dB	А	Not satisfied
from Portals		В	Not satisfied – through trains	
				Satisfied – stopping trains

It is noted that previous studies have also identified that the maximum acceptable noise level (L_{Amax} 80 dB) cannot be reasonably or practicably achieved at all locations on the platforms.

Mitigation in the form of web dampers and absorptive treatment to the platform faces is currently ongoing, however SWTC Departure DEV_0018 is currently being progressed to obtain the PTA approvals for this deviation from the SWTC should mitigation measures indicate continuing non-compliance with the SWTC clause.

5.4.2 Vibration

Vibration measurements of the existing passenger rail line were carried out between 17 and 19 May 2022, at two separate locations and a distance of 10 metres from the track (refer ONVDR LXR-PW-Z0-GN-00001). The results showed a 95th percentile PPV of 113 – 114 dB. A vibration assessment was undertaken based on these measured vibration results and with consideration of the proposed track mounting and structural connection arrangements between the track and the station platform at the viaducts. It was determined that the station vibration criterion of L_{v, RMS,1s} 112 dB as given in Section **Error! Reference source not found.** is achieved.

5.5 Reverberation within Passenger Station Areas

An acoustic review of the architectural package for the Carlisle Station has been undertaken. The following architectural drawings were reviewed for general compliance with the acoustic design intent:

RCP Drawings:

- 04-A-73-AR0075
- 04-A-73-AR0076
- 04-A-73-AR0077
- 04-A-73-AR0081
- 04-A-73-AR0082
- 04-A-73-AR0083

Details:

- 04-A-73-AR0175
- 04-A-73-AR0176
- 04-A-73-AR0177
- 04-A-73-AR0178
- 04-A-73-AR0179
- 04-A-73-AR0180
- 04-A-73-AR0181
- 04-A-73-AR0182
- 04-A-73-AR0183
- 04-A-73-AR0184
- 04-A-73-AR0145
- 04-A-73-AR0146

Cannington Station Materials and Finishes Schedule

The above drawings have been reviewed for general compliance with the reverberation time requirements. Acoustically absorptive materials have been determined by the Communications consultant (refer to Section 3.1.2 of report LXR-P2-Z3-CN-SN-SC-RPT-00003 / LXR-ALUA-EC-RPT-00014) and are reproduced in the figures below.

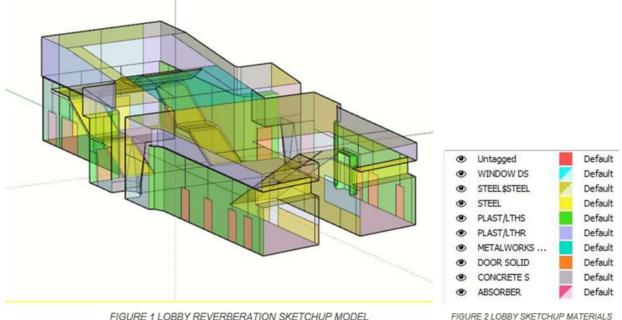
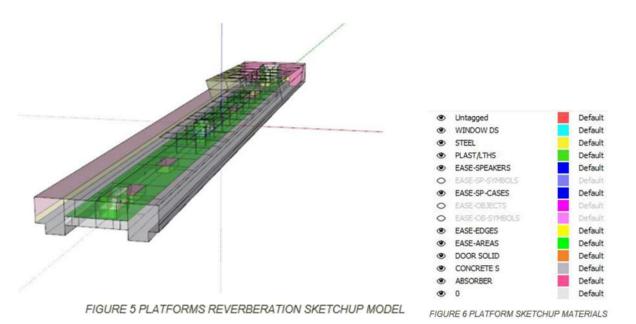



FIGURE 1 LOBBY REVERBERATION SKETCHUP MODEL

FIGURE 3 CANNINGTON STATION REVERBERATION MARK-UP SKETCHES

With the surface types documented in the abovementioned drawings and with acoustic absorption to the enclosed spaces identified below in the form of mineral fibre ceiling tiles with a minimum NRC 0.7 rating, and the surfaces as documented in the Communications report for concourse and platform sketches, the predicted reverberation times in critical occupied spaces are as shown in Table 20.

