ANSTEY PARK STRUCTURE PLAN

AMENDMENT No.1

SPN/0876M-1

ENDORSEMENT PAGE

This structure plan is prepared under the provisions of the City of Rockingham Local Planning Scheme No. 2 and the *Planning and Development (Local Planning Schemes)*Regulations 2015 (as amended).

IT IS CERTIFIED THAT THIS STRUCTURE PLAN WAS APPROVED BY RESOLUTION OF THE WESTERN AUSTRALIAN PLANNING COMMISSION ON:

22 April 2002

In accordance with Schedule 2, Part 4, Clause 28 (2) and refer to Part 1, 2. (b) of the *Planning and Development (Local Planning Schemes) Regulations 2015.*

Date of Expiry: 19 October 2035

Table of Amendments

Amendment No.	Summary	Date approved by the WAPC
1	 Relocate the northern public open space (POS) area on Lots 35 and 36 Surf Drive, Secret Harbour to the southwest corner (near the intersection of Surf Drive and Warnbro Sound Avenue); Modify the density code from R20 to R30 for lots adjacent to the repositioned POS area; and Modify the density code from R30 to R20 for all other lots. 	03 September 2024

Executive Summary

The Structure Plan guides the subdivision and development of the land generally bounded by Warnbro Sound Avenue, Anstey Road, Mandurah Road and Kimberly Drive, Secret Harbour (referred to as the Anstey Park Structure Plan). The Structure Plan is approximately 130 hectares is area and located within the City of Rockingham.

The Anstrey Park Structure Plan was originally approved by the Western Australian Planning Commission (WAPC) on 22 April 2002.

Amendment No. 1 to the Structure Plan relates to Lots 35 and 36 being the land bound by Warnbro Sound Avenue to the west, Surf Drive to the south, Kimberly Drive (extension) to the north and established residential dwellings to the east. The area of Lots 35 and 36 is 8.0659 hectares.

The purpose of the amendment is to relocate the northern public open space (POS) area on Lots 35 and 36 to the southwest corner (near the intersection of Surf Drive and Warnbro Sound Avenue). As a result of the relocation of the POS, the lots adjacent to the new POS location has an increased density code from R20 to R30 with the lots adjacent to and comprising the old POS location having a density code of R20.

The relocation is required as the current location of the POS is on the highest point of the site which will require significant earthworks. The current location is not practical due to the required earthworks and a drainage network discharging into the stormwater basin contained within the POS. Amending the location will greatly reduce the volume of earthworks and tie-into the area with the surrounding road network.

The resultant estimated development on Lots 35 and 36 is:

- 99 R20 lots.
- 14 R30 lots.
- 6265m² of local open space.

Contents

Record of Endorsement		List of Figures
Table of Amendments		Figure 1 - Anstey Park LSP Aerial Photograph
Executive Summary	iii	Figure 2 - Anstey Park Approved LSP Extract Figure 3 - Subdivision Concept Plan
Contents	iv	
Part 1 Implementation	1	
Structure Plan Area and Operation	1	
2. Purpose	1	
2.1 Amendment No.1	1	
3. Staging	1	
4. Subdivision and Development Requirements	1	
4.1 Land Use zones and reserves	1	
4.2 Public Open Space	1	
4.3 Density and Development	2	
4.4 Other Requirements	3	
4.4.1 Notifications on Title	3	
4.4.2 ATCA Trigger Distances	3	
4.4.3 Developer Contributions	3	
5. Additional Details	3	
5.1 Information to be submitted	3	
5.2 Studies to be required	4	
Part 2 Explanatory	5	
1. Introduction	5	
2. Planning Framework	7	
3. Amendment Proposal	7	
4. Planning Considerations	8	
5. Conclusion	10	
Appendix A		

Local Water Management Strategy

Appendix B

POS Concept Plan

Appendix C

POS Areas Map

Part 1 Implementation

1. Structure Plan Area and Operation

The structure plan applies to land generally bounded by Warnbro Sound Avenue, Anstey Road, Mandurah Road and Kimberly Drive, Secret Harbour being the area outlined on the Structure Plan Map (**Plan1**).

The structure plan is identified as the Anstey Park Structure Plan.

The Anstrey Park Structure Plan was originally approved by the Western Australian Planning Commission (WAPC) on 22 April 2002.

Pursuant to *Planning and Development (Local Planning Schemes) Regulations 2015*, Schedule 2, Part 4, clause 28(4) the Structure Plan is taken to have been approved on 19 October 2015 by the Western Australian Planning Commission for a period of 10 years.

2. Purpose

The Structure Plan has been prepared to guide the future subdivision and development of the area.

2.1. Amendment No.1

The purpose of Amendment No.1 to the Structure Plan is to:

- Relocate the northern public open space (POS) area on Lots 35 and 36 Surf Drive, Secret Harbour to the southwest corner (near the intersection of Surf Drive and Warnbro Sound Avenue):
- · Modify the density code from R20 to R30 for lots adjacent to the repositioned POS area; and
- Modify the density code to from R30 to R20 for all other lots.

3. Staging

The Structure Plan is substantially completed, except for Lots 35, 36, 9613 and 9614 Surf Drive, and Lot 431 Warnbro Sound Avenue, Secret Harbour.

4. Subdivision and development requirements

4.1. Land use zones and reserves

Plan 1 designates proposed zones and reserves in the Structure Plan area.

4.2. Public Open Space

Public open space is to be provided in accordance with Plan 1 and Table 1.

Table 1: Public Open Space Schedule

Site Area			124.727 ha
Deductions			
Wetland (non creditable POS area)		0.0616 ha	
Commercial		0.5 ha	
Community Purpose		0.3 ha	
Total deductions		0.8616 ha	
Gross Subdivisible area			123.865 ha
Public open space @ 10 per cent			12.386 ha
May Comprise			
- minimum 80% unrestricted POS		9.9088 ha	
- maximum 20% restricted use POS		2.4772 ha	
Public Open Space Provided			
POS Area #	Open Space Area (Net)	50% Credit Drainage *	Net POS + 50% drainage
1	0.6265 ha	0.0784 ha	0.5482 ha
2	1.2111 ha	0.0000 ha	0.7392 ha
3	0.4516 ha	0.0553 ha	0.3963 ha
4	2.7333 ha	0.1742 ha	2.5592 ha
5	0.5113 ha	0.0113 ha	0.5001 ha
6	0.7226 ha	0.0192 ha	0.7034 ha
7	0.2938 ha	0.0000 ha	0.2938 ha
8	3.0590 ha	0.0250 ha	3.0340 ha
9	0.8127 ha	0.0416 ha	0.7711 ha
10	0.9000 ha	0.0935 ha	0.8066 ha
11	1.4475 ha	0.0000 ha	1.4475 ha
12	0.6557 ha	0.0682 ha	0.5876 ha
Sub-Total	13.4251 ha	0.5665 ha	12.3868 ha
Total Public Open Space Provision			12.3868 ha (10%)

Note:

4.3. Density and Development

Plan 1 designates the R-Codes applicable to subdivision and development in the Structure Plan area.

Residential densities vary from R5 to R40. Higher density areas (R30 and R40) are generally located close to POS areas and the commercial sites, whilst R5 density areas are proposed along the Mandurah Road interface.

^{*} A 50 per cent POS credit for 'dry' drainage basins and a 25 per cent credit for drainage lakes variation was accepted by the City/WAPC in the assessment of the approved Structure Plan.

4.4. Other Requirements

4.4.1. Notifications on Title

In respect of an application(s) for subdivision approval, the WAPC may, as a condition of subdivision approval require a notification, pursuant to Section 165 of the Planning and Development Act 2005, be placed on the Certificate(s) of Title:

For all lots with a Bushfire Attack Level (BAL) rating of 12.5 or above advising the existence of a
hazard or other factor: "This land is within a bushfire prone area as designated by an Order made by
the Fire and Emergency Services Commissioner and is/ may be subject to a Bushfire Management
Plan. Additional planning and building requirements may apply to development on this land."

4.4.2. ATCO Trigger Distance

The Structure Plan area falls within the ATCO trigger distance under WAPC's draft Development Control Policy 4.3 – Planning for High-Pressure Gas Pipelines (DC 4.3).

Pursuant to draft DC 4.3 consultation with the pipeline owner/operator to define setbacks and/or identify risk mitigation measures (if any) may be required at later stages of the planning process.

4.4.3. Developer Contributions

The Structure Plan area falls within City of Rockingham Local Planning Scheme No. 2 Development Contribution Area No. 1. Developer contributions are applicable at the subdivision and/or development approval stage.

The structure plan applies to land generally bounded by Warnbro Sound Avenue, Anstey Road, Mandurah Road and Kimberly Drive, Secret harbour being the area outlined in the Structure Plan Map (**Plan1**).


5. Additional Details

5.1. Information to be submitted with an application:

Additional Information / purpose	Approval stage	Responsible agency (consultation required)
Bushfire Management Plan	Subdivision	City of Rockingham Department of Fire and Emergency Services
Evidence of consultation with relevant pipeline owner/operator (if required)	Subdivision	ATCO Gas

5.2. Studies to be required under condition of subdivision/development approval.

Conditions of subdivision approval	Responsible agency
Urban Water Management Plan	City of Rockingham
	Department of Water and Environmental Regulation
Landscape Plan	City of Rockingham
Unexploded Ordnance (UXO) assessment survey (if required)	Department of Fire and Emergency Services

Part 2 - Explanatory Report

1. Introduction

Anstey Park is located within the suburb of Secret Harbour. The structure plan is the overarching framework guiding the development of the residential estate known as Anstey Park.

The LSP supports residential development which is now substantially completed with the exception of the lots the subject of this amendment (Lots 35 and 36 indicated in blue in Figure 1 below) and some smaller lots along Surf Drive (refer to Figure 1 below). The LSP provides for a range of densities from R5 to R40, an established local centre and established and planned areas of open space.

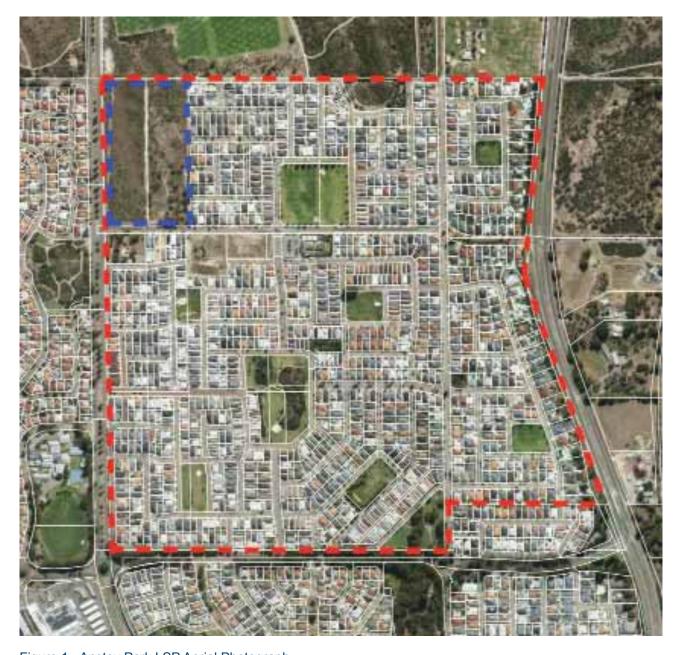


Figure 1 - Anstey Park LSP Aerial Photograph

The primary purpose of this amendment is to relocate the proposed public open space (POS) to be located in the northern Figure 1 - Anstey Park LSP Aerial Photograph portion of Lots 35 and 36 to the southern portion of Lot 35 and Lot 36 along Surf Drive. As a result of the relocation of POS, the R30 lots are also to be relocated to around the new location of the POS.

The relocation is required as the current location of the POS is on the highest point of the site which will require significant earthworks. The current location is not practical due to the required earthworks and a drainage network discharging into the stormwater basin contained within the POS. Amending the location will greatly reduce the volume of earthworks and tie-into the area with the surrounding road network.

The area of the POS between the current and proposed locations is generally the same with similar dimensions. Both locations have roads on all sides of the POS and the structure plan roads are not required to substantially change. The location change is approximately 225 metres from the original location to the proposed location. The LSP Map has been amended to reflect the POS relocation and density code changes associated with the amendment.

This Amendment Report explains and justifies the amendments to the LSP Map. It does not replace the previous Explanatory Report, rather it forms an addendum and is supplementary to the previous Explanatory Report.

The following technical appendices have been prepared in support of this LSP amendment and are appended in full:

· Appendix A: Local Water Management Strategy; and

Appendix B: POS Concept Plan.

Appendix C: POS Areas Map

1.1 Ownership

The land the subject of the amendment is owned by A&R investments Pty Ltd, Kingalup Pty Ltd and A Nominees Pty Ltd. The amendment does not affect any lot currently held in third party ownership other than Lots 35 and 36.

6

2. Planning Framework

The LSP area is zoned 'Urban' under the Metropolitan Region Scheme.

The LSP area is zoned 'Development' under the City of Rockingham Local Planning Scheme No.2. The purpose of the 'Development' zone is:

- 1. To identify areas requiring comprehensive planning prior to subdivision and development.
- 2. To coordinate subdivision, land use and development in areas requiring comprehensive planning.

The Anstey Park Structure Plan, formally known as the Anstey Park Comprehensive Development Plan, was originally approved by the Western Australian Planning Commission (WAPC) on 22 April 2002. The LSP is substantially completed with the exception of the lots the subject of this amendment and some smaller lots along Surf Drive.

The LSP provides for a range of densities from R5 to R40, an established local centre and established and planned areas of public open space.

3. Amendment Proposal

The primary purpose of this amendment is to relocate the public open space (POS) located in the northern portion of Lots 35 and 36 to the southern portion of Lot 35 along Surf Drive. As a result of the relocation of POS the R30 lots are also to be relocated to around the new location of the POS.

The Figure 2 provides the approved LSP as it relates to the site (extract).

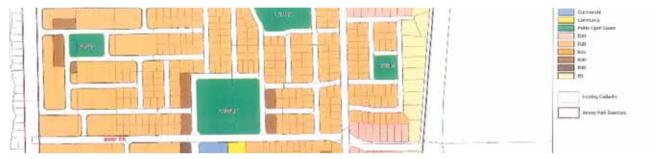


Figure 2 - Anstey Park Approved LSP Extract

The following Subdivision Concept Plan has been prepared in support of the amendment, showing the proposed changes.

Figure 3 - Subdivision Concept Plan

The relocation is required as the current location of the POS is on the highest point of the site which will require significant earthworks. The current location is not practical due to the required earthworks and a drainage network discharging into the stormwater basin contained within the POS. Amending the location will greatly reduce the volume of earthworks and tie-into the area with the surrounding road network.

4. Planning Considerations

4.1 Residential Density and Dwelling Yield

The amendment retains the existing residential density of R20 and R30 and generally the same dwelling yield noting that the R30 lots are to be relocated around the new location of the POS. This is consistent with the existing LSP.

4.2 Public Open Space

The amendment relocates the POS proposed to be located in the northern portion of Lots 35 and 36 to the southern portion of Lot 35 and Lot 36 along Surf Drive.

The proposed POS:

Has the same size.

- · Has similar length and depth dimensions.
- · Is surrounded on all 4 sides by roads.
- Enables the R30 to more appropriately front the POS.
- Is within 225 metres of the approved POS, which provides that the majority of residents are within 300-400 metres of POS.

The proposed relocation of the POS has no impact on the provision of POS or the ability to access the POS.

4.3 Movement Network

There is generally no change to the movement network as the POS relocation is within the existing road network.

4.4 Bushfire Considerations

The subject site is identified as being in a bushfire prone location which triggers the bushfire planning requirements under State Planning Policy 3.7 Planning in Bushfire Prone Areas.

'The proposed amendment does not intensify the proposed land use and/or impact the bushfire considerations of the approved Structure Plan and will be addressed at subdivision stage.'

4.5 Unexploded Ordinance (UXO)

The lots may be impacted by unexploded ordinance which will be addressed at subdivision stage as the considerations of UXOs does not impact the structure plan design amendment.

4.6 Stormwater

The amendments are proposed to specifically address the drainage network. The approved location of the POS is on the highest point of the site and is not practical due to the required earthworks and a drainage network discharging into the stormwater basin contained within the POS. Amending the location will greatly reduce the volume of earthworks and tie-into the area with the surrounding road network.

4.7 Conditions of Subdivision

The following technical reports/ strategies are to be prepared and submitted as a condition of subdivision approval (where applicable):

- Urban Water Management Plan
- Bushfire Management Plan
- Landscaping Plan

5. Conclusion

The proposed amendments to the Anstey Park Local Structure Plan are proposed to address the drainage network by relocating the public open space (POS) located in the northern portion of Lots 35 and 36 to the southern portion of Lot 35 along Surf Drive.

The amendment has no impact on the size or dimensions of the POS, the residential density and dwelling yield or movement network as these matters are maintained as per the approved LSP.

The proposed dwellings on the subject site will still be within 400 metres of the POS.

The relocation of the POS has been proposed following further assessment and design of the drainage infrastructure required for the proposed subdivision of Amendment Area.

Amending the location of the POS to the corner of Surf Drive and Warnbro Sound Avenue reduces the volume of earthworks and allows the proposed development to tie into the levels of the surrounding road network to the east.

The relocation also decreases the future management and maintenance costs needed to meet the stormwater drainage requirements of discharging into the raised POS. Ensuring suitable development practices for the amendment area'.

Appendix A Local Water Management Strategy	

LOTS 35 AND 36 SURF DRIVE, ANSTEY PARK SECRET HARBOUR

Local Water Management Strategy

Prepared for Marchese Investments Pty Ltd

DOCUMENT CONTROL DATA

DIMA	David Wills and Associates Unit 1/9 Shields Crescent	Title	Local Water Management Strategy for Anstey Park, Secret Harbour
DARL	Booragoon WA 6158	Author	BC
David Wills and Associates Consulting Engineers	PO BOX 3084 Myaree WA 6158	Checked	AR
	Mydiee WA 0138	Approved	DW
	Tel: (08) 9424 0900 www.dwaconsulting.com.au	Synopsis	LWMS Amendment for Anstey Park, Secret Harbour

Reference:

14163.04

Client:

Revision Table

Ver	Description	Date	Authorised
A	Original	15/08/23	AR
В	Revision to Local Authority Comments	09/01/24	AR
С	Revision to WAPC Comments	11/07/24	BD
D			

Distribution Table

Date	Version	Distribution
15/08/23	A	City of Rockingham
09/01/24	В	City of Rockingham
11/07/24	С	City of Rockingham, Western Australian Planning Commission
	D	

COPYRIGHT

© 2023 DWA Consulting Pty Ltd.

To the extent permitted by law, all rights are reserved and no part of these publications covered by copyright may be reproduced or copied in any form or by any means except with the written permission of DWA Consulting Pty Ltd

IMPORTANT DISCLAIMER

To the extent permitted by law, David Wills and Associates (including its employees) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this report (in part or in whole) and any information or material contained in them.

EXECUTIVE SUMMARY

Lots 35 and 36 Surf Drive, Secret Harbour are undeveloped and are part of an existing Anstey Park Structure Plan which indicates the location of the Public Open Space (POS) at one of the highest locations of the land holding of Lots 35 and 36 Surf Drive.

To reduce the overall earthworks, it is proposed to adjust the location of the proposed POS to a lower area of the catchment. This relocated POS will be in the same area as the originally proposed POS.

This Local Water Management Strategy (LWMS) has been prepared to address the requirements of amending the location of the POS. This report has been developed in accordance with:

- Western Australian Planning Commissions (WAPC) Better Urban Water Management Framework (WAPC 2008);
- The associated Planning Bulletin 92 Urban Water Management;
- The Department of Water Interim: Developing a Local Water Management Strategy (2008):
- City of Rockingham Planning Policy 1-8;
- City of Rockingham Planning Policy 3-4-1,
- City of Rockingham Planning Policy 3-4-3;
- Address all requirements of Appendix 1 of the Better Urban Water Management (WAPC, 2008); and
- Decision Process for Stormwater Management in WA (DWER, 2017).

The area has been assessed as an integrated water management approach with a specific focus on the effects of lowering the proposed stormwater basin bed.

- The existing ground level of the site varies between 4.50 mAHD and 10.9 mAHD;
- The soils expected are Tamala formation sands, these sands are medium-grained and have good drainage characteristics;
- Acid Sulphate Soil (ASS) risk maps classify the entire site as having no known risk;
- Groundwater underlying the site flows towards the Indian Ocean; and
- The site has historically been used as a naval artillery range.

Holistic water conservation measures are proposed, targeting specific water usage goals for irrigation (6,750 kL/ha/yr) and residential areas (100 kL/person/year, with a scheme water limit of 40-60 kL/person/year).

The development area will be fully serviced, with potable water and wastewater connections provided by the Water Corporation.

Stormwater management emphasizes quantity and quality control, maintaining existing hydrology by retaining surface flows and infiltrating runoff as close to the source as possible.

Specifics for Lots 35 and 36 Surf Drive include:

- Total area of approximately 80,700m²;
- Retention of minor storm events within proposed residential lots;
- Treatment of road reserve and Public Open Space rainfall in a gross pollutant trap and bio-filtration area;
- Installation of a basin surrounding the bio-filtration area to contain major storm events (1 in 100 year) for the entire development area.

The proposed stormwater basin, with a base area of 637m², is designed to pool to a maximum depth of 0.7m during the 1% Annual Exceedance Probability storm event.

Groundwater monitoring indicates a generous separation of groundwater levels from the proposed base of the stormwater basin. The modelled 1% Annual Exceedance Probability storm event is at 5.4m AHD, ensuring a safe freeboard to the Final Floor Level (FFL) of all residential buildings.

The table below summarises the required and provided stormwater volumes for the critical 1% AEP (1in 100 years) storm event

Stormwater Summary Table: 1% AEP Stormwater Requirement

Location	Weighted Runoff Coefficient (C)	Catchment Area (m ²)	Required Storage for a 1% AEP event (m³)	Storage Provided (m ³)
Total Site Catchment Area	0.47	80,700	1,380.8	1,513.9

This LWMS outlines a detailed plan for water management, addressing the relocation of the POS and ensuring sustainable development practices for Lots 35 and 36 Surf Drive in Secret Harbour.

TABLE OF CONTENTS

EX	ECUTIVE SUMMARY	0
1	INTRODUCTION	1
1.1	Background	1
1.2	Purpose	
1.3	1	
2	PRE-DEVELOPED CONDITIONS	4
2.1	Site Conditions	4
2.2	Geotechnical	4
2.3	Environmental	6
2.4		
2.5		
3	WATER SUSTAINABILITY	9
3.1	Service Connections	9
3.2	Stormwater Approach	9
4	STORMWATER MANAGEMENT STRATEGY	10
4.1	Design Criteria	
4.2	Design Approach	10
4.3	Preliminary Grading Design	11
4.4	Stormwater Storage Volumes	11
5	CONCEPT LANDSCAPING	13
5.1	Irrigation Requirements	13
6	WATER CONSERVATION MEASURES	14
6.1	Water-Efficient Fixtures and Appliances	14
6.2		
6.3	Non-Structural Stormwater Management Measures	15
7	FUTURE MONITORING AND IMPLEMENTATION	15
7.1	Funding	15
7.2		
7.3	Condition Monitoring	15
8	IMPLEMENTATION	16
8.1	Roles and Responsibility	16
8.2	Review	16
9	CONCLUSIONS	17

APPENDIX A: FEATURE AND CONTOUR SURVEY OF LOTS 35 AND 36 SURF DRIVE
APPENDIX B: GEOTECHNICAL REPORTB
APPENDIX C: WORLEY PARSONS, ANSTEY PARK COMPREHENSIVE DEVELOPMENT PLAN APPENDIX 2 – STORMWATER DRAINAGEC
APPENDIX D: STORMWATER CALCULATIONSD
APPENDIX E: DWA DRAWINGS SETE
APPENDIX F: TDL LANDSCAPING PLANSF
APPENDIX G: COMPLETED CHECKLIST FROM APPENDIX 1 OF BETTER URBAN WATER MANAGEMENT (WAPC, 2008)
TABLE OF FIGURES
Figure 1: Anstey Park Aerial Overview
Figure 2: Existing Plan for Lots 35 and 36 Surf Drive2
Figure 3: Proposed Amended Plan for Lots 35 and 36 Surf Drive3
Figure 4: Soil Mapping (Courtesy of the Department of Mines, Industry Regulations and
Safety)5
Figure 5: Acid Sulphate Soils Mapping, (Courtesy of Geoscience Australia, 2023) 6
Figure 6: Unexploded Ordinance Risk Mapping, (Courtesy of the Australian Government
of Defence, 2023)7
Figure 7: Groundwater Monitoring Bores, (Courtesy of the Western Australian
Department of Water, 2023)8

1 INTRODUCTION

Lots 35 and 36 Surf Drive, Secret Harbour are undeveloped and are part of an existing Structure Plan which indicates the location of the Public Open Space (POS) at one of the highest locations of the land holding.

Marchese Investments, the owners of Lots 35 and 36 Surf Drive, however they wish to confirm and set aside the location of the POS. After discussions with the City of Rockingham, it is now proposed to relocate this POS to a low-lying area of the site.

1.1 Background

Anstey Park is located in the City of Rockingham in the suburb of Secret Harbour. The area is bounded by Anstey Road, Mandurah Road, Warnbro Sound Avenue and Kimberley Drive. The original Anstey Park Structure Plan was completed in December 2009 with a minor amendment occurring in June 2011. Anstey Park is approximately 130 hectares and contains Lots 35 and 36 Surf Drive which have an area of approximately 8 hectares.

These lots are proposed to be subdivided into R20 lots and R30 lots. As defined in the Western Australian State Planning Policy 7.3, R20 lots are required to have an average size of 450m^2 , with a minimum single lot size of 350m^2 whilst R30 lots are required to have an average size of 300m^2 , and a minimum single lot size of 260m^2 .

A development plan titled "Anstey Park Comprehensive Development Plan Cost Contributions Report" was previously undertaken by Worley Parsons in 2006. The stormwater drainage information of that report is attached in Appendix C of this report. There is no previous Local Water Management Strategy for the Structure Plan area.

Construction of Anstey Park is mostly complete, with only a few areas of subdivisions remaining to be developed. The final major subdivision is Lots 35 and 36 Surf Drive, located in the northwest corner of the area. An aerial image of the overall Anstey Park is shown below.

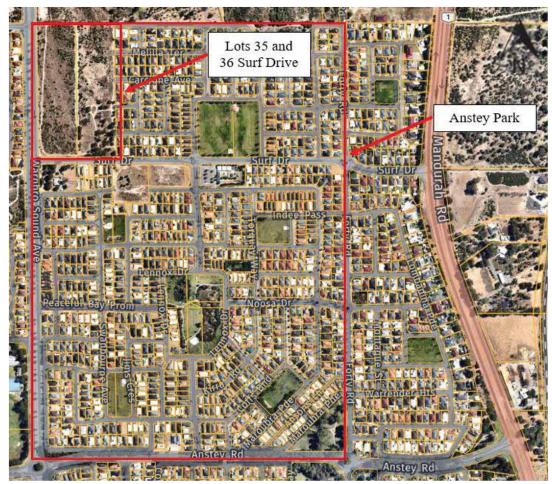


Figure 1: Anstey Park Aerial Overview (Courtesy of Nearmaps, April 2023)

Revised planning for the subdivision of Lots 35 and 36 Surf Drive has commenced, with a review of the proposed location of the POS. It is proposed to move the location of the Public Open Space from the original location shown in Figure 2 to the proposed location shown in Figure 3.

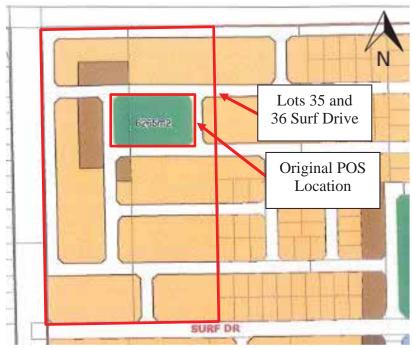


Figure 2: Existing Plan for Lots 35 and 36 Surf Drive

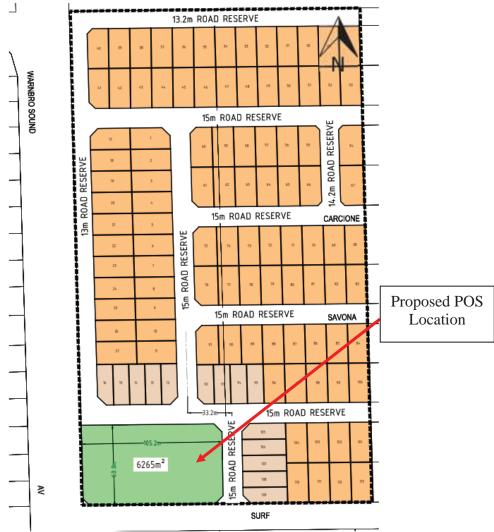


Figure 3: Proposed Amended Plan for Lots 35 and 36 Surf Drive

The proposed POS dimensions are similar to the original POS dimensions. with relocation proposed to reduce the total volume of earthworks required, to minimise the need for large retaining walls and to allow smooth transition into the already established road reserves.

The original location of the POS was proposed at the highest point of the site which is highly impractical due to the need of the required drainage network to discharge flows downhill via gravity into the stormwater basin contained within the POS.

Changing the location of the POS will lower the ground level of the proposed POS location from approximately 7m AHD to 5m AHD. This shall greatly reduce the volume of earthworks required to tie in the area with the surrounding road network.

1.2 Purpose

This Local Water Management Strategy (LWMS) focuses on Lots 35 and 36 Surf Drive, Secret Harbour only and address the requirements of and shall be in accordance with:

- Western Australian Planning Commissions (WAPC) Better Urban Water Management Framework (WAPC 2008);
- *The associated Planning Bulletin 92 Urban Water Management;*
- The Department of Water Interim: Developing a Local Water Management Strategy (2008);
- City of Rockingham Planning Policy 1-8;

- *City of Rockingham Planning Policy 3-4-1,*
- *City of Rockingham Planning Policy 3-4-3;*
- Adress all requirements of Appendix 1 of the Better Urban Water Management (WAPC, 2008); and
- Decision Process for Stormwater Management in WA (DWER, 2017).

Other documents that are relevant to the LWMS are:

- Australian Runoff Quality (Engineers Australia, 2006,)
- Australian Rainfall and Runoff (Engineers Australia, 2019); and
- Adoption Guidelines for Stormwater Biofiltration Systems (CRCWSC, 2015).

1.3 LWMS Objectives

This LWMS is to address the requirements of an LWMS as defined by the Department of Water and Environmental Regulation (DWER).

The key points addressed are listed below.

- Provide integration with the planning processes,
- Minimise public risk; and
- Protect infrastructure and assets from flooding and inundation.

The following storm events will be modelled and assessed in order to achieve the above requirements.

- Small Storm Event the first 15mm of rainfall inside the catchment;
- Minor Storm Event the 20% AEP (1 in 5 year) storm event of critical duration; and
- Major Storm Event the 1% AEP (1 in 100 year) storm event of critical duration.

2 PRE-DEVELOPED CONDITIONS

2.1 Site Conditions

The site currently consists of remnant shrubland and appears to have been cleared many years ago. A detailed feature and contour survey on Lots 35 and 36 Surf Drive was undertaken in 2015 by Guidice Surveys – a high-resolution copy is attached in Appendix A. The natural surface of the site falls to the south-west, by approximately 4.5m.

At the boundary between Lot 36 and the existing developed area immediately to the east, there is existing natural ridge line. This results in Lots 35 and 36 becoming a trapped low point as stormwater cannot flow overland outside of the catchment. Because of this, it is imperative that the proposed stormwater system can contain a 1 in 100 year storm event and provide adequate storage to protect infrastructure.

2.2 Geotechnical

A detailed geotechnical report was completed by Brown Geotechnical for the nearby Dolly Link subdivision area in March 2023. This location is immediately southeast of the site and there is less than 300m from the centre of Dolly Link to the centre of Lots 35 and 36 Surf Drive.

At Dolly Link, medium-grained sand was encountered in all test holes to at least 2m depth. The sand is medium dense to dense, becoming very dense below about 1m. The sands have been identified as Tamala Formation and have good drainage characteristics. A full copy of the geotechnical report is attached in Appendix B.

The previous geotechnical report has been compared against soil mapping data. From mapping provided by the Western Australian Department of Mines, Industry Regulations and Safety, the site soils are classed as Warnbro Group Sands. These sands consist of Interbedded sandstone, siltstone, and shale, with minor conglomerate. This classified the site as a Class A site as defined by AS 2870 – Residential Slabs and Footings. An extract of the soil mapping is attached below in Figure 4 with the Site and location of the previous geotechnical report annotated.

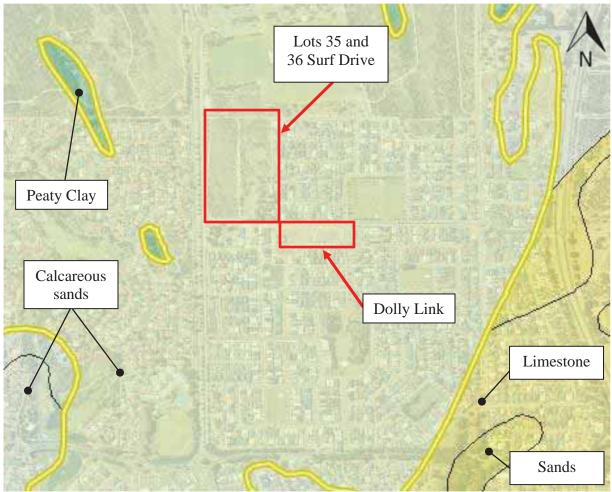


Figure 4: Soil Mapping (Courtesy of the Department of Mines, Industry Regulations and Safety)

Legend:

Pale Blue - Calcareous Sands - white medium-grained

Green - Peaty Clay

Yellow - Sand - pale and olive-yellow medium to coarse-grained

Pale Yellow - Limestone- pale yellow-brown fine-grained angular and medium-grained rounded

A site-specific geotechnical investigation will be undertaken at the subdivision design stage but due to the previous designs carried out in the surrounding area, it is not anticipated that there will be a requirement to modify this Local Water Management Strategy.

Mapping of the relevant area and surrounds has been undertaken from Acid Sulphate Soils data provided by Geoscience Australia. Lots 35 and 36 Surf Drive are in an area with "an extremely low probability of occurrence". There are a few small pockets beyond the site to the North and the West with a "high probability of occurrence". This is shown in Figure 5 below.

There is no significant risk of Acid Sulphate Soils.

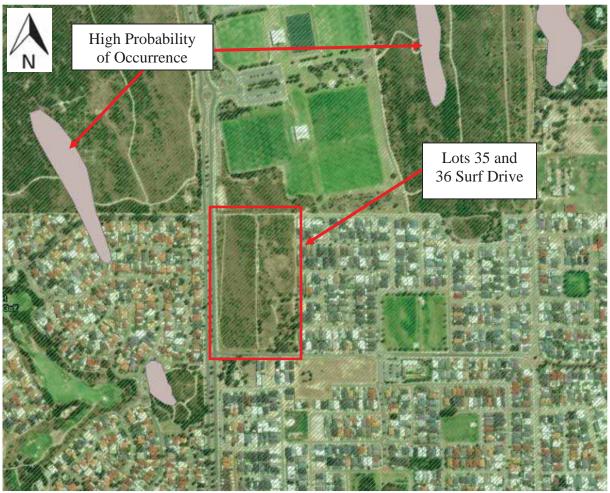


Figure 5: Acid Sulphate Soils Mapping, (Courtesy of Geoscience Australia, 2023)

2.3 Environmental

Flora in the area is low shrub. No waterways or wetlands have been identified within the area of the future subdivision.

In the 1940's, the area was used regularly as a naval artillery range, resulting in severe unexploded ordnance (UXO) contamination. Neighbouring lots that were recently subdivided encountered UXO's.

The area is classified as a "Substantial Potential" Risk by the Australian Government Department of Defence, which is the most extreme classification. To allow for development, 100% of the site is required to have a UXO search after completely devegetating or mulching the site. The search is to be performed in 3m layers, and the extent will depend upon the ultimate earthworks and services design.

An overview of the UXO risk mapping from the Department of Defence is attached below in Figure 6.

Figure 6: Unexploded Ordnance Risk Mapping, (Courtesy of the Australian Government of Defence, 2023)

2.4 Groundwater

The existing ground level of the site varies between 4.50 mAHD and 10.9 mAHD.

An estimate of the groundwater levels has been obtained from nearby, groundwater monitoring bores and data available from the Department of Water and Environmental Regulations (DWER) groundwater mapping.

The groundwater table recorded at nearby groundwater monitoring bores, based on the Department of Water and Environmental Regulations groundwater mapping, has been summarised in Table 1 below.

Table 1: Nearby Groundwater Monitoring Bores (Data provided by DWER, 2023)

Bore Name	Maximum Groundwater level (mAHD)	Year of Maximum Groundwater	Direction and Distance to Proposed Development (km)
61407115	2.8	2023	Southeast - 1.5
61410030	2.9	1981	South - 1.0
61410050	2.7	2004	Northeast - 3.0
61410280	3.4	1986	North - 2.3

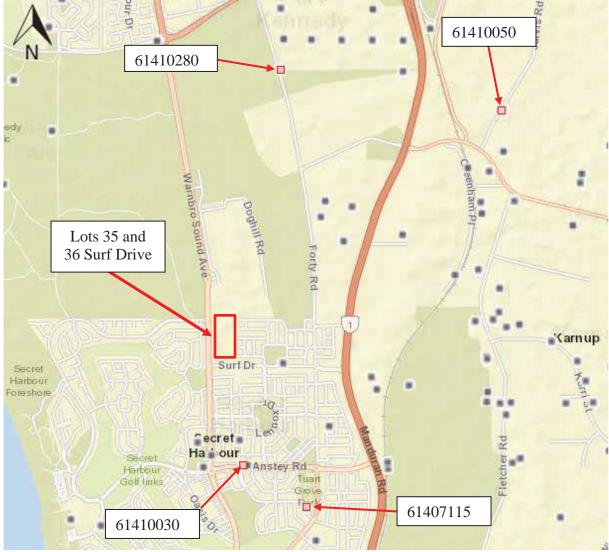


Figure 7: Groundwater Monitoring Bores, (Courtesy of the Western Australian Department of Water, 2023)

The majority of sites with groundwater monitoring data are to the north of the site. The average groundwater level of the nearby bores is approximately 2.95m AHD. A conservative value of 3.2m AHD will be used for the initial design. As the development area is between areas of existing development where groundwater issues have not been reported, groundwater is not expected to be a concern.

The proposed finished lot level of the development is anticipated to range from 6.1m AHD to approximately 9.0m AHD.

The lowest Finished Floor Level of a residential dwelling is expected to be at approximately 6.2m AHD. This is to be confirmed at the detailed design stage but provides a generous separation from all dwellings to the maximum historical groundwater level.

The proposed base of the stormwater basin inside the POS is 4.7 mAHD. This level allows for the basin to effectively collect stormwater runoff from the development and infiltrate into the sandy soils.

The design ensures that the minimum separation between the groundwater and the finished lot level is greater than 3.0m. Because of the expected groundwater separation, there is no requirement for the importation of fill as specified by the City of Rockingham in their Urban

Water Management Planning Policy. This is a generous separation to the groundwater level and hydraulically adequate.

Further increasing the separation between the groundwater level and the finished surface level of the POS will require lifting a large percentage of the site, resulting in a significant increase of the earthworks cost with no practical benefit due to the current generous separation to the groundwater.

Site specific groundwater levels should be measured and included in the future Urban Water Management Plan (UWMP) during the detailed design phase.

2.5 Earthworks

Projected earthworks for the site are expected to be minor. The new location of the proposed Public Open Space (POS) allows for the proposed lots to integrate with the existing contours of the site allowing the development to effectively tie in with the already developed areas surrounding the site.

Due to the minor scale of the development, the small amount of earthworks expected to be required and the proximity of the site to the coast, it is expected that groundwater levels will not be impacted by the development.

A comprehensive assessment of earthworks, including detailed site grading and level specifications, will be conducted during the detailed design stage of the project to ensure precise planning and execution.

3 WATER SUSTAINABILITY

3.1 Service Connections

At the time of subdivision, the requirements of the relevant Statutory Authorities will be met, encompassing elements such as water supply and wastewater disposal.

The development area shall be a fully serviced subdivision and potable water connections and waste water connections shall be supplied by the Water Corporation.

In collaboration with the Water Corporation, arrangements will be made to secure and guarantee the presence of a suitable water supply, and sewerage services for the proposed lots.

3.2 Stormwater Approach

Stormwater generated within the proposed residential lots will be retained and infiltrated at the source. Residential lots less than 350m², are required to manage the first 15mm of rainfall on site. Residential lots greater than 350m² are required to manage the 20% AEP storm event of critical duration on site. All residential lots are proposed to use soakwells installed inside the property to manage the required stormwater disposal.

For storms beyond the specified above, excess stormwater will overland flow from the residential lots into the road reserves and ultimately flow towards the infiltration basin inside the Public Open Space.

Minor rainfall that lands within the road reserves and Public Open Space will flow into the proposed basin inside the Public Open Space. This basin is sized to allow for the surcharge flow up to the critical duration of 1% AEP storm event over the entire development area.

A landscaping plan for the POS has been produced by Tim Davies Landscaping. It is attached in Appendix F.

4 STORMWATER MANAGEMENT STRATEGY

4.1 Design Criteria

The stormwater management strategy for the proposed developed area is to:

- Provide a high degree of water quality treatment for the initial 15mm of rainfall;
- Manage the storage and retention of the 1 in 5 year AEP storm event;
- Provide peak flow rates, detention areas and expected Top Water Levels for the 1 in 100 year storm event;
- Ensure 80% of the POS is reserved for active and passive recreation purposes as defined in the Liveable Neighbourhoods (2007) for the 1 in 100 year storm event; and
- Provide a minimum of 500mm freeboard from the 1 in 100 year flood level to the minimum Finished Floor Level (FFL).
- Amended soils with a PRI of at least 15, will be installed to a minimum depth of 300mm inside the bioretention area.

4.2 Design Approach

Storm events landing in the catchment will be infiltrated at source, or directed towards the proposed stormwater system in the POS. As specified by the City of Rockingham, all residential lots >350m² must support the 20% AEP storm event and lots <350m² must support the first 15mm of rainfall. These residential lots account for approximately 52,635m² of the total subdivision area of 80,700m².

Rainfall from the road reserve area will be directed to the compensating basin via the proposed pit and pipe stormwater system. Well liners are proposed to be installed inside the road reserve and will accommodate the 1 in 5 year storm event of critical duration. The pit and pipe system in the road reserve will be sized to accommodate the peak flow generated by the 1 in 5 year storm event. Stormwater volumes beyond this will flow through the underground stormwater network installed within road reserves towards the proposed compensating basin inside the POS.