TABLE 20 PREDICTED REVERBERATION TIMES IN CRITICAL SPACES

Room	Predicted Reverberation Time (s)	Criterion (s)

Room	Predicted Reverberation Time (s)	Criterion (s)
Staff Crib (CAN-CC-SCF1)	0.36	< 0.8
CSO (CAN-CC-PTA)	0.4	0.4 – 0.6
Kiosk (CAN-CC-KSK)	0.45	Minimised as far as possible
Staff Crib (CAN-CC-SCF2	0.45	< 0.8
Staff Office (CAN-PF-PTA)	0.36	0.4 – 0.6
Platform	< 0.73 (100 patrons)	1.3
	0.73 (empty)	1.6
Lobby / Concourse	1.11 (100 patrons)	1.3
	1.00 (empty)	1.6

With these treatments in place, is it predicted that the reverberation time criteria will be achieved.

5.6 Public Address Systems within Passenger Station Areas

The design of the public address system is described in detail in the Communications report and is not repeated here.

EASE modelling was undertaken to ensure that the public address system design achieves the requirements outlined in Section 4.6.

Figure 19 of the Communications report indicates that the sound pressure level (SPL) criteria on the platform areas are achieved; Figure 21 indicates that the speech transmission index (STI) criteria on the platform areas are achieved.

Figure 12 of the Communications report indicates that the SPL criteria in the concourse areas are achieved; Figure 14 indicates that the STI criteria in the concourse areas are achieved.

5.7 Acoustic Sound Insulation

Minimum Weighted Sound Reduction (R_w) ratings to meet acoustic separation requirements are provided for partitions and doors below.

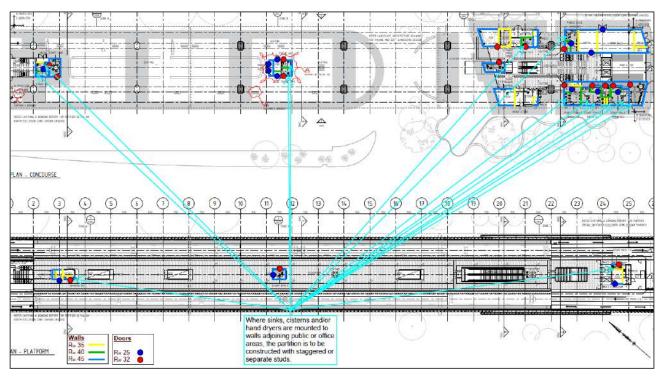


FIGURE 4 MINIMUM Rw REQUIRMENTS

An acoustic review of the architectural package for the Cannington Station has been undertaken. The following drawings were reviewed for general compliance with the acoustic design intent:

General arrangement drawings:

- 04-A-73-AR0057
- 04-A-73-AR0060
- 04-A-73-AR0063
- 04-A-73-AR0064
- 04-A-73-AR0065
- 04-A-73-AR0066
- 04-A-73-AR0067
- 04-A-73-AR0068

RCP Drawings:

- 04-A-73-AR0075
- 04-A-73-AR0076
- 04-A-73-AR0077
- 04-A-73-AR0081
- 04-A-73-AR0082
- 04-A-73-AR0083

Details:

- 04-A-73-AR0175
- 04-A-73-AR0176
- 04-A-73-AR0177
- 04-A-73-AR0178
- 04-A-73-AR0179
- 04-A-73-AR0180

- 04-A-73-AR0181
- 04-A-73-AR0182
- 04-A-73-AR0183
- 04-A-73-AR0184
- 04-A-73-AR0145
- 04-A-73-AR0146

The above drawings have been reviewed for general compliance with the acoustic separation requirements.