The stormwater from the pit and pipe system inside the road reserves will be designed to discharge at a 1800mm diameter bubble-up pit with a silt trap located in a bioretention basin at the base of the proposed compensating basin in the POS.

The bio-retention basin has been sized to contain the 20% AEP storm event of critical duration rather than the initial 15mm of rainfall. This is a conservative approach compared to the initial 15mm of rainfall and is a rule of thumb to easily approximate the 1 in 1 year, 1 hour long storm event. Assessing the critical duration 20% AEP storm event will provide significantly greater storage requirements when compared to the 1 in 1 year, 1 hour long storm event.

For storm events beyond the 20% AEP and up to the 1% AEP storm event of critical duration, the bio-retention area will fill and the stormwater will pool inside the proposed stormwater basin.

The biofiltration basin is required to be designed and constructed in accordance with the Adoption Guidelines for Stormwater Biofiltration Systems (CRCWSC, 2015). To meet these requirements, it is recommended that robust sedges and rushes are planted inside the bioretention area. These plant species are to be planted at a density of approximately 6-10 plant/m² to provide adequate filtration.

Soils in the biofiltration area shall consist of amended soils with a Phosphorus Retention Index (PRI) of 15 or greater. These amended soils shall be a minimum of 300mm thick and cover the entire bioretention area.

The total stormwater basin inside the POS is to be sized for the 1% AEP storm event. This includes the surcharge flow generated by the 1% AEP storm event inside the road reserve areas and all lots inside the subdivision.

The POS will make up 10% of the total development area, with 80% of the POS (or 8% of the total development area) reserved for active and passive recreational purposes. To achieve the necessary stormwater storage volume within the available area, a concept detail of the stormwater system is attached in the drawing set provided in Appendix E. Calculations of the required basin size to contain the critical duration 1% AEP storm event are attached in Appendix D.

Due to the location of the basin, it is proposed that the banks be graded at 1 in 6 or flatter to ensure that public safety is not compromised. The area is to be grassed, reducing the risk of long-term erosion of the basin side slopes.

4.3 Preliminary Grading Design

A concept grading of the proposed POS has been undertaken by David Wills and Associates, including grading of the proposed stormwater compensating basin area. Based on the calculations undertaken, a Top Water Level of 5.7m AHD inside the basin is expected for the 1% AEP storm event.

Assuming a 3% crossfall and a 1% longitudinal fall for the road network, the maximum 1% AEP depth of flow is approximately 0.1m. This is required to be confirmed during the detailed design and will change with the final location of the stormwater pits inside the road network.

This design provides a minimum 0.5m separation between the 1 in 100 year maximum water level inside the stormwater basin and all existing and proposed dwellings as well as protection of all houses from stormwater flowing through the road network. The top water level is required to be confirmed during the detailed design stage.

4.4 Stormwater Storage Volumes

Stormwater storage requirements for Lots 35 and 36 Surf Drive have been assessed by the modified COPAS method for various catchments. These include the road reserve area, the area of the Public Open Space, and all residential lots.

When sizing the POS, a conservative approach has been used to not include storage or infiltration that will be provided by the pit and pipe system that is proposed to be installed inside the road reserve.

A weighted runoff value was calculated by comparing runoff from the POS, road reserve, R20, and R30 lots. For the road reserve, the ratio of the impervious road (C=0.95) and the previous verge (C=0.3) provided a weighted C value of 0.58 for the entire road reserve. A runoff value of C=0.1 has been used for the Public Open Space. A conservative weighted runoff value of C=0.60 has been used for the combined Road Reserve and Public Open Space during the design of the stormwater system.

Storage volumes required have been calculated by comparing inflow into the site against the outflow provided by the infiltration through the floor of the proposed basin. The infiltration rate for the soils has been previously assessed at 10 m/day.

David Wills and Associates has completed infiltration testing in the nearby area and encountered values between 25 to 30 m/day. Using a design value of 10m/day allows for clogging of the soil and some variance over the site and is still very conservative.

With these values, the local catchment of Lots 35 and 36 Surf Drive has been assessed for the 20% AEP (1 in 5 year) storm event and for the 1% AEP (1 in 100 year) storm event. The following Tables are a summary of the system under different design storm events. Further details of the stormwater calculations are attached in Appendix D. This includes the critical storm durations as well as storm hydrographs.

Table 2: Small Storm Summary (Initial 15mm)

Location	Weighted Runoff Coefficient (C)	Catchment Area (m ²)	Required Storage for a small storm event (m³)	Storage Provided (m³)	<u>Notes</u>
A Single R30 Lot	0.6	375	3.6	3.8	*Storage achieved by 1x 1.8m diameter x 1.5m deep soakwell installed within the lot.

Table 3: Minor Storm Summary (20% AEP)

Location	Weighted Runoff Coefficient (C)	Catchment Area (m²)	Required Storage for a minor storm event (m³)	Storage Provided (m³)	<u>Notes</u>
A Single R20 Lot	0.4	500	3.0	3.8	*Achieved by 1x 1.8m diameter x 1.5m deep soakwell **500m ² is the maximum size of the proposed lots.
Total Lot Area	0.4	52,635	304.8	431.2	*This reflects the actual total area of the lots rather than 350m² and 500m² lot sizes only
Road Reserve and POS	0.6	28,065	196.6	213.4	Storage provided by the Bioretention Area

Table 4: Major Storm Summary (1% AEP)

Location	Weighted Runoff Coefficient (C)	Catchment Area (m²)	Required Storage for a 1% AEP event (m³)	Storage Provided (m³)	<u>Notes</u>
Total Lot Area	0.4	52,635	1,008.5	431.2	*Excess stormwater is to be stored inside the basin inside the POS
Road Reserve and POS	0.6	28,065	508.8	1,082.7	
Total	0.47	80,700	1,380.8	1,513.9	(Refer *Note 1)

*Note 1: The total storage required to contain stormwater generated within the total catchment area is less than the sum of the storages needed for individual areas when considered separately. This discrepancy arises from the variability of critical storm durations within the catchment, which is influenced by factors such as catchment area, outflow rate, and total storage. As a result, the stormwater is distributed more consistently over the storm event, reducing the peak storage requirements. Refer to the Storm Hydrographs in Appendix D for full calculations.

The stormwater generated during the 1 in 100 year storm event is to be contained inside the proposed stormwater infiltration basin area. The 1% AEP storm event will result in a water depth of 0.7m inside the basin. Modelling of the system estimates that the stormwater basin will empty in approximately 2.0 hours after the end of the storm event.

The basin will be required to be confirmed during the detailed design phase with computer modelling. It is expected that the final basin will be smaller than the current basin size due to the conservative values used in the stormwater calculations.

The area of development is surrounded by previously developed areas on three sides. There is an existing high point on all sides of the proposed developed area. This high point is sufficiently higher than the modelling 1% AEP flood level inside the site catchment. This will ensure no stormwater from the catchment overtops into the surrounding area and will provide a minimum of 500mm vertical separation to the finished floor levels of the existing dwellings.

5 CONCEPT LANDSCAPING

A preliminary landscaping plan has been detailed by Tim Davies Landscaping and is attached in Appendix F. Due to the unknown timeframe of the development of the site, it is recommended that the landscaping plans be re-assessed during the detailed design phase.

This reassessment will confirm the internal layout of the POS and the plans species to be used.

5.1 Irrigation Requirements

The area of the Public Open Space is approximately 6,265m² and is proposed to be largely grassed, with some larger trees installed around the perimeter.

Irrigation for the POS is required to be limited to a rate of 6,750 kL/ha/yr to meet the criteria set by the City of Rockingham in Planning Policy 1.8. This value is approximately 90% of the

standard allowance of 7,500kL/ha/yr specified by the Department of Water and Environment Regulations. This results in approximately 4,230 kL/year required to be used for irrigating the POS.

There is currently no groundwater bore licence in place for the irrigation requirements. Bore licence approval is required to be gained at the commencement of the design phase of the subdivision.

6 WATER CONSERVATION MEASURES

The development will utilise water-wise garden (Water Corporation, 2003) principles for lot gardens and within estate landscaping and water efficient fixtures and appliances (WEFA) to ensure that the development minimises the use of water. These measures are further discussed in the following Sections.

6.1 Water-Efficient Fixtures and Appliances

Significant reductions in in-house water use can be achieved with the adoption of WEFA (water-efficient fixtures and appliances). Implementation of WEFA can result in between a 30% and 50% reduction in water use in residential dwellings as listed by Melbourne Water in a 2003 study.

The water conservation strategy proposes that all dwellings use WEFA. Water-efficient fittings will be implemented by the lot owner during building construction, while uptake of water-efficient appliances can be encouraged by state and local government rebates, as well as education from the proponent at the point of sale.

6.2 Water Wise Gardens

Reductions in water use for irrigation by employing water efficiency measures can significantly reduce the total water usage. The development will undertake a variety of measures to limit water use in the future within the POS and within private residential landscape works under the control of the developer.

A variety of methods and approaches will be considered including any or all of the following:

- The adoption of water-wise species, with a focus on using local native water-wise species;
- Where required, existing site soil may be improved with soil conditioner certified to Australian Standard AS 4454 to a minimum depth of 150 mm where turf is to be planted and a minimum depth of 300 mm for garden beds;
- The irrigation system is proposed to be designed and installed according to best water efficient practices including consideration of hydro zone design solutions;
- The amount of turfed areas will be controlled while also being designed to meet community needs;
- Garden beds will be mulched to 75 mm with a product certified to Australian Standard AS 4454:
- The landscape design will cater for efficient water requirements during POS maintenance. Implementation of an appropriate management and maintenance program for POS areas will be further detailed at the UWMP stage;
- Community awareness of water conservation will be promoted at the point of sale and during the project's lifespan. This will reference the project as a whole and focus on

private gardens by providing educational literature to lot owners. Waterwise gardens will not be mandated inside the lot 35 and 36 Surf Drive development, however, they will be promoted by the proponent at the point of sale by providing educational literature regarding the benefits of waterwise gardening practices;

• It is assumed that 50% of future residents will utilise WWG, based on typical uptake rates provided by the Australian Bureau of Statistics.

6.3 Non-Structural Stormwater Management Measures

Several non-structural measures will also be implemented across the site to help reduce nutrient loads within stormwater runoff. These measures include:

- Street sweeping;
- Minimising fertiliser use to establish and maintain vegetation within POS areas and road verges;
- Use of drought-tolerant turf species that require minimal water and nutrients; and
- Education of residents regarding fertiliser use and nutrient-absorbing vegetation species within lots through the provision of educational material at the point of sale.

These measures will assist in achieving the required stormwater objectives.

7 FUTURE MONITORING AND IMPLEMENTATION

7.1 Funding

The site is owned by a single landowner and all funding will be provided by the landowner.

7.2 Construction Period

It is anticipated that the construction stage will require management of various aspects required for the construction of the subdivision. These aspects include but are not limited to:

- Dust Management;
- Surface Runoff,
- Noise Management; and
- Traffic Management.

The management measures undertaken for construction management will be specifically addressed in a future Construction Management Plan (CMP).

7.3 Condition Monitoring

It is proposed that the overall condition of the development will be monitored on a bi-annual basis. This monitoring will be implemented after the completion of the civil and landscaping works and will continue for a period of two years.

A visual assessment will be undertaken to monitor the overall condition of the development, with the aim of ascertaining that the maintenance activities are achieving the overall management objectives for the development. The parameters that will be monitored include:

- Gross pollutants levels;
- Terrestrial weeds;

- Irrigation;
- Vegetation density;
- Vegetation is disease free of not infected by pests; and
- The condition of paths, benches, walkways and other infrastructure.

Further details of the monitoring and inspection of the POS shall be further detailed in the UWMP.

8 IMPLEMENTATION

The development of the LWMS has been undertaken to provide a clear structure within which future development that is consistent with the specified integrated water cycle management approach can occur.

It is also intended to provide overall guidance to the general stormwater management principles for the area and to guide the development of future UWMPs.

8.1 Roles and Responsibility

This LWMS provides a framework that the proponent can utilise to assist in establishing stormwater management methods that have been based upon site-specific investigations, are consistent with relevant State and Local Government policies, and have been endorsed by the City of Rockingham.

The responsibility for working within the framework established within the LWMS rests with the subdivider, although it is anticipated that future Urban Water Management Plans (UWMP) will be developed in consultation with the City of Rockingham and DWER and in consideration of other relevant policies and documents.

Due to the size of the proposed developed area, it is possible for the development to be developed in a staged manner. It will be the responsibility of the proponent to prepare detailed subdivision designs and a supportive UWMP at the appropriate time (i.e. at the subdivision stage).

It is also the responsibility of the proponent to demonstrate that the proposed subdivision designs and the supportive UWMP not only complies with the objectives and management approaches provided in this LWMS, but that they can also achieve the water quantity and quality criteria proposed by this LWMS.

8.2 Review

The surface runoff calculators detailed in this report will not need to be revised unless areas of the subdivision are replaced with large-scale commercial development.

The Basin sizing will be confirmed during the detailed design phase (UWMP) with computer modelling.

A detailed geotechnical report is required to be undertaken at the subdivision stage and the stormwater calculations detailed in this report do not need to be revised if an effective infiltration rate of 10m/day can be achieved.

9 CONCLUSIONS

The proposed change to the layout of the subdivision of Lots 35 and 36 Surf Drive is minor in nature. The size of the proposed Public Open Space is to be maintained to provide the previously agreed in the approved Anstey Park Structure Plan.

The required grading is feasible and will provide adequate cover for the stormwater pipes that are proposed to be installed on the verge of the proposed road reserves.

A stormwater storage basin is proposed to be installed inside the POS. Inside this basin will be a bio-filtration area that is sized to treat the first 15mm of stormwater generated inside the road reserves and Public Open Space. For storm events larger than this, the stormwater basin will pool and support the 1% AEP storm event for the entire development area (1% AEP storm event inside the road reserves and the overflow from all residential lots to the 1% AEP storm).

The slopes of the proposed basin are to be gentle (1 in 6 or shallower) providing public safety, and limiting erosion and soil runoff.

The Public Open Space area is to be vegetated as per the approved detailed Landscape Design.

All requirements of the relevant guidelines are satisfied.

Prepared by:

Blake Collins

BEng (Hons) (Civil) GradIEAust

Engineer

Authorised by:

David Wills

AIT(Civil) GradDipB FIEAust CPEng EngExec NER APEC RPEQ

RBP IntPE (Aus)

Director

Appendices:

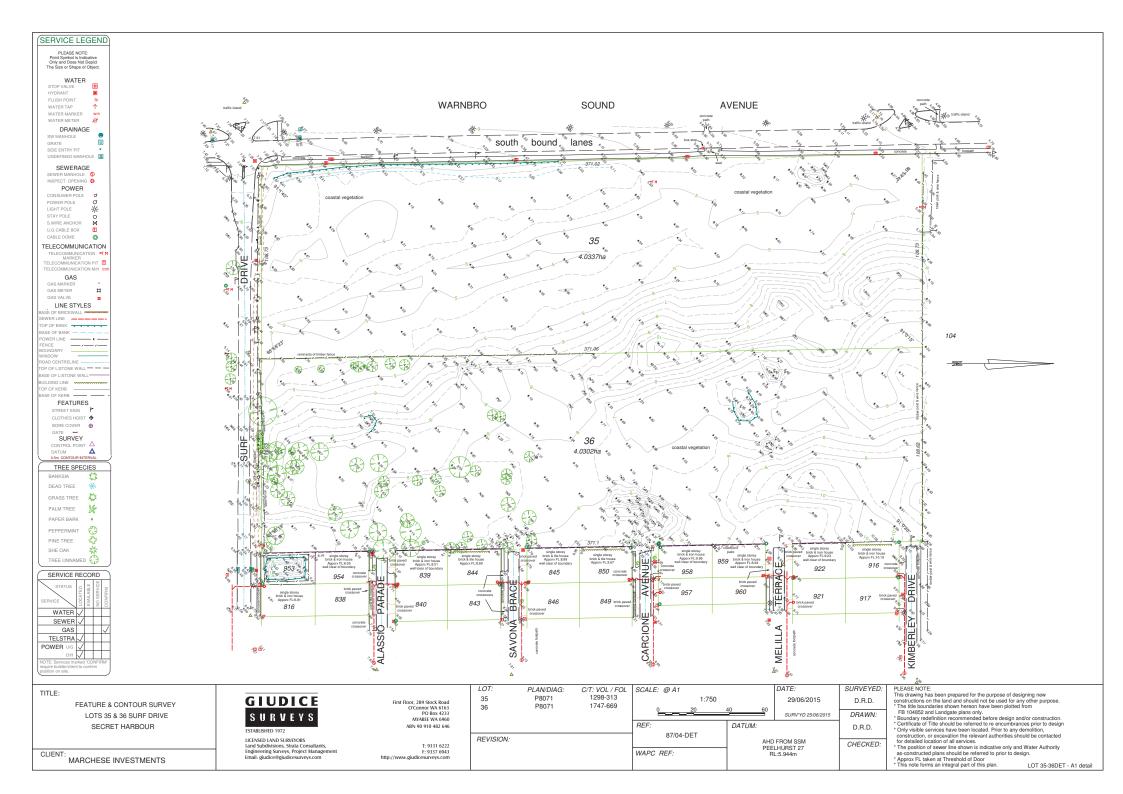
Appendix A: Feature and Contour Survey of Lots 35 and 36 Surf Drive

Appendix B: Geotechnical Report

Appendix C: Worley Parsons, Anstey Park Comprehensive Development Plan Appendix 2 –

Stormwater Drainage

Appendix D: Stormwater Calculations


Appendix E: DWA Drawings Set

Appendix F: TDL Landscaping Plans

Appendix G: Completed Checklist from Appendix 1 of Better Urban Water Management

(WAPC, 2008)

APPENDIX A: FEATURE AND CONTOUR SURVEY OF LOTS 35 AND 36 SURF DRIVE

APPENDIX B: GEOTECHNICAL REPORT

<u>Consulting Engineers – Land Development</u> Geotechnical/Acid Sulphate Soil/Groundwater Monitoring

Our reference: 23008 10 March 2023

Your reference:

Marchese Investments C/- David Wills and Associates Unit 1/9 Shields Crescent Booragoon

Attention: Paul Ivkovic

Geotechnical Investigation Report - Lot 9613, 9614 Surf Drive, Secret Harbour

Introduction

Brown Geotechnical was commissioned by Marchese Investments to undertake a geotechnical investigation for a residential subdivision. This report presents the results of the investigation conducted at the site. Fieldwork commenced on 24 March 2023.

Brief

The brief discussed with the engineer required the report to address:

- Subsurface conditions.
- The existing soil classification.
- Any earthworks required to obtain a classification suitable for development.
- Suitability of existing soils for use in the development.
- · Bearing capacity and settlement.
- CBR for road pavement design.
- · Retaining wall parameters.
- Site permeability and drainage issues.

Scope of Work

The following scope of work was undertaken:

- An auger was used to excavate test holes for soil descriptions and sampling.
- Groundwater levels were recorded in each test hole.
- Penetrometer tests were carried out adjacent to test holes to determine soil density.
- Samples were taken for geotechnical laboratory testing for soil classification.
- Permeability tests were undertaken to determine soil drainage characteristics.

Test Results

Table 1 – Geotechnical Test Results

Test Hole No.	Depth (m)	Fines (%)	Sand (%)	Gravel (%)	LL (%)	PL (%)	MMDD (%)	OMC (%)
TH1	1.0 – 1.5	2	98	0	NP	NP	-	-
TH3	1.0 – 1.5	1	99	0	NP	NP	-	-
TH6	0.2 - 0.8	-	-	-	NP	NP	1.65	16.5
TH16	1.0 – 1.5	1	99	0	NP	NP	1	-

*NP: Non-plastic

Table 2 – Permeability Test Results

Test Location	Testing Material	Permeability Test Result (m/s)	Drainage Characteristics	
(P1) 0.5-1.5m	Dense sand	2.5x10 ⁻⁴ m/s	Good	
(P2) 0.5-1.5m	Dense sand	5.5x10 ⁻⁴ m/s	Good	

Subsurface Conditions

A thin layer of grass and silty sand topsoil was encountered to approximately 0.1m.

Medium grained, sand was encountered in all test holes to at least 2m depth. The sand is medium dense to dense, becoming very dense below about 1m. The sands have been identified as the Tamala Formation.

Groundwater Levels

No groundwater was encountered in the test holes. The Department of Water - Perth Groundwater Map indicates the groundwater level to be approx. 1m AHD (approx. 7m bgl).

Existing Site Classification

The site is underlain by granular soils with no plasticity. It has been determined that the appropriate site classification for footing design is Class 'A' in accordance with AS2870-2011 (refer Table 3). The land is therefore suitable for development.

Table 3. Definition of Site Classifications (Australian Standard AS2870-2011)

Class	Foundation
А	Most sand and rock sites with little or no ground movement from moisture changes
S	Slightly reactive clay sites with only slight ground movement for moisture changes (y _s <20mm).
М	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes (y_s 20-40mm).
H1	Highly reactive clay site, which can experience moderate to high ground movement from moisture changes (ys 40-60mm)
H2	Highly reactive clay site, which can experience high ground movement from moisture changes (y₅ 60-75mm)
E	Extremely reactive sites, which can experience extreme ground movement from moisture changes ($y_s > 75 \text{mm}$)

y_s: Characteristic Surface Movement

Suitability of Existing Soils for use in the Development

The sands on site have low fines, are medium grained, cohesionless and free draining. They will be suitable for use as engineering fill in the development.