Partition Construction

A review of the wall-type schedule for the Cannington Station is presented in Table 21.

TABLE 21 WALL TYPE SCHEDULE ACOUSTIC REVIEW

Partition Type	Partition Construction	Estimated R _w Rating	Comment
WT-01	1x13mm IMPACTCHEK PLASTERBOARD.	< 30	Overall partition R _w rating will depend on the substrate
	1x92mm STEEL STUD WITH R2.8 INSULATION.		
	60mm CAVITY TYPICAL		
WT-02	1x9mm CEMINSEAL WALLBOARD (OR EQUAL APP);	< 35	Overall partition R_W rating will depend on the substrate
	1x92mm STEEL STUD WITH R2.8 INSULATION.		
	60mm CAVITY TYPICAL		
WT-03	3x16mm FYRCHEK FIRE-RATED LINING (OR EQUAL APP);	< 40	Overall partition R _w rating will depend on the substrate
	1x92mm STEEL STUD WITH R2.8 INSULATION.		
	60mm CAVITY TYPICAL		
WT-04	1x13mm IMPACTCHECK PLASTERBOARD (OR EQUAL APP);	44	
	1x92mm STEEL STUD WITH R2.8 INSULATION.		
	1x13mm IMPACTCHEK PLASTERBOARD (OR EQUAL APP)		
WT-05	1x9mm CFC CLADDING PANEL (OR EQUAL APP);	< 35	Overall partition R_W rating will depend on the substrate
	1x92mm STEEL STUD WITH R2.8 INSULATION;		
	60mm CAVITY TYPICAL		
WT-06	1x13mm IMPACTCHECK PLASTERBOARD (OR EQUAL APP);	47	
	1x92mm STEEL STUD WITH R2.8		

Partition Type	Partition Construction	Estimated R _w Rating	Comment
	INSULATION.		
	1x9mm CEMINSEAL WALLBOARD (OR EQUAL APP)		
WT-07	1x13mm IMPACTCHECK PLASTERBOARD (OR EQUAL APP);	< 25	Overall partition R _w rating will depend on the substrate/structure
	35mm TOP HAT		
WT-08	2x13mm FYRCHEK FIRE-RATED LINING (OR EQUAL APP);	51	
	1x92mm STEEL STUD WITH R2.8 INSULATION.		
	2x13mm FYRCHEK FIRE-RATED LINING (OR EQUAL APP)		
WT-09	110mm FACE BRICK.	45	
WT-10	GYPROCK GLASROC F (OR EQUAL APP)	N/A	
	STEEL COLS		
WT-15	1x13mm FLUSH IMPACTCHEK PLASTERBOARD (INTERNAL FACE); 1x13mm FLUSH PLASTERBOARD.	49	
	1x92mm STEEL STUD WITH R2.8 INSULATION		
	1x13mm FLUSH PLASTERBOARD (OR EQUAL APP)		
WT-18	1x9mm CFC CLADDING PANEL (OR EQUAL APP);	47	
	1x92mm STEEL STUD WITH R2.8 INSULATION;		
	9mm CEMINSEAL WALLBOARD (OR EQUAL APP)		
WT-19	1x13mm FLUSH IMPACTCHEK PLASTERBOARD (INTERNAL FACE); 1x13mm FLUSH PLASTERBOARD;	57	
	1x92mm STEEL STUD WITH R2.8 INSULATION;		
	9mm CEMINSEAL WALLBOARD (OR EQUAL APP)		
WT-20	9mm CEMINSEAL WALLBOARD (OR EQUAL APP);1x13mm IMPACTCHEK PLASTERBOARD;	51	
	1x92mm STEEL STUD WITH		

Partition Type	Partition Construction	Estimated R _w Rating	Comment
	INSULATION;		
	35mm TOP HAT;		
	ALUMNIUM CLADDING PANEL		
WT-22	35mm TOP HAT; ALUMINIUM PANEL	20	Overall partition R_W rating will depend on the substrate/structure
WT-23	35mm TOP HAT; PAINTED CFC PANEL	35	Overall partition R _W rating will depend on the substrate/structure
WT-24	METAL SHEETING;	35	Overall partition R _w rating will
	SUBSTRATE/ STRUCTURE;		depend on the substrate/structure
	35mm TOP HAT;		
	PAINTED CFC PANEL		
WT-25	METAL SHEETING;	20	Overall partition Rw rating will
	STRUCTURE;		depend on structure and presence of insulation
	ALUMINIUM PANEL		·····
WT-26	9mm PAINTED CFC PANEL	< 30	
	2x16mm FYRCHEK MR PLASTERBOARD (OR EQUAL APP);		
	35mm TOP HAT		
WT-27	2x13mm IMPACTCHECK PLASTERBOARD (OR EQUAL APP);	50	
	1x92mm STEEL STUD WITH INSULATION.		
	35mm TOP HAT;		
	1x9mm CEMINSEAL WALLBOARD (OR EQUAL APP)		
WT-28	2x16mm FYRCHEK PLASTERBOARD (OR EQUAL APP);	< 35	Overall partition R _w rating will depend on structure and presence of insulation
	1x92mm STEEL STUD WITH INSULATION.		
	60mm CAVITY TYPICAL		
WT-29 AL	ALUMINIUM PANEL;	< 20	Overall partition R _w rating will
	35mm TOP HAT;		depend on structure and presence of insulation
	1x92mm STEEL STUD		
WT-33	9mm CEMINSEAL WALLBOARD (OR EQUAL APP);	46	

Partition Type	Partition Construction	Estimated R _w Rating	Comment
	1x92mm STEEL STUD WITH INSULATION;		
	9mm CEMINSEAL WALLBOARD (OR EQUAL APP)		
WT-34	1x9mm CFC CLADDING PANEL (OR EQUAL APP);	49	
	1x92mm STEEL STUD WITH R2.8 INSULATION;		
	1x9mm CFC CLADDING PANEL (OR EQUAL APP		
WT-35	2x13mm FYRCHEK PLASTERBOARD (OR EQUAL APP);	55	
	1x92mm STEEL STUD WITH INSULATION.		
	35mm TOP HAT;		
	2x13mm FYRCHEK PLASTERBOARD (OR EQUAL APP);		

Notes:

- 13 mm impact-rated plasterboard is to have a minimum density of 10.3 kg/m²
- 9 mm fibre cement sheet is to have a minimum density of 13.5 kg/m²

Review of Set-out Plans

Documented partition types achieve the required acoustic separation requirements.

Door Construction

The typical construction required for the door used in the Cannington Station is presented in Table 22.

TABLE 22 DOOR TYPE SCHEDULE ACOUSTIC REVIEW

Estimated R _w Rating	Door Construction	Comment
< 25	Solid Core Door	
	40mm thick	
	No seals	
25	Solid Core Door	No louvres / grilles where acoustic rating required
	Minimum 40mm thick	
	Weather seals	
32	Solid Core Door	No louvres / grilles where acoustic rating required
	Minimum 40mm thick	
	Acoustic / weather / smoke seals	

Estimated R _w Rating	Door Construction	Comment
	OR	-
	Glass Door	
	Minimum 10.38mm laminated glazing	
	Acoustic / weather / smoke seals	
-	Metal Louvred Door	R _w controlled by louvres
-	Metal Mesh/Grille Door	R _w controlled by mesh/grilles

Review of Door Schedule

Documented door types achieve the required acoustic separation requirements.

5.8 Occupational Safety and Health

The predicted noise levels in all enclosed spaces, platform and concourse areas of the Cannington Station shown in Sections 5.3 and **Error! Reference source not found.** achieve the relevant noise criteria. All of these criteria are below the $L_{Aeq, 8h}$ 85 dB(A) criterion of the OSHR. Therefore, the OSHR criteria are achieved.