Earthworks

All earthworks should be undertaken in accordance with AS3798-1996 "Guidelines on earthworks for commercial and residential developments".

Topsoil / Fill

Topsoil is not suitable for foundation support and should be removed. There are some trees adjacent to the proposed building envelopes. Unless they are to be retained, they should be removed with the entire root bulb material. The excavations should then be backfilled and compacted with material exhibiting the same geotechnical properties as the surrounding soils, then compacted as stated below. No uncontrolled fill materials were identified in the test holes.

Proof Rolling and Site Compaction

The site is underlain by sand to at least 2m. Prior to footing placement or placing any additional fill on site, the surface should be proof rolled to achieve at least 95% SMDD. This approximates to at least 8 blows per 300mm using a Perth Sand Penetrometer to a depth of 750mm.

Imported Fill Material

Cut to fill material, and any additional sand fill imported to obtain site formation levels should be compacted in layers not more than 300mm thick to at least 95% SMDD. In-situ density tests should be carried out to calibrate the PSP to specific densities of the compacted material. Moisture conditioning (wetting) of the sand may to be required to optimise compaction. Imported sand should ideally contain less than 5% non-plastic fines to retain good drainage characteristics and should be compacted at optimum moisture content.

Following excavation for foundations, the bases of pad and strip footings should also be compacted to achieve at least 95% SMDD.

Earthwork Inspections

A geotechnical consultant should inspect the site following the removal of topsoil, trees, other unsuitable materials, and to confirm the compaction of the subsurface following proof rolling. Inspections and auditing of the earthworks should be carried out by the geotechnical consultant to enable confirmation of the final site classification.

Californian Bearing Ratio

Laboratory testing indicates a CBR of 25 may be used for road pavement design within the in-situ sand.

For imported Perth sand fill, typical CBR values can vary from 12 to 20. Testing of additional imported fill should be carried out to determine exact values.

Bearing Capacity

The following allowable bearing pressures have been based on a dense sand from 0m to 2m and a Young's modulus, E = 35 MPa. Potential settlements should be taken into account for design bearing pressures.

Table 4 - Strip Footing Allowable Bearing Pressure and Estimated Settlement

Footing Depth (m)	Footing Width (m)	Allowable Bearing Pressure (kPa)	Estimated Settlement (mm)		
0.3	0.3	125	1-5		
	0.5	150	5-15		
	1.0	175	15-20		
0.5	0.5	115	1-5		
	1.0	130	10-15		
	1.5	150	15-20		

Table 5 - Pad Footing Allowable Bearing Pressure and Estimated Settlement

Footing Depth (m)	Footing Dimension (m)	Allowable Bearing Pressure (kPa)	Estimated Settlement (mm)	
0.5	0.5 x 0.5	145		
	1.0 x 1.0	150	5-10	
	1.5 x 1.5	160	10-15	

The bearing pressures presented in Table 4 and 5 are also based on the following:

- Loading is isolated, vertical, non-eccentric, on level ground, and not influenced by any nearby cuttings or embankments;
- Factor of Safety of 3;
- It is recommended to limit the total settlement to 25mm,
- Differential Settlement to be no greater than nominally half the total.

Retaining Wall Parameters

Assuming compaction / proof rolling of the soils has been carried out as stated above, the following retaining wall parameters have been based on a dense sand soil with ϕ =40°.

 γ =19 kN/m³

Ko=0.36

Ka=0.22

Kp=4.

The parameters detailed above assume design of the retaining structure and compaction of the foundations are in accordance with AS 4678-2002, and that backfill material is composed of clean cohesionless sand.

.../5

Drainage Conditions

Permeability results indicates good drainage conditions. Soakwells will be suitable for stormwater runoff. The slightly lower permeability is a result of the dense sand on site.

Note: Permeability and drainage conditions may be reduced during earthworks due to compaction of in-situ and imported sands. Over compaction during earthworks can seriously reduce soil permeability. Additional permeability tests are recommended following the completion of the earthworks.

Regards

Benjamin Boers
Graduate Geotechnical Engineer
BROWN GEOTECHNICAL

Reviewed By
Ken Brown
Senior Geotechnical Engineer
BROWN GEOTECHNICAL

Attachments: Site and Test Location Plans

Test Hole Logs & Photos

PSP Plots

Laboratory Test Certificates

Brown Geotechnical

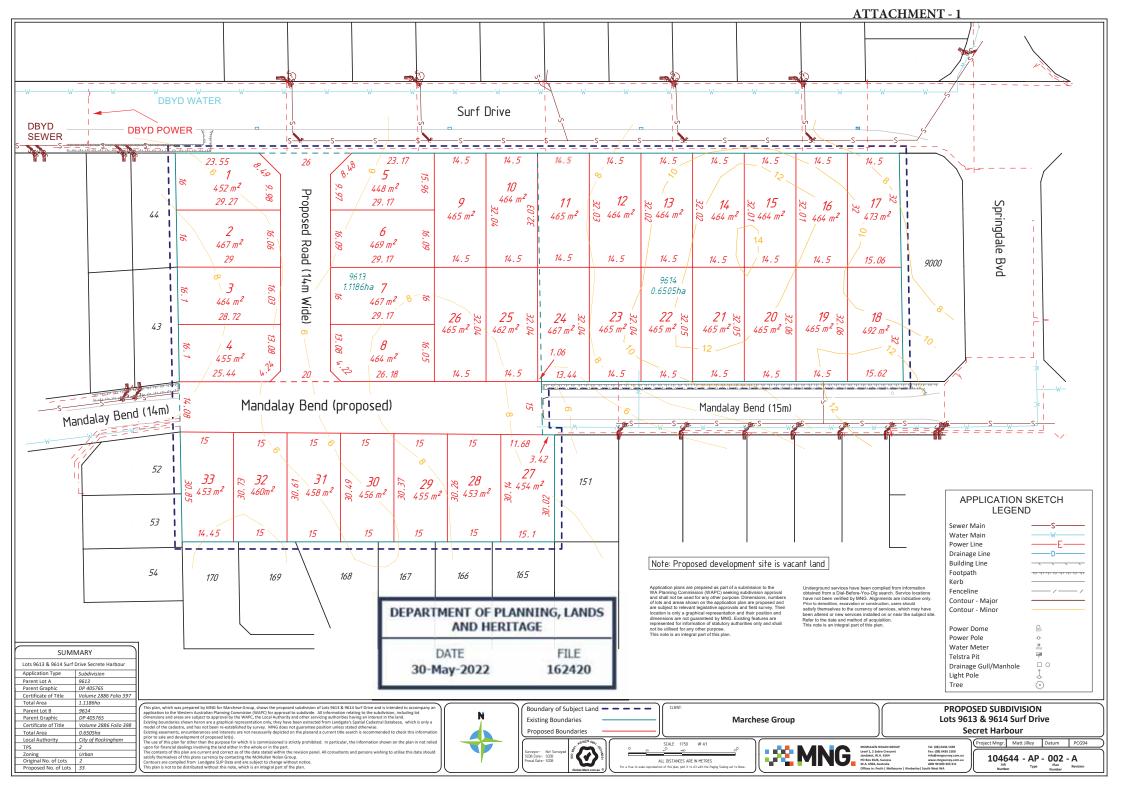
Suite 9, 47 Monash Avenue Como WA6152 Email: admin@browngeotechnical.com.au

Date	Description	Drawn Checked A		Approved	
20.03.23	Test Location Plan	вв	KB		

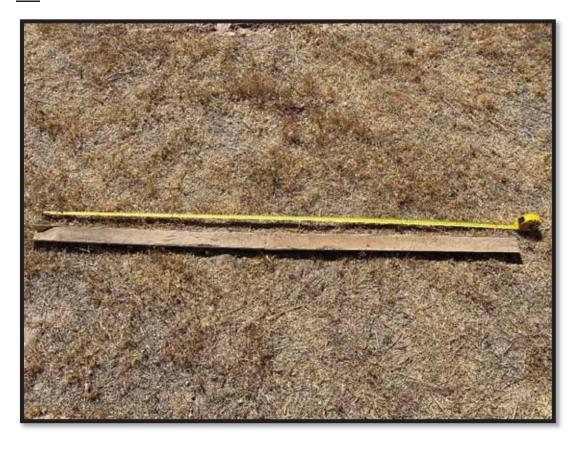
TEST LOCATION PLAN

Lot 9613, 9614 Surf Drive, Secret Harbour CLIENT

Marchese Investments


Drawing No.23008 Fig 1

Scale: NTS


Sheet Size: A4

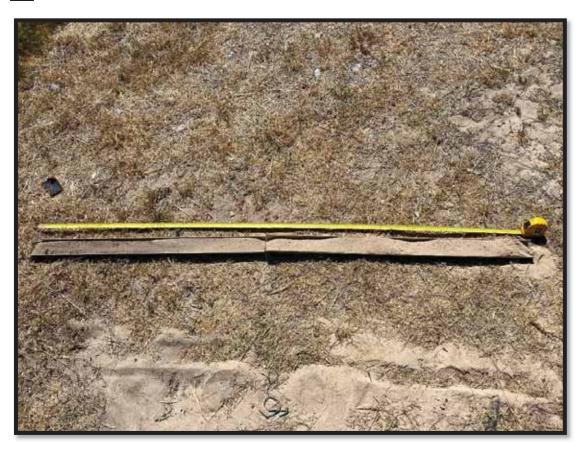
Job No: 23008.01

FIGURE 1

PAGE 1 OF 1 **Brown Geotechnical** CLIENT Marchese Investments PROJECT NAME Lot 9613, 9614 Surf Drive PROJECT NUMBER 23008 PROJECT LOCATION Secret Harbour DATE STARTED 24/3/23 COMPLETED 24/3/23 R.L. SURFACE 8.3 ___ DATUM _ m AHD DRILLING CONTRACTOR ___ SLOPE 90° BEARING ---HOLE LOCATION 32.39983 S, 115.76298 E **EQUIPMENT** Auger HOLE SIZE 820mm LOGGED BY BB _____ CHECKED BY KB **NOTES** Classification Symbol Graphic Log Samples Material Description Additional Observations Tests Method Remarks RL Depth TOPSOIL: Loose, fine grained, silty sand, with organics, dry SAND: Medium dense to dense, medium grained, light brown, dry, trace silt 8.0 0.5 7.5 Not Encountered Very dense below 0.9m 1.0 Fines=2% Sand=98% Yellow below 1.2m Gravel=0% 7.0 (Medium=74%) 1.5 30REHOLE / TEST PIT SURF DRIVE LOGS.GPJ GINT STD AUSTRALIA.GDT 13/3/23 6.5 2.0 Borehole TH01 terminated at 2m 6.0 2<u>.5</u> 5.5

PAGE 1 OF 1

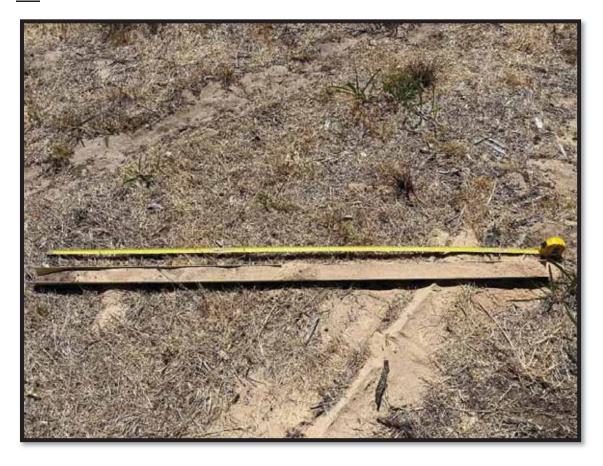
BG	Brown Geotechnical
----	--------------------


		J			otecni					
						ıts			Drive	
DATE STARTED _24/3/23							R.L. SURFACE	90 S, 115.7622	BEARING 24 E	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	on	Samples Tests Remarks	Additional Observations	
	Not Encountered	6.5 6.0 5.5		<u> </u>	SP	TOPSOIL: Loose, fine grained, silty sand, with org SAND: Medium dense to dense, medium grained, Very dense below 0.9m				
		4.5				Borehole TH02 terminated at 2m				

PAGE 1 OF 1

BG	Brown Geotechnical
----	--------------------

	CLIENT _Marchese Investments PROJECT NAME _Lot 9613, 9614 Surf Drive PROJECT NUMBER _23008 PROJECT LOCATION _Secret Harbour									
DATE STARTED _24/3/23 COMPLETED _24/3/23 DRILLING CONTRACTOR EQUIPMENT _Auger							R.L. SURFACE 8.2 DATUM _ m AHD SLOPE 90° BEARING			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations	
		1/ · ½ · / · · · · · · · · · · · · · · ·		SP	TOPSOIL: Loose, fine grained, silty sand, with ord SAND: Medium dense to dense, medium grained					
	I	7.5	0 <u>.5</u>							
Lossificant Francisco	Not Encountered	<u>7.</u> 0	1 <u>.0</u>			Very dense below 0.9m		Fines=1% Sand=99% Gravel=0% (Medium=72%)		
		6.5	1 <u>.5</u>			(Wedium=12%)				
			2.0			Borehole TH03 terminated at 2m				
		6.0	- - -							
		5.5	2 <u>.5</u> –							

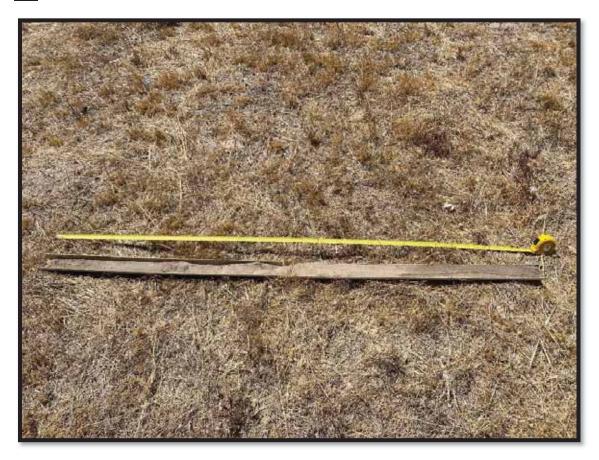


PA1E F O4 F

BG Brown 1 eotechnical

BOK EHOLE / TEST PIT SUK4 DKIVE LO1S.1 PJ 1 INT STD AUSTKALIA.1 DT F3/3/V8


	יכ	J	BIOV	WIITE	otecni	licai				
					estmen 8008	nts	PROJECT LOCATION S		riGe	
DA ⁻ DRI EQI	TE S LLII JIPI	START NG CO	TED _ ONTRA _Aug	<u> </u>	/⁄8 R	COMPLETED <u>W2/3/W8</u>	R.L. SURFACE 6.5 DATUM m AHD			
NO.	ΓES									
Method	p ater	k L (m)	DeRth (m)	1 raRhic Log	Classification Symbol	Material Descri R tion	n	Additional Obser@ations		
				<u>, 1 14</u> . <u>1</u> 17 . , 1 14		TOPSOIL: Loose, fine grained, silty sand, with orga	anics, dry			
	Not Encountered	<u>6.</u> 0 <u>5.</u> 5	0.5 F.0 F.5		SP	SAND: Medium dense to dense, medium grained, I	ight brown, dry, trace silt			
		2.5	WO			Borehole TH02 terminated at Wh				
		<u>2.</u> 0	- - W <u>5</u> - - 3.0							


PAGE 1 OF 1

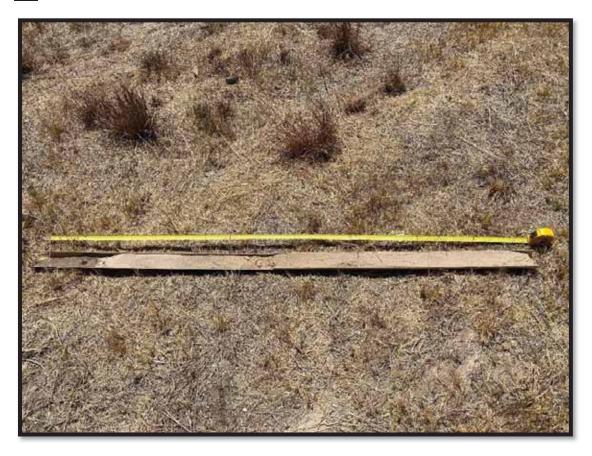
BG	Brown Geotechnical
----	--------------------

	,	J			OtCOIII				
						ıts			
	DATE STARTED 24/3/23 COMPLETED 24/3/23 DRILLING CONTRACTOR								
NOT	ES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations
				<u> </u>		TOPSOIL: Loose, fine grained, silty sand, with or	ganics, dry		
			-	1, . \\ 1, 	SP	SAND: Medium dense to dense, medium grained	, light brown, dry, trace silt		
	Not Encountered	5.5 5.0 4.5	0.5 - 1.0 - 1.5 -			Very dense below 0.9m Yellow below 1.2m			
		4.0	2.0			Borehole TH05 terminated at 2m			
		<u>3.</u> 5	2 <u>.5</u>						

2DkE = P4 =(roh n k eotecAnfcgy CLIENT F grcAeLe ThReLtI entL PROJECT NAME Oot B1=0: B1=/ 7 ur, SrfRe PROJECT LOCATION 7 ecret Hgrbour PROJECT NUMBER m0..5 DATE STARTED m/ v0vr0 COMPLETED m/ v0vr0 R.L. SURFACE 1a ____ DATUM _ I DHS DRILLING CONTRACTOR ___ SLOPE B. 8 BEARING HOLE LOCATION 0ma0BB. = 7: ==9a61mmE **EQUIPMENT** DuGer HOLE SIZE 5m | 1 LOGGED BY ((CHECKED BY K) **NOTES** i ygLLf,fcgtfon 7 w boy k rgWMfc OoG 7glWyeL F gterfgySeLcrfWfon) eLtL DddftfongyP bLerRgtfonL Mel grpL MO SeWA) P27PTO CooLe: ,fne Grgfned: LfytwLgnd: h ftA or GgnfcL: drw 72 7 DNSIF edful denLe to denLe: I edful Grgfned: yfGAt brohn: drw. trgce Lfyt Fis=1% SSs=a19FOw . <u>a</u>9 9æ9 i (Msm9% VerwdenLe beyoh . aBl Not Encountered 9a =<u>a</u> =æ <u>/a</u>9 Grewbrohn beyoh =æ01 PMEHPCE v) E7) 21 7 - M4 SMTVE CPK 74x 2U K TN) 7) S D- 7) MDCDD4x S) =0.0vm0 ma (oreAoye) H. 1 terl fngted gt ml m<u>æ9</u> <u>0æ</u>9

PAGE 1 OF 1

BG	Brown Geotechnical
----	--------------------


CLI	ENT		ırches	e Inve		nts		613, 9614 Surf D	rive
DA	PROJECT NUMBER 23008 DATE STARTED 24/3/23 COMPLETED 24/3/23 DRILLING CONTRACTOR						R.L. SURFACE _7.8	0	
EQ HO	UIPI LE S	/IENT	_Aug 820m	jer			HOLE LOCATION 32.399	945 S, 115.76332	E
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descripti	on	Samples Tests Remarks	Additional Observations
		<u>7.</u> 5	- - 0 <u>.5</u>	<u> </u>	SP	TOPSOIL: Loose, fine grained, silty sand, with organized sand. SAND: Medium dense to dense, medium grained, silt			
	Not Encountered	<u>7.</u> 0	- - 1 <u>.0</u>			Very dense below 0.9m			
		<u>6.</u> 5	- - 1 <u>.5</u>						
		<u>6.</u> 0	2.0			Borehole TH07 terminated at 2m			
		<u>5.</u> 5	- - -			D. STOO THE CHIMINGS OF LITT			
		<u>5.</u> 0	2 <u>.5</u> –						

PAGE 1 OF 1

BOK EHOLE KTEST PIT SUK F DK IVE LOGS.GPJ GINT STD AUSTK ALIA.GDT 1212/24/12

) (J	Brov	vn Ge	otechr	nical			TAGE TOT T
						nts			
DA1 DRII EQU	TE S LLII JIPI LE S	START NG CO MENT SIZE	TED _ ONTRA _Aug	W K2K ACTO	//2 R	COMPLETED W 121472	R.L. SURFACE	9/ 2 S, 115.78/ (DATUM _ m AHD BEARING
Method	p ater	k L (m)	DeRth (m)	GraRhic Log	Classification Symbol	Material DescriRtio	n	SamRes Tests k emar4s	Additional Observations
	Not Encountered	<u>11</u> .0	0.5 - 1.0 - 1.5		SP	TOPSOIL: Loose, fine grained, silty sand, with organized sand. Sand: Medium dense to dense, medium grained, I		Fines=1% Sand=99% Gravel=0% (Medium=72%	
		9.5	W0			Borehole TH03 terminated at Wh			

PAGE 1 OF 1

BG	Brown Geotechnical
----	--------------------

		G Ma			etmer	nts	PROJECT NAME of 96	313 9614 Surf	Drive
						11.0			
DATE STARTED 24/3/23 COMPLETED 24/3/23 DRILLING CONTRACTOR							R.L. SURFACE 9.0		
			Aug						
			820m	nm			LOGGED BY BB		CHECKED BY KB
NO	TES							T	<u> </u>
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description	n	Samples Tests Remarks	Additional Observations
				<u> </u>		TOPSOIL: Loose, fine grained, silty sand, with orga	anics, dry		
	ed	<u>8.</u> 5	0.5	<i>17-3-10</i>	SP	SAND: Medium dense to dense, medium grained, I	ight brown, dry, trace silt		
	Not Encountered	8.0	1 <u>.0</u>			Very dense below 0.9m			
		<u>7.</u> 5	1.5						
		7.0	2.0			Borehole TH09 terminated at 2m			
		6.5 6.0	2 <u>.5</u>						

PA1E 2 OF 2

BG	Brown 1 eotechnical
----	---------------------

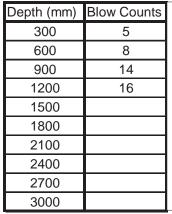
BOK EHOLE / TEST PIT SUK F DK IVE LO1 S.1 PJ 1 INT STD AUSTK ALIA.1 DT 23/3/VB

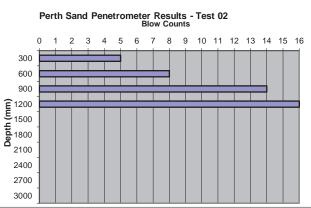
	יע	J) Diow	10	OtCOIII	noui			
CLII	ENT	Ma	ı ırches	e InGe	stmen	ts	PROJECT NAME Lot 96	623, 9624 Surf D	riGe
PRO	IJΕ	CT NU	JMBE	R _W	8008		PROJECT LOCATION S	Secret Harbour	
	DATE STARTED W4/3/W8 COMPLETED W4/3/W8								
			_Aug						
NO									
Method	p ater	k L (m)	DeRth (m)	1 raRhic Log	Classification Symbol	Material DescriRtio	n	SamRes Tests k emarvs	Additional ObserGations
				1/ 1/ 1/		TOPSOIL: Loose, fine grained, silty sand, with org	anics, dry		
		<u>7.</u> 0	0.5	<i>1</i> / 3 / 1 /	SP	SAND: Medium dense to dense, medium grained,	light brown, dry, trace silt		
	Not Encountered	<u>6.</u> 5	- - - 2.0			Very dense below 0.9m			
	Not E	<u>6.</u> 0							
		<u>5.</u> 5	2.5						
\dashv			W0			Borehole TH20 terminated at Wh			
		<u>5.</u> 0	- - -						
		<u>4.</u> 5	W <u>5</u>						

<u>TH10</u>

Perth Sand Penetrometer Test Plots

Depth (mm)	Blow Counts	Perth Sand Penetrometer Results - Test 01
300	7	Blow Counts
600	9	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
900	14	300
1200	16	900
1500		(E) 1200 1500
1800		£ 1500]
2100		# 1800 - 2100 - 1
2400		2400
2700		2700
3000		3000


Job Name: Lot 9613, 9614

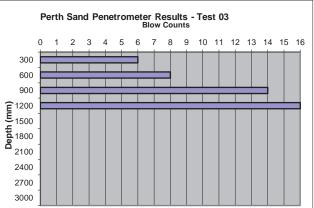

Surf Drive Secret Harbour

Job No: 23008

Date: 24/02/2023

Location: TH01

Job Name: Lot 9613, 9614


Surf Drive Secret Harbour

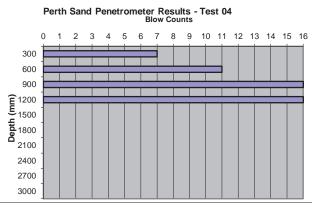
Job No: 23008

Date: 24/02/2023

Location: TH02

Depth (mm)	Blow Counts
300	6
600	8
900	14
1200	16
1500	
1800	
2100	
2400	
2700	
3000	

Job Name: Lot 9613, 9614


Surf Drive Secret Harbour

Job No: 23008

Date: 24/02/2023

Location: TH03

Depth (mm)	Blow Counts
300	7
600	11
900	16
1200	16
1500	
1800	
2100	
2400	
2700	
3000	

Job Name: Lot 9613, 9614

Surf Drive

Secret Harbour

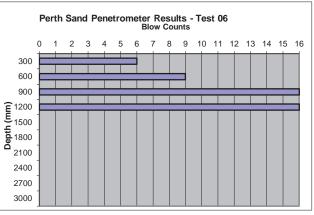
Job No: 23008

Date: 24/02/2023 **Location:** TH04

Depth (mm)	Blow Counts	Perth Sand Penetrometer Results - Test 05	J
300	7	Blow Counts	
600	10	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	'
900	16	300	J
1200	16	900	0
1500		(E) 1200 1500	L
1800		£ 1500	
2100		4 1800 2100	
2400		2400	
2700		2700	
3000		3000	

Job Name: Lot 9613, 9614

Surf Drive


Secret Harbour

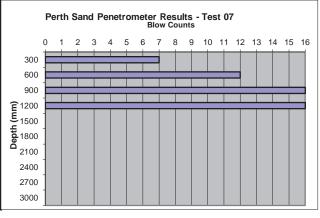
Job No: 23008 Date: 24/02/2023

Location: TH05

Lot 9613, 9614

Depth (mm)	Blow Counts
300	6
600	9
900	16
1200	16
1500	
1800	
2100	
2400	
2700	
3000	

Job Name: Lot 9613, 9614


Surf Drive Secret Harbour

Job No: 23008 Date: 24/02/2023

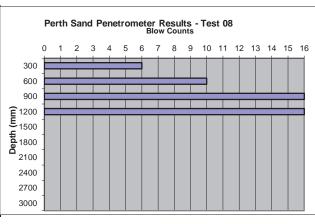
Location: TH06

Lot 9613, 9614

Depth (mm)	Blow Counts
300	7
600	12
900	16
1200	16
1500	
1800	
2100	
2400	
2700	
3000	

Job Name: Lot 9613, 9614

Surf Drive


Secret Harbour

Job No: 23008 Date: 24/02/2023

Location: TH07

Lot 9613, 9614

-	
Depth (mm)	Blow Counts
300	6
600	10
900	16
1200	16
1500	
1800	
2100	
2400	
2700	
3000	

Job Name: Lot 9613, 9614

Surf Drive

Secret Harbour

Job No: 23008 Date: 24/02/2023

Location: TH08

Depth (mm)	Blow Counts	Perth Sand Penetrometer Results - Test 09	Jo
300	7	Blow Counts	
600	11	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
900	16	300	Jo
1200	16	900	Da
1500		(E) 1200 1500	Lo
1800		£ 1500	
2100		# 1800 2100	
2400		2400	
2700		2700	
3000		3000	

ob Name: Lot 9613, 9614

Surf Drive

Secret Harbour

ob No: 23008 ate: 24/02/2023

ocation: TH09

Lot 9613, 9614

Depth (mm)	Blow Counts	Perth Sand Penetrometer Results - Test 10
300	7	Blow Counts
600	12	0 1 2 3 4 5 6 7 8 9 10 11
900	16	300
1200	16	900
1500		E 1200
1800		(m) 1500 1500 1600 1600 1700
2100		2 ₁₀₀ -
2400		2400
2700		2700
3000		3000

Job Name: Lot 9613, 9614

Surf Drive Secret Harbour

Job No: 23008

Date: 24/02/2023

Location: TH10

8 9 10 11 12 13 14 15 16

Lot 9613, 9614

Depth (mm)	Blow Counts	Perth Sand Penetrometer Results - Test 11	
300		Blow Counts	
600		0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
900		300	
1200		900	
1500		童 1200]	
1800		(£ 1200	
2100		B 1800 2100	
2400		2400	
2700		2700	
3000		3000	

Job Name:

Job No: Date: Location:

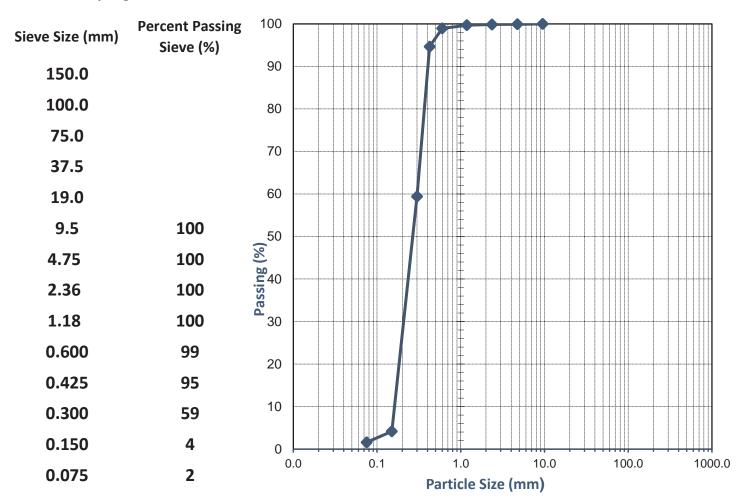
Lot 9613, 9614

	Depth (mm)	Blow Counts	l	P	erti	n Sa	nd F	ene	etro	met
	300									
	600			0	1	2	3	4	5	6
	900		300 600	-						
	1200		900	1						
	1500		<u> </u> 1200	1						
	1800		Depth (mm) 1500 1500	-						
	2100		2100	-						
	2400		2400	1						
	2700		2700	1						
	3000		3000							
,			_							

	Perth Sand Penetrometer Results - Test 12 Blow Counts																	
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	300																	
	600																	
	900																	
<u>E</u> 1	1200 1500 1800																	
드 나	1500																	
)ept	1800																	
- 2	2100																	
2	2400																	
2	2700																	
3	3000																	

Job Name:

Job No: Date: Location:



	SOIL	AGGREGATE	CONCRETE	CRUSH	HING
		TEST REF	PORT - AS 1289.3.6.1		
Client:	Brown Geot	technical		Ticket No.	\$8959
Client Address:	PO Box 278,	, Como WA 6952		Report No.	WG23.4260_1_PSD
Project:	Lot 9613, 96	514 Surf Drive		Sample No.	WG23.4260
Location:	Secret Harb	our		Date Sampled:	13/02/2023
Sample Identification:	TH1			Date Tested:	7/03/2023

TEST RESULTS - Particle Size Distribution of Soil

Sampling Method:

Sampled by Client, Tested as Received

Comments:

Approved Signatory:

Ti.

Name: Jack Leonard

Date: 07/March/2023

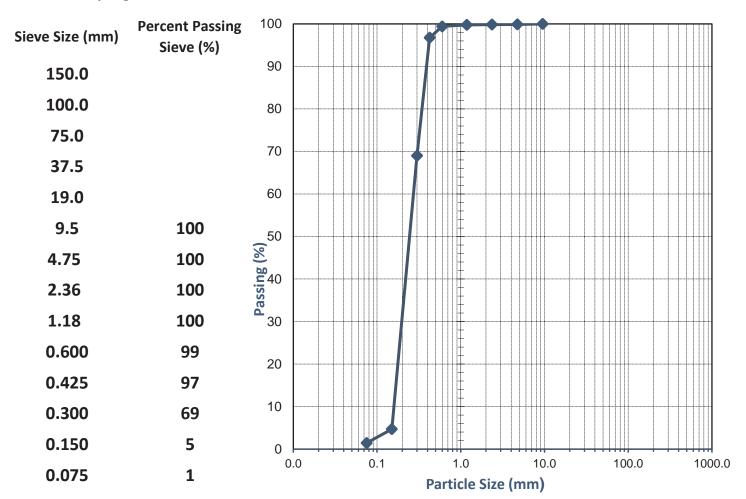
Accreditation No. 20599
Accredited for compliance
with ISO/IEC 17025 - Testing

This document shall not be reproduced except in full

235 Bank Street, Welshpool WA 6106

08 9472 3465

www.wgls.com.au



	SOIL	AGGREGATE	CONCRE	TE CRUS	HING
		TEST REF	PORT - AS 1289.3.6	5.1	
Client:	Brown Geo	technical		Ticket No.	S8959
Client Address:	PO Box 278	, Como WA 6952		Report No.	WG23.4261_1_PSD
Project:	Lot 9613, 9	614		Sample No.	WG23.4261
Location:	Secret Harb	our		Date Sampled:	13/02/2023
Sample Identification:	TH3			Date Tested:	7/03/2023

TEST RESULTS - Particle Size Distribution of Soil

Sampling Method:

Sampled by Client, Tested as Received

Comments:

Approved Signatory:

Ti.

Name: Jack Leonard

Date: 07/March/2023

Accreditation No. 20599
Accredited for compliance
with ISO/IEC 17025 - Testing

This document shall not be reproduced except in full

235 Bank Street, Welshpool WA 6106

08 9472 3465

www.wgls.com.au

	SOIL AGGREGATE	CONCRETE CRUSH	HING
	TEST REPORT -	AS 1289.5.2.1	
Client:	Brown Geotechnical	Ticket No.	S8959
Client Address:	PO Box 278, Como WA 6952	Report No.	WG23.4262_1_MMDD
Project:	Lot 9613, 9614 Surf Drive	Sample No.	WG23.4262
Location:	Secret Harbour	Date Sampled:	13-02-2023
Sample Identification:	TH6	Date Tested:	3-03-2023

TEST RESULTS - Modified Maximum Dry Density

Sampling Method:

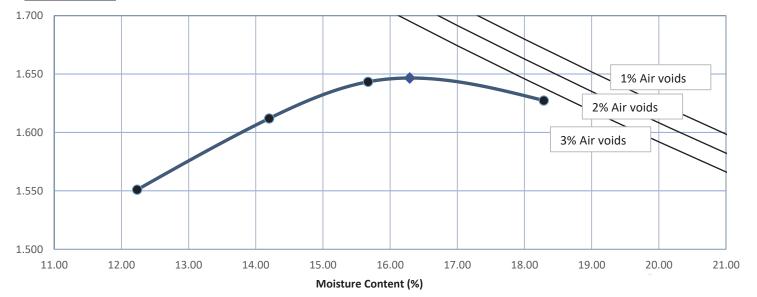
Sampled by Client, Tested as Received

Sample Curing Time (Hours):

2

Method used to Determine Liquid Limit:

Visual / Tactile Assessment by Competent Technician


Material + 19.0mm (%):

0

Material + 37.5mm (%)

Moisture Content (%)	12.2	14.2	15.7	18.3	
Dry Density (t/m³)	1.551	1.612	1.643	1.627	

Dry Density (t/m³)

Modified Maximum Dry Density (t/m³)

1.65

Optimum Moisture Content (%)

16.5

Comments: The above air void lines are derived from a calculated apparent particle density of 2.443 t/m³

Approved Signatory:

Name: Brooke Elliott

Date: 07-March-2023

Accreditation No. 20599
Accredited for compliance
with ISO/IEC 17025 - Testing

This document shall not be reproduced except in full

235 Bank Street, Welshpool WA 6106

08 9472 3465

www.wgls.com.au

WG_AS 1289.5.2.1_TR_5

	SOIL AGGREGATE CONCRETE	CRUSHING	
	TEST REPORT - AS 1289.6.1.1		
Client:	Brown Geotechnical	Ticket No.	\$8959
Client Address:	PO Box 278, Como WA 6952	Report No.	WG23.4262_1_SCBR
Project:	2 Cabarita Road	Sample No.	WG23.4262
Location:	Kalamunda	Date Sampled:	13/02/2023
Sample Identification:	TH6	Date Tested:	3/3 - 11/3/23

TEST RESULTS - CALIFORNIA BEARING RATIO

Sample Description:

Sand

Sampling Method:

Sampled by Client, Tested as Received

6.0	Load P	enetrat	ion Curv	e
5.0				•
4.0 ②				
(kN) 0.8	†			
2.0				
1.0	†			
0.0	.0	5.0 Penetrat	10.	0

Compaction Details						
Compaction Method	AS 1289.5.2.1	Hammer Type	Modified			
Plasticity Determined by	Estimated	Curing Time (Hours)	2.0			
% Retained 19.0mm	0	Excluded/Replaced	Excluded			
Maximum Dry Density (t/m³)	1.65	Optimum Moisture (%)	16.5			
Target Dry Density Ratio (%)	95	Target Moisture Ratio (%)	100			

Specimen Conditions At Compaction						
Dry Density (t/m3)	1.56	Moisture Content (%)	16.5			
Density Ratio (%)	95.0	Moisture Ratio (%)	101.0			

Specimen Conditions After Soak						
Soaked or Unsoaked	Soaked	Soaking Period (days)	4			
Surcharges Applied (kg)	4.50	Measured Swell (%)	0.0			
Dry Density (t/m³)	1.56	Dry Density Ratio (%)	95.0			
Moisture Content (%)	21.3	Moisture Ratio (%)	130.5			

Specimen Conditions After Test						
Top 30mm Moisture (%)	20.4	Remaining Depth (%)	21.4			

Correction applied to Penetration: 0.3mm

Determined at a Penetration of: 2.5mm

California Bearing Ratio (CBR): 25%

Comments:

Approved Signatory:

Name: Cody O'Neill

Date: 13/March/2023

Accreditation No. 20599

Accredited for compliance
with ISO/IEC 17025 - Testing

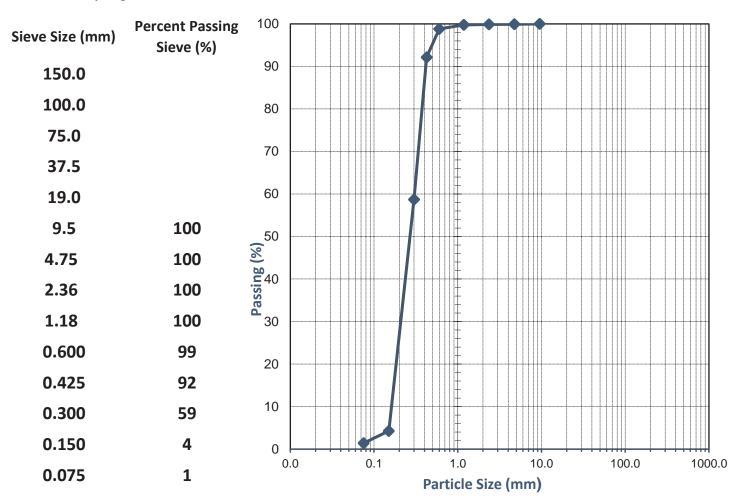
This document shall not be reproduced except in full

235 Bank Street, Welshpool WA 6106

08 9472 3465

www.wgls.com.au

WG_AS 1289.6.1.1_TR_3 Page 1 of 1



	SOIL	AGGREGATE	CONCRETE	CRUSH	HING
		TEST REPO	ORT - AS 1289.3.6.1		
Client:	Brown Geo	technical		Ticket No.	\$8959
Client Address:	PO Box 278	, Como WA 6952		Report No.	WG23.4263_1_PSD
Project:	Lot 9613, 90	514 Surf Drive		Sample No.	WG23.4263
Location:	Secret Harb	our		Date Sampled:	13/02/2023
Sample Identification:	TH8			Date Tested:	7/03/2023

TEST RESULTS - Particle Size Distribution of Soil

Sampling Method:

Sampled by Client, Tested as Received

Comments:

Approved Signatory:

Ti.

Name: Jack Leonard

Date: 07/March/2023

Accreditation No. 20599
Accredited for compliance
with ISO/IEC 17025 - Testing

This document shall not be reproduced except in full

235 Bank Street, Welshpool WA 6106

08 9472 3465

www.wgls.com.au

CONDITIONS RELATING TO THIS REPORT

- This report has been prepared for the sole use of the client. It has been issued in accordance
 with the agreed terms and scope detailed in the proposal for the investigation. No
 responsibility or liability to any third party is accepted for any damages arising out of the
 use of this report.
- 2. This report has been prepared by suitably qualified and experienced personnel for the purposes stated herein. Every care is taken with the report as it relates to interpretation of sub-surface conditions, discussion of findings and recommendations given. No responsibility for the consequences of extrapolation by others is accepted by the company.
- 3. Findings and conclusions produced in the report are based on the investigation of the subsurface through isolated locations. Conditions between investigated sites are based on extrapolation, interpretation and professional estimates. Unexpected variations in ground conditions often occur which cannot always be anticipated. The conclusions and recommendations in the report were considered accurate at the time of issue and based on certain assumptions at the time. Conditions and assumptions change with time and may affect the accuracy of the report.
- 4. Certain content within this report is based on information provided by the client and/or other parties and the accuracy of this information cannot be guaranteed.
- 5. These conditions must be read as part of the report and must be reproduced with all future copies.
- 6. The recommendations of this report should be considered a starting point. Recommendations should be continuously reviewed during the earthworks stage as subsurface information and results from monitoring become available. It is strongly recommended that the Brown Geotechnical be retained to provide consultancy and/or inspections during the earthwork stages.

APPENDIX C: WORLEY PARSONS, ANSTEY PARK COMPREHENSIVE DEVELOPMENT PLAN APPENDIX 2 – STORMWATER DRAINAGE

WorleyParsons

CITY OF ROCKINGHAM

ANSTEY PARK COMPREHENSIVE DEVELOPMENT PLAN

COST CONTRIBUTIONS REPORT DECEMBER 2006

Appendix 2 – Stormwater Drainage

The stormwater drainage system is based on a series of piped networks leading to several compensating basins located throughout the proposed comprehensive development plan. A central lake is located in a recreation reserve straddling Lots 46, 47, 56 & 57. The original intention in the Comprehensive Development Plan for this lake was to provide a central area for the accumulation of a large percentage of the Anstey Park stormwater drainage flow, however the topography, (particularly on the eastern side of the proposed lake with a line of trees to be retained) minimises the volume of stormwater drainage that could be economically piped to this location. As such, a number of sub-catchments are required throughout the Anstey Park area. Finalised Comprehensive Development Plan drainage designs show that all recreation reserves (except for the triangular shaped reserve at the intersection of Forty and Anstey Roads and the proposed wetland buffer reserve in Lot 40 at the northern boundary of the release area) are required to detain water during a 1 in 10 year storm event.

The City of Rockingham will allow a maximum of 25% of the recreation reserve to be inundated with water for a maximum period of 7 days. An infiltration rate of 1 x 10⁻⁵ m/sec (equating to 864mm/day) for water through fine to sandy soils was allowed. Whilst this number is seen as conservative for sandy soils, it is important to note that stormwater drainage flows can contain fines which will over time decrease the voids ratio of the soil. In addition, sand which is inundated with water will convey water at a slower rate due once again to the lack of voids in the soil structure. The rate of evaporation used is 3.7mm/day which is the average evaporation for Perth in June. This is the lowest rate of evaporation and whilst this delivers a conservative estimate for the purposes of this design, is considered reasonable due to the increased potential for significant rain events in Perth in winter months than in warmer months where evaporation levels may be higher.

The stormwater drainage pipe system is designed to cater for a 6 minute 1 in 5 year Average Return Interval storm event with larger rainfall events (up to 1 in 100 years) to be catered for by overland flow paths to the various compensating and infiltration basins. Rainfall data for Perth Airport has been used in the analysis of probable flows which is considered conservative, as the data for Perth Airport is slightly higher than local IFD data for Rockingham. A runoff coefficient of 0.78 has been adopted for road reserves with a zero bypass coefficient. A zero runoff coefficient has been adopted for areas within lot boundaries and Public Open Space areas.

Stormwater drainage cost contributions were calculated on the basis of contribution by all landowners to drainage infrastructure across the Anstey Park release area for pipe sizes greater than 450 mm diameter. This infrastructure is deemed to include all stormwater pit and pipe configurations, excavation, dewatering and backfilling requirements associated with the construction of stormwater drainage infrastructure.

I:\300 wi\04403 anstey park\adm\04403a13 cdp report december 2006.doc

Page 24

300/04403 : Rev 3 : 22-Nov-06

APPENDIX D: STORMWATER CALCULATIONS

		ARI event						
Duration (hrs)	Duration (min)	1	2	5	10	20	50	100
0.02	1	114	126	162	188	213	247	274
0.03	2	101	109	137	156	175	200	218
0.05	3	89.6	97.7	123	141	159	182	200
0.07	4	81	88.6	113	130	146	168	186
0.08	5	74.2	81.3	104	120	136	157	174
0.10	6	68.6	75.3	97	112	127	147	163
0.17	10	53.6	59	76.6	88.8	101	117	130
0.25	15	43	47.5	61.6	71.4	81.2	94.4	105
0.33	20	36.5	40.2	52.1	60.3	68.5	79.6	88.3
0.42	25	32	35.2	45.5	52.6	59.7	69.2	76.7
0.50	30	28.7	31.5	40.6	46.9	53.1	61.6	68.2
0.58	35	26.1	28.6	36.8	42.4	48.1	55.7	61.6
0.67	40	24	26.3	33.8	38.9	44.1	51	56.5
0.75	45	22.3	24.5	31.3	36.1	40.8	47.2	52.2
0.83	50	20.9	22.9	29.2	33.7	38.1	44.1	48.7
0.92	55	19.7	21.5	27.5	31.6	35.8	41.4	45.8
1.00	60	18.6	20.4	26	29.9	33.8	39.1	43.3
1.50	90	14.4	15.7	20	22.9	26	30.1	33.4
2	120	12	13.1	16.6	19.1	21.6	25.1	27.9
3	180	9.23	10.1	12.8	14.7	16.8	19.6	22
4.5	270	7.07	7.71	9.85	11.4	13.1	15.4	17.4
6	360	5.84	6.38	8.19	9.54	11	13	14.7
9	540	4.43	4.85	6.28	7.36	8.51	10.2	11.6
12	720	3.63	3.98	5.18	6.09	7.07	8.49	9.69
18	1080	2.71	2.98	3.91	4.62	5.37	6.46	7.38
24	1440	2.2	2.42	3.18	3.75	4.37	5.24	5.98
30	1800	1.87	2.05	2.69	3.18	3.69	4.42	5.02
36	2160	1.63	1.79	2.35	2.77	3.21	3.82	4.32
48	2880	1.32	1.45	1.89	2.21	2.55	3.01	3.38
72	4320	0.985	1.08	1.39	1.61	1.84	2.13	2.37
96	5760	0.812	0.887	1.13	1.3	1.47	1.68	1.85
120	7200	0.708	0.772	0.973	1.11	1.25	1.42	1.55
144	8640	0.641	0.697	0.873	0.991	1.1	1.26	1.37
168	10080	0.595	0.647	0.807	0.912	1.01	1.15	1.26

Summary of all drainage Infrastructure k= 10.0 m/day

No*	Catchment	Name	Basin/Soakwell/Cell	no*	Basin=Plan area / Soakwell=Dia (m), Cell Number	Ave depth (m) / Depth of Cell	Volume (m³)	Outflow (L/s)	Note
1	1	Lot Soakwell	Soakwell	1	1.8	1.5	3.8	0.54	Single R30 lot
2	2	Lot Soakwell	Soakwell	1	1.8	1.5	3.8	0.54	Single R20 Lot
3	3	Lot Soakwell	Soakwell	14	1.8	1.5	53.4	7.56	Total R30 lots
4	3	Lot Soakwell	Soakwell	99	1.8	1.5	377.8	53.5	Total R20 lots
5	4	Lot Soakwell	Soakwell	1	1.8	1.5	3.8	0.54	Single 350m2 lot
6	5	Road Reserve							
7	6	Bio-retention	Basin	1	637.2	0.275	175.2	73.8	Bioretention area in basin
8	6	PRI soils storage	Basin	-	637.2	0.3	38.2	() ()	Storage inside the PRI soils. 20% Void Ratio assumed
9	8	Total Basin	Basin		•	-	1,044.5		Above ground storage (refer to Basin Design Table)
10									
11									
12									
13									
14									
15									
			·		·				·
						sum	1,513.9	166.2	

<u>Design Summary - Lookup to use in Catchment Detention Tab</u>

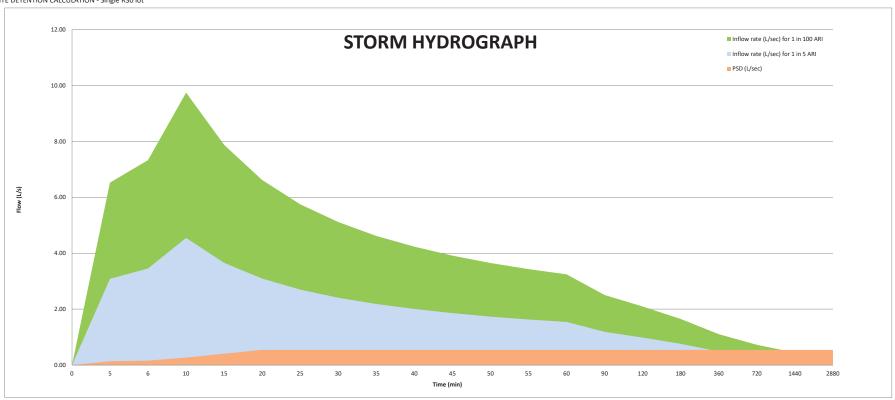
Catchment	Area (m2)	outflow (I/s)	Storage Volume (m3)	С	Note
Manual Overwrite					
1	375	0.5	3.8	0.60	Single R30 lot
2	500	0.5	3.8	0.40	Single R20 Lot
3	52,635	61.0	431.2	0.40	All Residential Lots
4	350	0.5	3.8	0.60	350mm lot for the first 15mm
5	21,800	0.5	3.8	0.60	Road Reserve to Size Bio-Retention Area
6	28,065	73.8	213.4	0.60	Road Reserve and POS - minor storm outflow
7	28,065	105.2	1,082.7	0.60	Road Reserve and POS - max outflow
8	80,700	166.2	1,513.9	0.47	Total Area exc. storage and outflow in RR

key

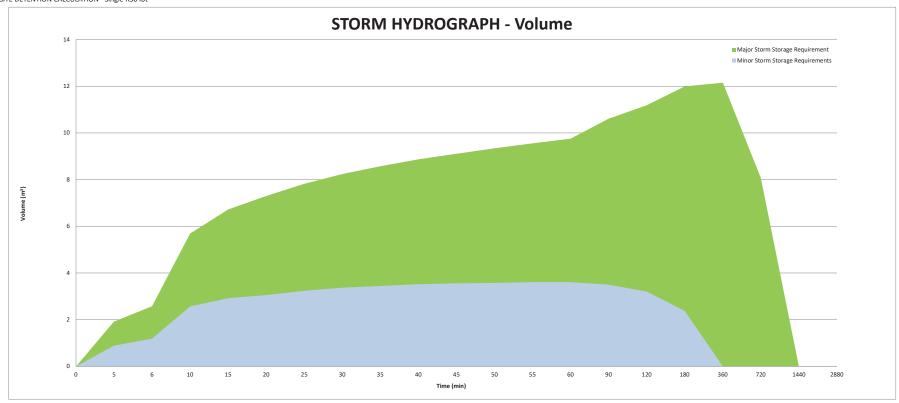
calc cell input cell

ON SITE DETENTION CALCULATION - Single R30 lot

Inputs	<u>5.</u>	VOITE DETERMINING CALCOLATIO	Julian Notice
Project Location	Surf Drive, Secret harbour		
Sub-Catchment Selectin or Manual Input	Sub-Catchment	1	
Sub-Catchment	1	Single R30 lot	
Referenced Area from Subcatchment (sq.m)	375.0		
Site Area Manual Overwrite (sq.m)			
Pre-development flow ARI (1 in)	5]	
Post-development flow ARI (1 in) minor storm	5		
Post-development flow ARI (1 in) major storm	100		
Area for consideration (sq.m)	375.0]	
Pre-developed flow			
Infiltration Rate (m/day)	10		
Total Time of Concentration (min)	10	1	
Manual Outflow (L/s)			
5 year ARI intensity for 10 minute time of concentration	76.6		
Calculated outflow from subcatchment (L/sec)	0.5]	
Site Outflow Rate (L/sec)	0.5		
	1 in 5 year storm	1 in 100 year storm	storage provided
Post developed coefficient of runoff 'C10'	0.60	0.60	
Frequency Factor (F _f)	0.95	1.2	
Apopted C Value (C ₁₀ *F _f)	0.6	0.7	
Area for consideration (sq.m)	375	375	
Time of concentration (min)	10.0	10.0	
Storage required (m ³)	3.6	12.2	3.8
Critical Storm (min)	60.0	360.0	
			_


Sub-Catchment Reference Cells
Input cell
Calculation cell
Formula cell

Frequency Factor
Fy
0.80
0.85
0.95
1.00
1.05
1.15
1.20

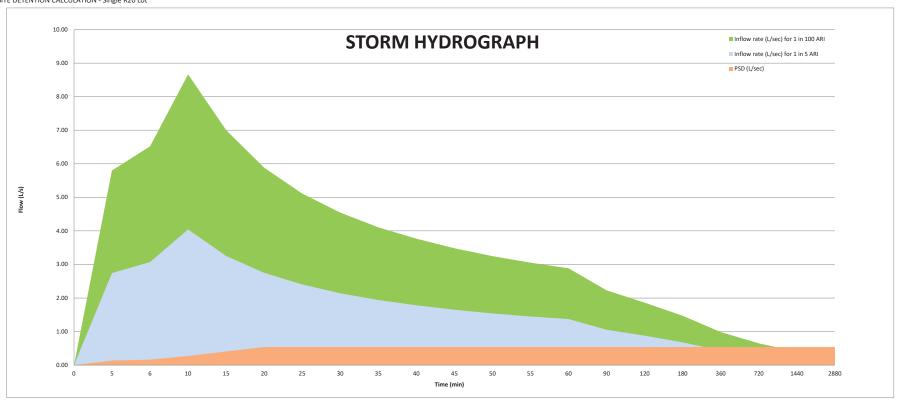

Storm Routing - Minor	ON SITE DETENTION CALCULATION - Single R30 lot					
		E	F	PSD	G	Н
D	I	F _{y*} CIA /3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 5 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	104	3.09	926	0.13	40	886
6	97	3.46	1244	0.16	58	1186
10	76.6	4.55	2729	0.27	162	2567
15	61.6	3.66	3292	0.40	364	2927
20	52.1	3.09	3712	0.54	648	3064
25	45.5	2.70	4052	0.54	810	3242
30	40.6	2.41	4339	0.54	972	3367
35	36.8	2.19	4589	0.54	1134	3455
40	33.8	2.01	4817	0.54	1296	3521
45	31.3	1.86	5018	0.54	1458	3560
50	29.2	1.73	5201	0.54	1620	3581
55	27.5	1.63	5388	0.54	1782	3606
60	26	1.54	5558	0.54	1944	3614
90	20	1.19	6413	0.54	2916	3497
120	16.6	0.99	7097	0.54	3888	3209
180	12.8	0.76	8208	0.54	5832	2376
360	8.19	0.49	10504	0.54	11663	
720	5.18	0.31	13287	0.54	23326	
1440	3.18	0.19	16313	0.54	46653	
2880	1.89	0.11	19391	0.54	93305	
					Max Storage (L)	3614
					Design Storage	3620
				(ritical duration (min)	60

Storm Routing - Major	ON SITE DETENTION CALCUL	LATION - Single R30 lot				
		E	F	PSD	G	Н
D	ı	F _y CIA2/3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 100 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	174	6.53	1958	0.13	40	1917
6	163	7.34	2641	0.16	58	2582
10	130	9.75	5850	0.27	162	5688
15	105	7.88	7088	0.40	364	6723
20	88.3	6.62	7947	0.54	648	7299
25	76.7	5.75	8629	0.54	810	7819
30	68.2	5.12	9207	0.54	972	8235
35	61.6	4.62	9702	0.54	1134	8568
40	56.5	4.24	10170	0.54	1296	8874
45	52.2	3.92	10571	0.54	1458	9113
50	48.7	3.65	10958	0.54	1620	9338
55	45.8	3.44	11336	0.54	1782	9554
60	43.3	3.25	11691	0.54	1944	9747
90	33.4	2.51	13527	0.54	2916	10611
120	27.9	2.09	15066	0.54	3888	11178
180	22	1.65	17820	0.54	5832	11988
360	14.7	1.10	23814	0.54	11663	12151
720	9.69	0.73	31396	0.54	23326	8069
1440	5.98	0.45	38750	0.54	46653	
2880	3.38	0.25	43805	0.54	93305	
	·	·		·	Max Storage (L)	12151
					Design Storage	12160
					Critical duration (m	360

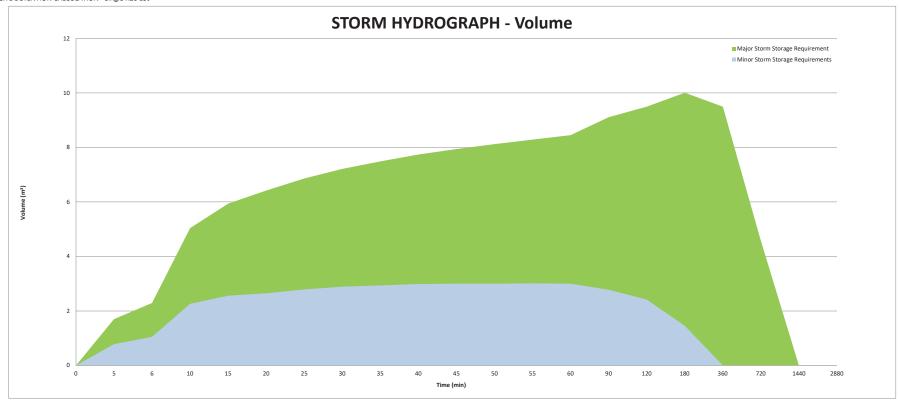
ON SITE DETENTION CALCULATION - Single R20 Lot

Project Location	Surf Drive, Secret harbour		
Sub-Catchment Selectin or Manual Input	Sub-Catchment		
Sub-Catchment	2	Single R20 Lot	
Referenced Area from Subcatchment (sq.m)	500.0		
Site Area Manual Overwrite (sq.m)			
Pre-development flow ARI (1 in)	5]	
Post-development flow ARI (1 in) minor storm	5		
Post-development flow ARI (1 in) major storm	100		
Area for consideration (sq.m)	500.0]	
Pre-developed flow			
Infiltration Rate (m/day)	10		
Total Time of Concentration (min)	10		
Manual Outflow (L/s)			
5 year ARI intensity for 10 minute time of concentration	76.6		
Calculated outflow from subcatchment (L/sec)	0.5]	
Site Outflow Rate (L/sec)	0.5]	
	1 in 5 year storm	1 in 100 year storm	storage provided
Post developed coefficient of runoff 'C10'	0.40	0.40	
Frequency Factor (F _f)	0.95	1.2	
Apopted C Value (C ₁₀ *F _f)	0.4	0.5	
Area for consideration (sq.m)	500	500	
Time of concentration (min)	10.0	10.0	
Time of concentration (min) Storage required (m³)	10.0 3.0	10.0	3.8

Inputs


Sub-Catchment Reference Cells
Input cell
Calculation cell
Formula cell

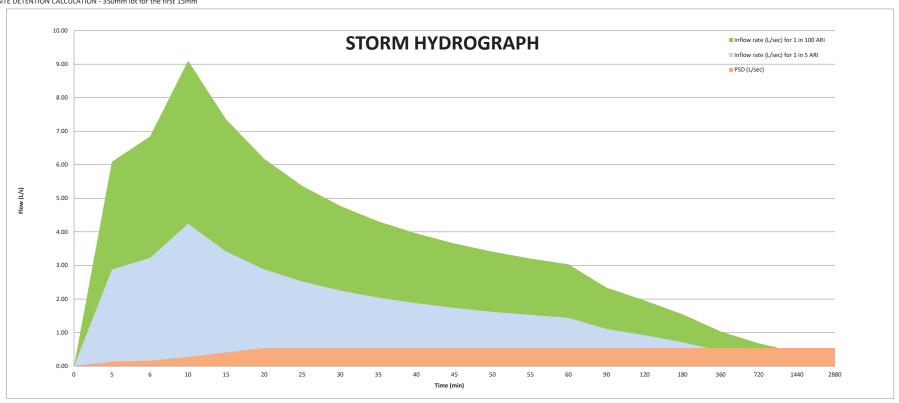
	Frequency Factor
ARI	Fy
1.0	0.80
2.0	0.85
5.0	0.95
10.0	1.00
20.0	1.05
50.0	1.15
100.0	1.20


Storm Routing - Minor	ON SITE DETENTION CALCUL	ATION - Single R20 Lot				
		E	F	PSD	G	Н
D	ı	F _{y+} CIA /3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 5 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	104	2.74	823	0.13	40	783
6	97	3.07	1106	0.16	58	1047
10	76.6	4.04	2426	0.27	162	2264
15	61.6	3.25	2926	0.40	364	2562
20	52.1	2.75	3300	0.54	648	2652
25	45.5	2.40	3602	0.54	810	2792
30	40.6	2.14	3857	0.54	972	2885
35	36.8	1.94	4079	0.54	1134	2945
40	33.8	1.78	4281	0.54	1296	2985
45	31.3	1.65	4460	0.54	1458	3002
50	29.2	1.54	4623	0.54	1620	3003
55	27.5	1.45	4790	0.54	1782	3008
60	26	1.37	4940	0.54	1944	2996
90	20	1.06	5700	0.54	2916	2784
120	16.6	0.88	6308	0.54	3888	2420
180	12.8	0.68	7296	0.54	5832	1464
360	8.19	0.43	9337	0.54	11663	
720	5.18	0.27	11810	0.54	23326	
1440	3.18	0.17	14501	0.54	46653	
2880	1.89	0.10	17237	0.54	93305	
	·	·	·	·	Max Storage (L)	3008
					Design Storage	3010
				(Critical duration (min)	55

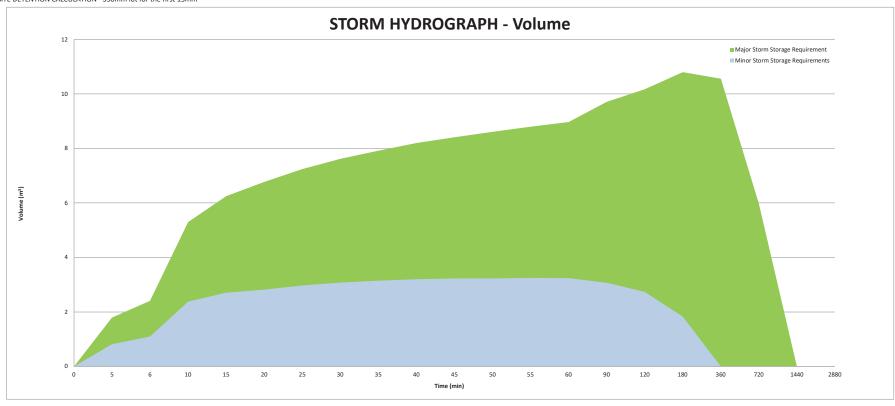
Storm Routing - Major	ON SITE DETENTION CALCUL	ATION - Single R20 Lot				
		E	F	PSD	G	Н
D	I	F _y CIA2/3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 100 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	174	5.80	1740	0.13	40	1700
6	163	6.52	2347	0.16	58	2289
10	130	8.67	5200	0.27	162	5038
15	105	7.00	6300	0.40	364	5936
20	88.3	5.89	7064	0.54	648	6416
25	76.7	5.11	7670	0.54	810	6860
30	68.2	4.55	8184	0.54	972	7212
35	61.6	4.11	8624	0.54	1134	7490
40	56.5	3.77	9040	0.54	1296	7744
45	52.2	3.48	9396	0.54	1458	7938
50	48.7	3.25	9740	0.54	1620	8120
55	45.8	3.05	10076	0.54	1782	8294
60	43.3	2.89	10392	0.54	1944	8448
90	33.4	2.23	12024	0.54	2916	9108
120	27.9	1.86	13392	0.54	3888	9504
180	22	1.47	15840	0.54	5832	10008
360	14.7	0.98	21168	0.54	11663	9505
720	9.69	0.65	27907	0.54	23326	4581
1440	5.98	0.40	34445	0.54	46653	
2880	3.38	0.23	38938	0.54	93305	
					Max Storage (L)	10008
					Design Storage	10010
					Critical duration (m	180

ON SITE DETENTION CALCULATION - 350mm lot for the first 15mm

	ON SITE DETENTION CAECULATION - SSORIE TO COLOR THE HIST ISHIIII
Inputs	No Lots currently fit the requirements, to prove feasability only
Project Location	Surf Drive, Secret harbour
Sub-Catchment Selectin or Manual Input	Sub-Catchment Sub-Catchment
Sub-Catchment	4 350mm lot for the first 15mm
Referenced Area from Subcatchment (sq.m)	350.0
Site Area Manual Overwrite (sq.m)	
Pre-development flow ARI (1 in)	5
Post-development flow ARI (1 in) minor storm	5
Post-development flow ARI (1 in) major storm	100
Area for consideration (sq.m)	350.0
Pre-developed flow	
Infiltration Rate (m/day)	10
Total Time of Concentration (min)	10
Manual Outflow (L/s)	
5 year ARI intensity for 10 minute time of concentration	76.6
Calculated outflow from subcatchment (L/sec)	0.5
Site Outflow Rate (L/sec)	0.5
	Initial 15mm of rainfall storage provided
Post developed coefficient of runoff 'C10'	0.60
Frequency Factor (F _f)	1.0
Apopted C Value (C ₁₀ *F _f)	
Area for consideration (sq.m)	350
Time of concentration (min)	-
Storage required (m³)	3.2 3.8
Critical Storm (min)	5.2
Chucai Storm (mill)	


Sub-Catchment Reference Cells
Input cell
Calculation cell
Formula cell

	Frequency Factor				
ARI	Fy				
1.0	0.80				
2.0	0.85				
5.0	0.95				
10.0	1.00				
20.0	1.05				
50.0	1.15				
100.0	1.20				


Storm Routing - Minor	ON SITE DETENTION CALCUL	ATION - 350mm lot for the first 15mm				
		E	F	PSD	G	Н
D	I	F _{y+} CIA /3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 5 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	104	2.88	865	0.13	40	824
6	97	3.23	1161	0.16	58	1103
10	76.6	4.24	2547	0.27	162	2385
15	61.6	3.41	3072	0.40	364	2708
20	52.1	2.89	3465	0.54	648	2817
25	45.5	2.52	3782	0.54	810	2972
30	40.6	2.25	4050	0.54	972	3078
35	36.8	2.04	4283	0.54	1134	3149
40	33.8	1.87	4495	0.54	1296	3199
45	31.3	1.73	4683	0.54	1458	3225
50	29.2	1.62	4855	0.54	1620	3235
55	27.5	1.52	5029	0.54	1782	3247
60	26	1.44	5187	0.54	1944	3243
90	20	1.11	5985	0.54	2916	3069
120	16.6	0.92	6623	0.54	3888	2736
180	12.8	0.71	7661	0.54	5832	1829
360	8.19	0.45	9803	0.54	11663	
720	5.18	0.29	12401	0.54	23326	
1440	3.18	0.18	15226	0.54	46653	
2880	1.89	0.10	18099	0.54	93305	
					Max Storage (L)	3247
					Design Storage	3250
				(Critical duration (min)	55

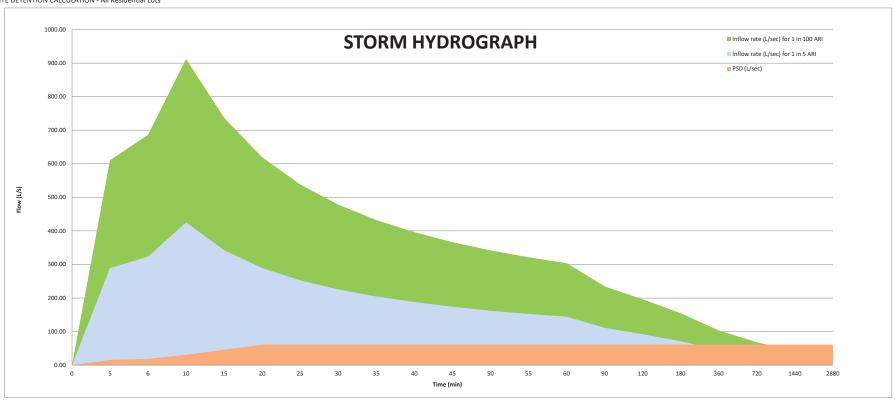
Storm Routing - Major	ON SITE DETENTION CALCUL	LATION - 350mm lot for the first 15mm				
		E	F	PSD	G	Н
D	1	F _y CIA2/3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 100 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	174	6.09	1827	0.13	40	1787
6	163	6.85	2465	0.16	58	2406
10	130	9.10	5460	0.27	162	5298
15	105	7.35	6615	0.40	364	6251
20	88.3	6.18	7417	0.54	648	6769
25	76.7	5.37	8054	0.54	810	7244
30	68.2	4.77	8593	0.54	972	7621
35	61.6	4.31	9055	0.54	1134	7921
40	56.5	3.96	9492	0.54	1296	8196
45	52.2	3.65	9866	0.54	1458	8408
50	48.7	3.41	10227	0.54	1620	8607
55	45.8	3.21	10580	0.54	1782	8798
60	43.3	3.03	10912	0.54	1944	8968
90	33.4	2.34	12625	0.54	2916	9709
120	27.9	1.95	14062	0.54	3888	10174
180	22	1.54	16632	0.54	5832	10800
360	14.7	1.03	22226	0.54	11663	10563
720	9.69	0.68	29303	0.54	23326	5976
1440	5.98	0.42	36167	0.54	46653	
2880	3.38	0.24	40884	0.54	93305	
					Max Storage (L)	10800
					Design Storage	10810
					Critical duration (m	180

ON SITE DETENTION CALCULATION - 350mm lot for the first 15mm

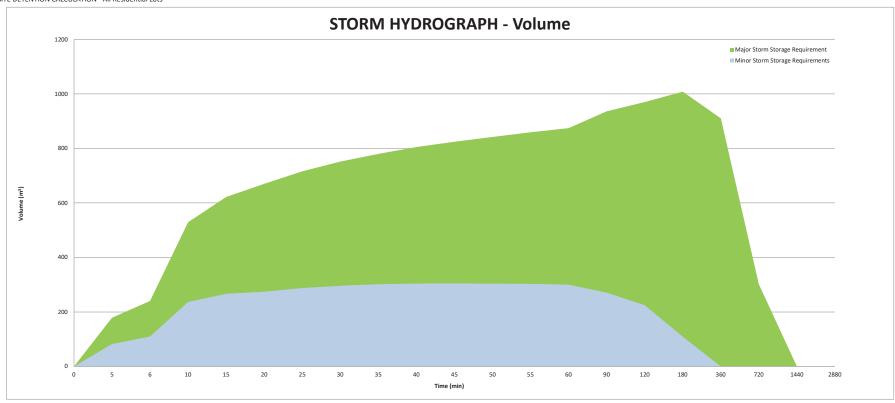
ON SITE DETENTION CALCULATION - All Residential Lots

mpats			
Project Location	Surf Drive, Secret harbour		
Sub-Catchment Selectin or Manual Input	Sub-Catchment		
Sub-Catchment	3	All Residential Lots	
Referenced Area from Subcatchment (sq.m)	52,635.0		
Site Area Manual Overwrite (sq.m)			
Pre-development flow ARI (1 in)	5		
Post-development flow ARI (1 in) minor storm	5		
Post-development flow ARI (1 in) major storm	100		
Area for consideration (sq.m)	52,635.0		
Pre-developed flow			
Infiltration Rate (m/day)	10		
Total Time of Concentration (min)	10		
Manual Outflow (L/s)			
5 year ARI intensity for 10 minute time of concentration	76.6		
Calculated outflow from subcatchment (L/sec)	61.0		
Site Outflow Rate (L/sec)	61.0		
	1 in 5 year storm	1 in 100 year storm	storage provided
Post developed coefficient of runoff 'C10'	0.40	0.40	
Frequency Factor (F _f)	1.0	1.2	
Apopted C Value (C ₁₀ *F _f)	0.4	0.5	
Area for consideration (sq.m)	52,635	52,635	
Time of concentration (min)	10.0	10.0	
Storage required (m ³)	304.8	1,008.5	431.2

Inputs


Sub-Catchment Reference Cells
Input cell
Calculation cell
Formula cell

Frequency Factor				
ARI	Fy			
1.0	0.8			
2.0	0.9			
5.0	1.0			
10.0	1.0			
20.0	1.1			
50.0	1.2			
100.0	1.2			


Storm Routing - Minor	- Minor ON SITE DETENTION CALCULATION - All Residential Lots					
		E	F	PSD	G	Н
D	I	F _{y*} CIA /3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 5 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	104	288.91	86672	15.25	4576	82096
6	97	323.35	116408	18.30	6590	109818
10	76.6	425.58	255350	30.51	18305	237045
15	61.6	342.24	308020	45.76	41186	266834
20	52.1	289.46	347356	61.02	73219	274137
25	45.5	252.79	379191	61.02	91523	287668
30	40.6	225.57	406026	61.02	109828	296198
35	36.8	204.46	429361	61.02	128133	301228
40	33.8	187.79	450696	61.02	146437	304258
45	31.3	173.90	469531	61.02	164742	304788
50	29.2	162.23	486698	61.02	183047	303651
55	27.5	152.79	504199	61.02	201352	302848
60	26	144.45	520034	61.02	219656	300378
90	20	111.12	600039	61.02	329484	270555
120	16.6	92.23	664043	61.02	439312	224731
180	12.8	71.12	768050	61.02	658969	109081
360	8.19	45.50	982864	61.02	1317937	
720	5.18	28.78	1243281	61.02	2635875	
1440	3.18	17.67	1526499	61.02	5271750	
2880	1.89	10.50	1814518	61.02	10543499	
					Max Storage (L)	304788
					Design Storage	304790
				(Critical duration (min)	45

Storm Routing - Major	ON SITE DETENTION CALCUL	ATION - All Residential Lots				
		E	F	PSD	G	Н
D	1	F _y CIA2/3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 100 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	174	610.57	183170	15.25	4576	178594
6	163	686.36	247090	18.30	6590	240500
10	130	912.34	547404	30.51	18305	529099
15	105	736.89	663201	45.76	41186	622015
20	88.3	619.69	743627	61.02	73219	670409
25	76.7	538.28	807421	61.02	91523	715897
30	68.2	478.63	861530	61.02	109828	751702
35	61.6	432.31	907848	61.02	128133	779716
40	56.5	396.52	951641	61.02	146437	805203
45	52.2	366.34	989117	61.02	164742	824375
50	48.7	341.78	1025330	61.02	183047	842283
55	45.8	321.42	1060701	61.02	201352	859349
60	43.3	303.88	1093966	61.02	219656	874310
90	33.4	234.40	1265766	61.02	329484	936282
120	27.9	195.80	1409776	61.02	439312	970463
180	22	154.40	1667477	61.02	658969	1008508
360	14.7	103.16	2228355	61.02	1317937	910418
720	9.69	68.00	2937791	61.02	2635875	301916
1440	5.98	41.97	3626004	61.02	5271750	
2880	3.38	23.72	4098961	61.02	10543499	
					Max Storage (L)	1008508
					Design Storage	1008510
					Critical duration (m	180

ON SITE DETENTION CALCULATION - Road Reserve and POS - minor storm outflow

	ON SITE DETERMINE	THE CALCOLATION - ROdd RC3CI	ve and i ob - initiol storin of	atric
Inputs				
Project Location	Surf Drive, Secret harbour			
Sub-Catchment Selectin or Manual Input	Sub-Catchment			
Sub-Catchment Sub-Catchment	6	Road Reserve and POS - minor store	m outflow	
Referenced Area from Subcatchment (sq.m)	28,065.0			
Site Area Manual Overwrite (sq.m)				
Pre-development flow ARI (1 in)	5	1		
Post-development flow ARI (1 in) minor storm	5			
Post-development flow ARI (1 in) major storm	100			
Area for consideration (sq.m)	28,065.0]		
Pre-developed flow				
Infiltration Rate (m/day)	10			
Total Time of Concentration (min)	10			
Manual Outflow (L/s)				
5 year ARI intensity for 10 minute time of concentration	76.6			
Calculated outflow from subcatchment (L/sec)	73.8]		
Site Outflow Rate (L/sec)	73.8]		
	1 in 5 year storm	1 in 100 year storm	storage provided	
Post developed coefficient of runoff 'C ₁₀ '	0.60	0.60		
Frequency Factor (F _f)	0.95	1.2		
Apopted C Value (C ₁₀ *F _f)	0.6	0.7		
Area for consideration (sq.m)	28,065	28,065		
Time of concentration (min)	10.0	10.0		
Storage required (m ³)	196.6	614.1	213.4	
Critical Storm (min)	15.0	90.0		

Sub-Catchment Reference Cells
Input cell
Calculation cell
Formula cell

Frequency Factor				
ARI	Fy			
1.0	0.8			
2.0	0.9			
5.0	1.0			
10.0	1.0			
20.0	1.1			
50.0	1.2			
100.0	1.2			

Storm Routing - Minor	ON SITE DETENTION CALCUL	ATION - Road Reserve and POS - minor stor	m outflow			
		E	F	PSD	G	Н
D	1	F _{y*} CIA /3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 5 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	104	231.07	69321	18.44	5531	63789
6	97	258.62	93103	22.13	7965	85138
10	76.6	340.38	204229	36.88	22125	182104
15	61.6	273.73	246355	55.31	49781	196573
20	52.1	231.51	277815	73.75	88500	189315
25	45.5	202.18	303277	73.75	110625	192652
30	40.6	180.41	324740	73.75	132750	191990
35	36.8	163.53	343403	73.75	154875	188528
40	33.8	150.19	360467	73.75	177000	183467
45	31.3	139.09	375531	73.75	199125	176406
50	29.2	129.75	389262	73.75	221250	168012
55	27.5	122.20	403259	73.75	243375	159884
60	26	115.53	415923	73.75	265500	150423
90	20	88.87	479912	73.75	398250	81662
120	16.6	73.76	531102	73.75	531000	102
180	12.8	56.88	614287	73.75	796500	
360	8.19	36.39	786095	73.75	1593000	
720	5.18	23.02	994377	73.75	3186000	
1440	3.18	14.13	1220895	73.75	6372000	
2880	1.89	8.40	1451252	73.75	12744000	
					Max Storage (L)	196573
					Design Storage	196580
				Cı	ritical duration (min)	15

		E	F	PSD	G	Н
D	1	F _y CIA2/3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 100 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	174	488.33	146499	18.44	5531	140968
6	163	548.95	197623	22.13	7965	189658
10	130	729.69	437814	36.88	22125	415689
15	105	589.37	530429	55.31	49781	480647
20	88.3	495.63	594753	73.75	88500	506253
25	76.7	430.52	645776	73.75	110625	535151
30	68.2	382.81	689052	73.75	132750	556302
35	61.6	345.76	726098	73.75	154875	571223
40	56.5	317.13	761123	73.75	177000	584123
45	52.2	293.00	791096	73.75	199125	591971
50	48.7	273.35	820059	73.75	221250	598809
55	45.8	257.08	848349	73.75	243375	604974

243.04 187.47 156.60 123.49 82.51

54.39 33.57

18.97

874954

2349647

2900080

3278351

73.75 73.75 73.75 73.75 73.75 73.75 73.75 73.75

73.75

45.8 43.3 33.4 27.9 22 14.7

9.69

5.98

3.38

ON SITE DETENTION CALCULATION - Road Reserve and POS - minor storm outflow

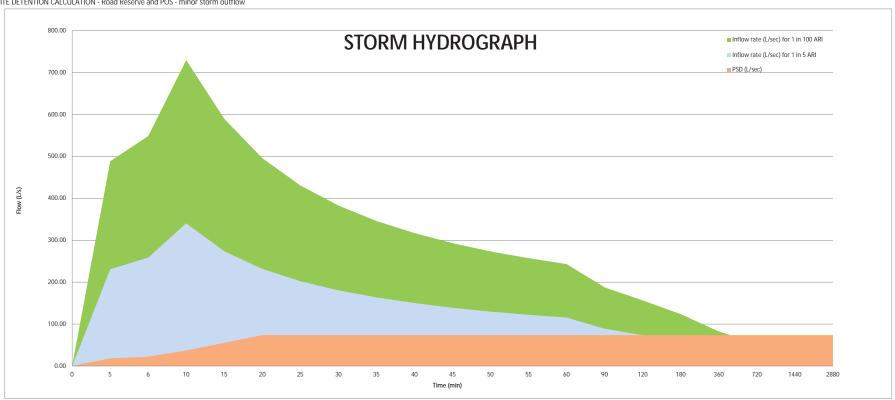
Storm Routing - Major

360 720 1440

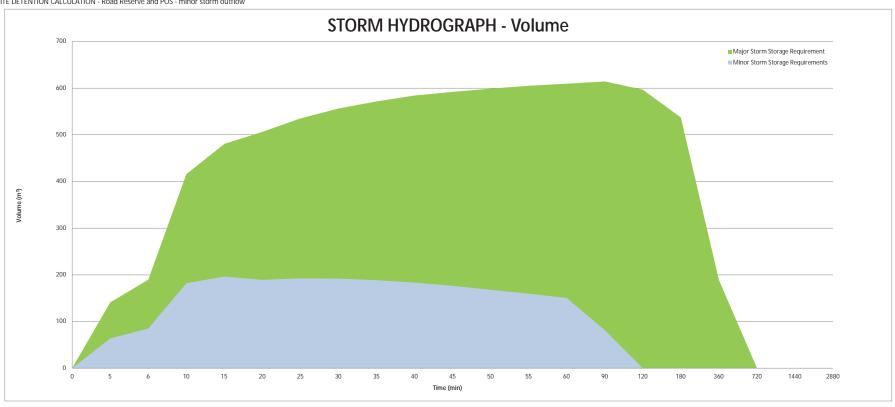
2880

12744000 Max Storage (L)

Design Storage


Critical duration (m. 614111 614120 90

609454


3186000

6372000

ON SITE DETENTION CALCULATION - Road Reserve and POS - minor storm outflow

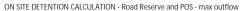
ON SITE DETENTION CALCULATION - Road Reserve and POS - max outflow

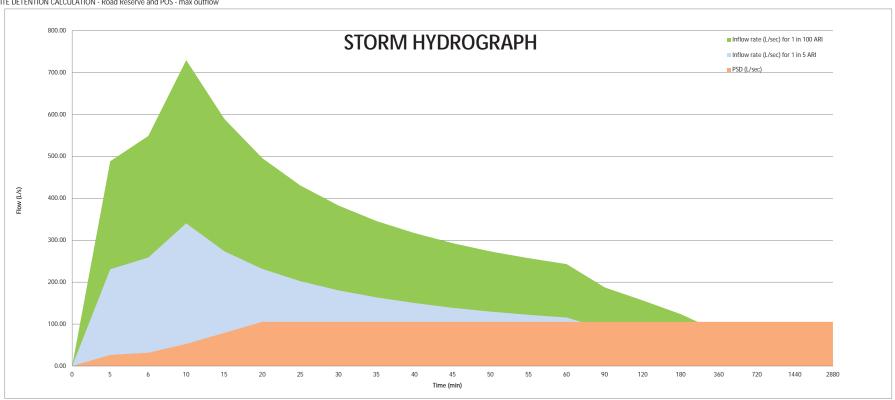
Project Location	Surf Drive, Secret harbour			
Sub-Catchment Selectin or Manual Input	Sub-Catchment			
Sub-Catchment	7	Road Reserve and POS - max outflow		
Referenced Area from Subcatchment (sq.m)	28,065.0			
Site Area Manual Overwrite (sq.m)				
Pre-development flow ARI (1 in)	5			
Post-development flow ARI (1 in) minor storm	5			
Post-development flow ARI (1 in) major storm	100			
Area for consideration (sq.m)	28,065.0			
Pre-developed flow				
Infiltration Rate (m/day)	10			
Total Time of Concentration (min)	10			
Manual Outflow (L/s)				
5 year ARI intensity for 10 minute time of concentration	76.6			
Calculated outflow from subcatchment (L/sec)	105.2]		
Site Outflow Rate (L/sec)	105.2]		
		-		
	1 in 5 year storm	1 in 100 year storm	storage provided	
Post developed coefficient of runoff 'C10'	0.60	0.60		
Frequency Factor (F _f)	0.95	1.2		
Apopted C Value ($C_{10}*F_f$)	0.6	0.7		
Area for consideration (sq.m)	28,065	28,065		
Time of concentration (min)	10.0	10.0		
Storage required (m ³)	175.4	508.8	1082.7	
Critical Storm (min)	15.0	40.0		

Sub-Catchment Reference Cells
Input cell
Calculation cell
Formula cell

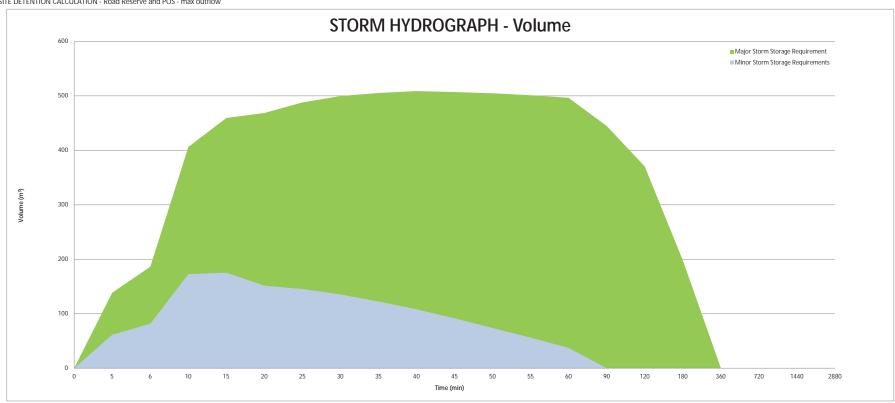
	Frequency Factor				
ARI	Fy				
1.0	0.8				
2.0	0.9				
5.0	1.0				
10.0	1.0				
20.0	1.1				
50.0	1.2				
100.0	1.2				

rm Routing - Minor ON SITE DETENTION CALCULATION - Road Reserve and POS - max outflow						
		E	F	PSD	G	Н
D	1	F _{y*} CIA /3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 5 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	104	231.07	69321	26.29	7886	61434
6	97	258.62	93103	31.55	11357	81746
10	76.6	340.38	204229	52.58	31546	172683
15	61.6	273.73	246355	78.86	70978	175376
20	52.1	231.51	277815	105.15	126183	151632
25	45.5	202.18	303277	105.15	157729	145548
30	40.6	180.41	324740	105.15	189275	135465
35	36.8	163.53	343403	105.15	220821	122583
40	33.8	150.19	360467	105.15	252367	108100
45	31.3	139.09	375531	105.15	283913	91618
50	29.2	129.75	389262	105.15	315458	73803
55	27.5	122.20	403259	105.15	347004	56255
60	26	115.53	415923	105.15	378550	37373
90	20	88.87	479912	105.15	567825	
120	16.6	73.76	531102	105.15	757100	
180	12.8	56.88	614287	105.15	1135650	
360	8.19	36.39	786095	105.15	2271300	
720	5.18	23.02	994377	105.15	4542600	
1440	3.18	14.13	1220895	105.15	9085200	
2880	1.89	8.40	1451252	105.15	18170400	
					Max Storage (L)	175376
					Design Storage	175380
				Cr	itical duration (min)	15


Storm Routing - Major	ON SITE DETENTION CALCULATION - Road Reserve and POS - max outflow


Storm Routing Wajor	ON SITE DETERMINING ONESOE	ATTOM RODG RESERVE UTILITIES THAN OUTTO	**			
		E	F	PSD	G	Н
D	1	F _y CIA2/3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 100 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	174	488.33	146499	26.29	7886	138613
6	163	548.95	197623	31.55	11357	186266
10	130	729.69	437814	52.58	31546	406268
15	105	589.37	530429	78.86	70978	459450
20	88.3	495.63	594753	105.15	126183	468570
25	76.7	430.52	645776	105.15	157729	488046
30	68.2	382.81	689052	105.15	189275	499777
35	61.6	345.76	726098	105.15	220821	505277
40	56.5	317.13	761123	105.15	252367	508756
45	52.2	293.00	791096	105.15	283913	507184
50	48.7	273.35	820059	105.15	315458	504601
55	45.8	257.08	848349	105.15	347004	501345
60	43.3	243.04	874954	105.15	378550	496404
90	33.4	187.47	1012361	105.15	567825	444536
120	27.9	156.60	1127539	105.15	757100	370439
180	22	123.49	1333649	105.15	1135650	197999
360	14.7	82.51	1782240	105.15	2271300	
720	9.69	54.39	2349647	105.15	4542600	
1440	5.98	33.57	2900080	105.15	9085200	
2880	3.38	18.97	3278351	105.15	18170400	
					Max Storage (L)	508756
					Design Storage	508760

 Max Storage (L)
 508756


 Design Storage
 508760

 Critical duration (n.
 40

ON SITE DETENTION CALCULATION - Road Reserve and POS - max outflow

ON SITE DETENTION CALCULATION - Total Area exc. storage and outflow in RR

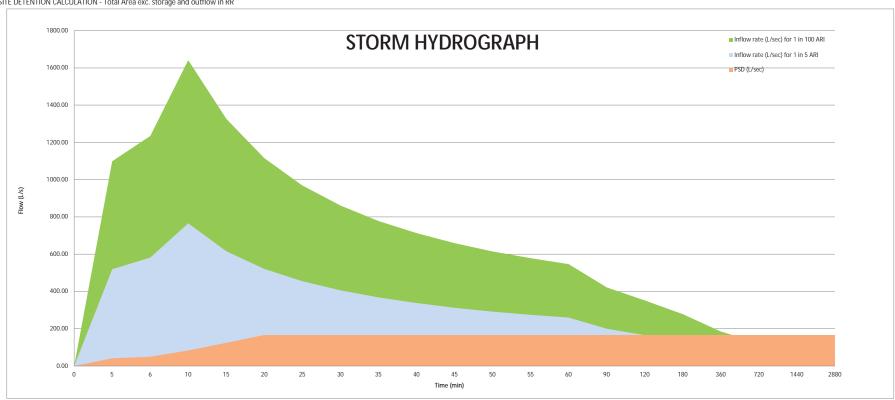
	ON SHE DETEN	HOW CALCOLATION - TOTAL AIR	ca cxc. storage and outnow in	1111
Inputs				
Project Location	Surf Drive, Secret harbour			
Sub-Catchment Selectin or Manual Input	Sub-Catchment			
Sub-Catchment	8	Total Area exc. storage and outflo	w in RR	
Referenced Area from Subcatchment (sq.m)	80,700.0			
Site Area Manual Overwrite (sq.m)				
Pre-development flow ARI (1 in)	5	1		
Post-development flow ARI (1 in) minor storm	5			
Post-development flow ARI (1 in) major storm	100			
Area for consideration (sq.m)	80,700.0]		
Pre-developed flow				
Infiltration Rate (m/day)	10			
Total Time of Concentration (min)	10			
Manual Outflow (L/s)				
5 year ARI intensity for 10 minute time of concentration	76.6			
Calculated outflow from subcatchment (L/sec)	166.2]		
Site Outflow Rate (L/sec)	166.2	1		
		-		
	1 in 5 year storm	1 in 100 year storm	storage provided	
Post developed coefficient of runoff 'C ₁₀ '	0.47	0.47		
Frequency Factor (F _f)	0.95	1.2		
Apopted C Value (C ₁₀ *F _f)	0.4	0.6		
Area for consideration (sq.m)	80,700	80,700		
Time of concentration (min)	10.0	10.0		
3	442.2	1,380.8	1513.9	
Storage required (m ³)				

Sub-Catchment Reference Cells
Input cell
Calculation cell
Formula cell

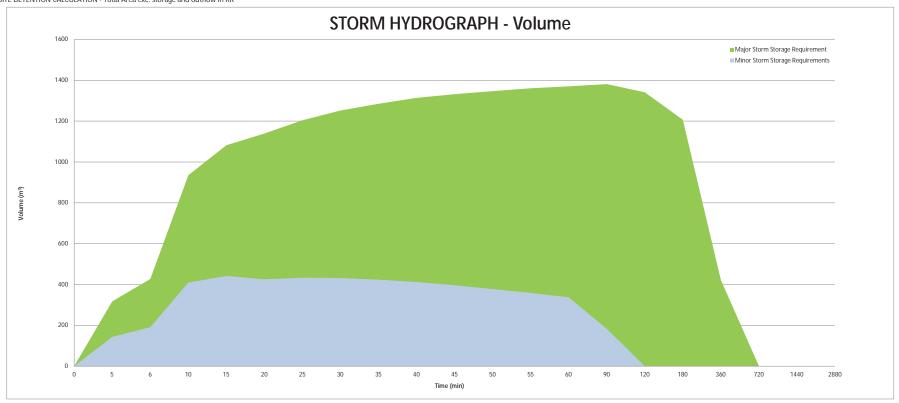
	Frequency Factor				
ARI	Fy				
1.0	0.8				
2.0	0.9				
5.0	1.0				
10.0	1.0				
20.0	1.1				
50.0	1.2				
100.0	1.2				

orm Routing - Minor ON SITE DETENTION CALCULATION - Total Area exc. storage and outflow in RR						
		<i>E</i>	F	PSD	G	Н
D	1	F _{y*} CIA /3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 5 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	104	519.98	155993	41.54	12463	143530
6	97	581.97	209510	49.85	17946	191564
10	76.6	765.96	459579	83.08	49851	409728
15	61.6	615.97	554375	124.63	112164	442211
20	52.1	520.98	625171	166.17	199402	425769
25	45.5	454.98	682469	166.17	249253	433216
30	40.6	405.98	730767	166.17	299103	431663
35	36.8	367.98	772765	166.17	348954	423811
40	33.8	337.98	811163	166.17	398804	412359
45	31.3	312.99	845061	166.17	448655	396407
50	29.2	291.99	875960	166.17	498505	377455
55	27.5	274.99	907458	166.17	548356	359103
60	26	259.99	935957	166.17	598206	337751
90	20	199.99	1079951	166.17	897309	182641
120	16.6	165.99	1195145	166.17	1196412	
180	12.8	127.99	1382337	166.17	1794619	
360	8.19	81.90	1768959	166.17	3589237	
720	5.18	51.80	2237657	166.17	7178475	
1440	3.18	31.80	2747394	166.17	14356950	
2880	1.89	18.90	3265770	166.17	28713899	
					Max Storage (L)	442211
					Design Storage	442220
				Cr	ritical duration (min)	15

Storm Routing - Major ON SITE DETENTION CALCULATION - Total Area exc. storage and outflow in RR


Storm Routing Wajor	ON SITE DETENTION ON EGGE	Titloit Total filea cic. Storage and outnow	III IXIX			
		E	F	PSD	G	Н
D	1	F _y CIA2/3600	60 x D x E		60D x PSD	F - G
Storm duration (min)	Intensity (mm/h)	Inflow rate (L/sec) for 1 in 100 ARI	Total Inflow (L)	PSD (L/sec)	Outflow (L)	Storage required (L)
0	0	0.00	0	0.00	0	0
5	174	1098.90	329669	41.54	12463	317206
6	163	1235.31	444712	49.85	17946	426766
10	130	1642.03	985218	83.08	49851	935367
15	105	1326.26	1193630	124.63	112164	1081466
20	88.3	1115.32	1338381	166.17	199402	1138979
25	76.7	968.80	1453197	166.17	249253	1203944
30	68.2	861.43	1550582	166.17	299103	1251478
35	61.6	778.07	1633946	166.17	348954	1284993
40	56.5	713.65	1712764	166.17	398804	1313959
45	52.2	659.34	1780213	166.17	448655	1331558
50	48.7	615.13	1845389	166.17	498505	1346884
55	45.8	578.50	1909049	166.17	548356	1360694
60	43.3	546.92	1968920	166.17	598206	1370714
90	33.4	421.88	2278127	166.17	897309	1380818
120	27.9	352.40	2537315	166.17	1196412	1340903
180	22	277.88	3001126	166.17	1794619	1206507
360	14.7	185.68	4010595	166.17	3589237	421358
720	9.69	122.39	5287438	166.17	7178475	
1440	5.98	75.53	6526084	166.17	14356950	
2880	3.38	42.69	7377312	166.17	28713899	
·	·	·			Max Storage (L)	1380818
					Design Storage	1380820

 Max Storage (L)
 1380818


 Design Storage
 1380820

 Critical duration (n.
 90

ON SITE DETENTION CALCULATION - Total Area exc. storage and outflow in RR

Inputs

W =	37.5
L =	48
D =	1
H =	4.7
S ₁ =	6
S ₂ =	6
S ₃ =	6
S ₄ =	10
	L = D = H = S ₁ = S ₂ = S ₃ =

Calculation Cells Input Cell

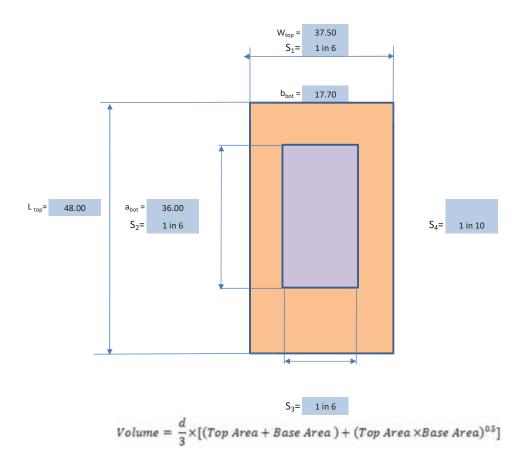
Area analysis

At TWL (sq.m)	$A_{top} =$	1800.0	m²
At base (sq.m)	$A_{bot} =$	637.2	m²

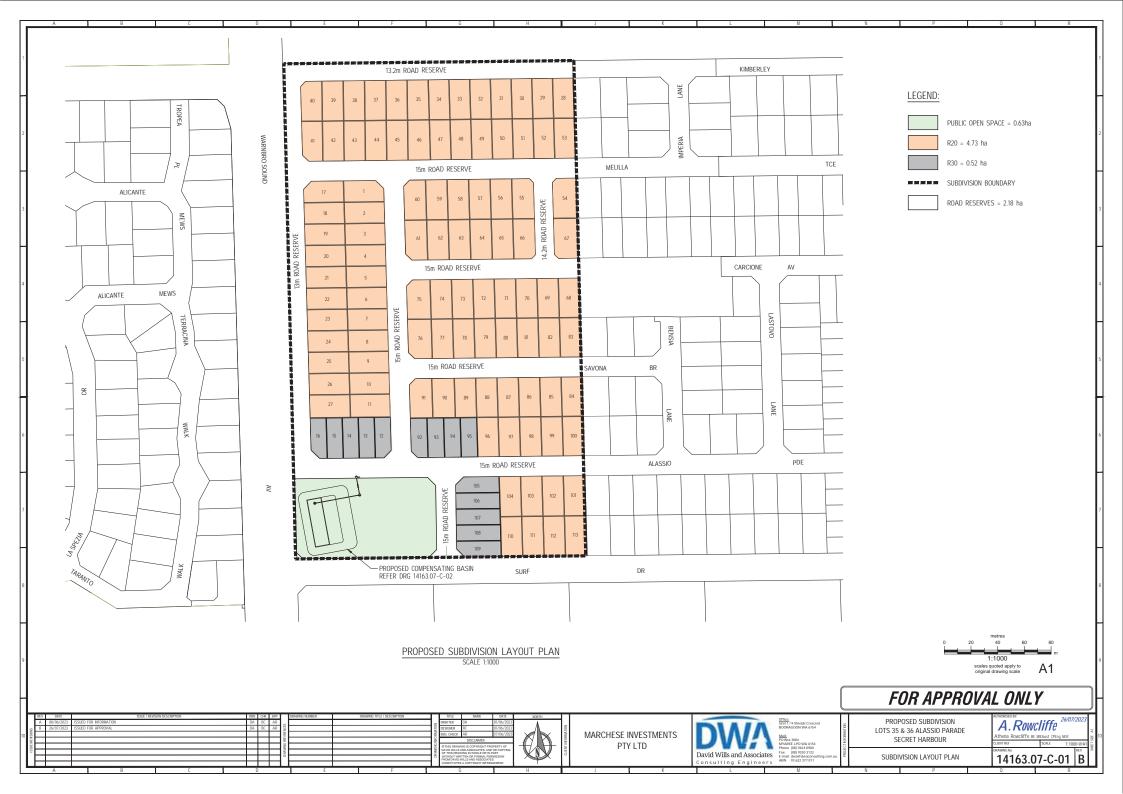
Outflows

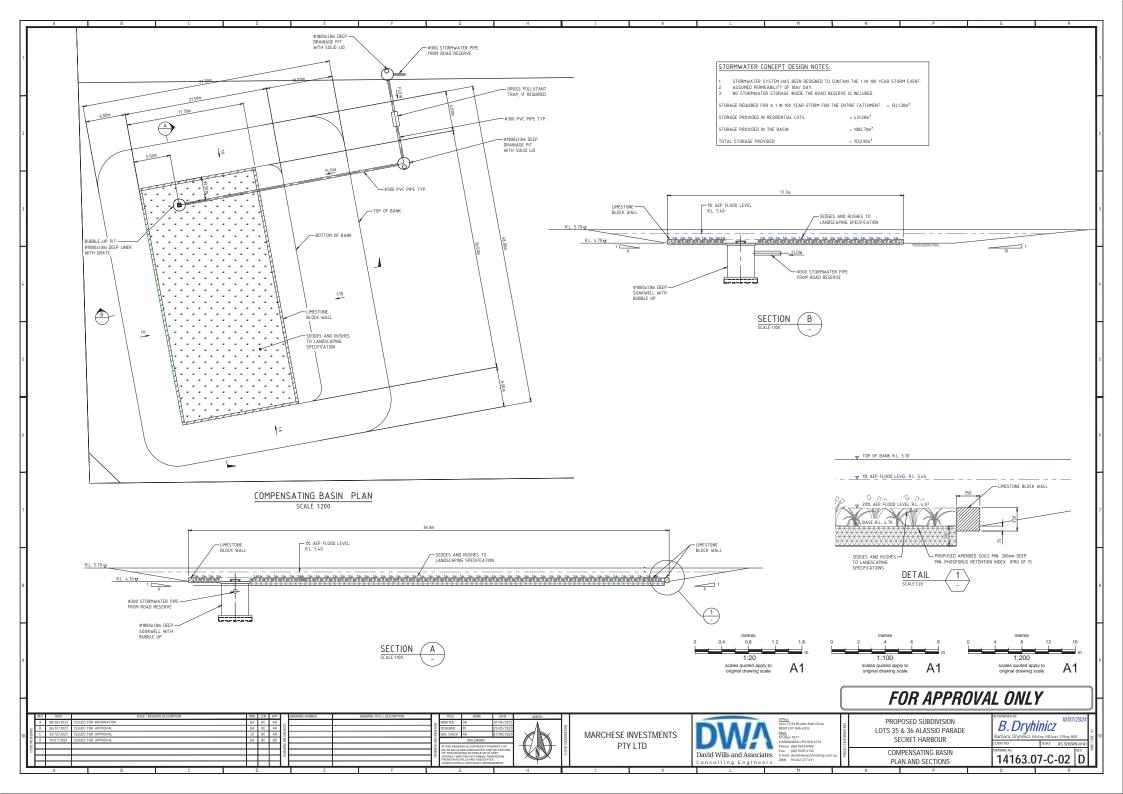
Infiltration rate (m/day)	k =	10.0	m/day
Outflow Area	A _Q =	908.5	m ²
Outflow of Basin (L/s)	Q=	105.2	L/s
1% AEP Emptying time (hr)	t=	2.1	hr

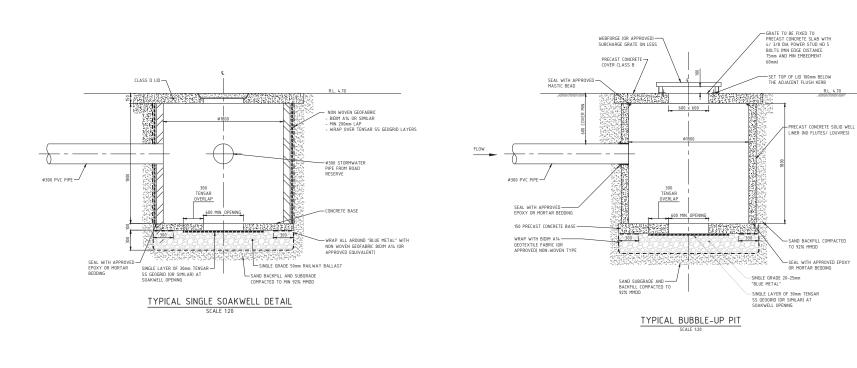
Total development area '= 80,735 m²


 10% AEP basin % of total area
 0.37
 %

 1% AEP basin % of total area
 0.99
 %
 <2% .: ok</td>


Volumes


Total depth (%)	Depth (m)	RL (m)	Plan area (m²)	Volume to TWL (m ³)
0.00	0.00	4.7	637.2	0.0
0.05	0.05	4.8	695.3	34.8
0.10	0.10	4.8	753.5	75.3
0.15	0.15	4.9	811.6	121.7
0.20	0.20	4.9	869.8	174.0
0.25	0.25	5.0	927.9	232.0
0.30	0.30	5.0	986.0	295.8
0.35	0.35	5.1	1044.2	365.5
0.40	0.40	5.1	1102.3	440.9
0.45	0.45	5.2	1160.5	522.2
0.50	0.50	5.2	1218.6	609.3
0.53	0.53	5.2	1253.5	664.3
0.60	0.60	5.3	1334.9	800.9
0.65	0.65	5.4	1393.0	905.5
0.70	0.70	5.4	1451.2	1044.5


Q ₁₀₀ TWL

APPENDIX E: DWA DRAWINGS SET

MARCHESE INVESTMENTS PTY LTD

Office: Unit 1 / 9 Shields Crescent BOORAGOON WA 6154 Mail: PO Box 3084 PROPOSED SUBDIVISION LOTS 35 & 36 ALASSIO PARADE SECRET HARBOUR ALTHORISED BY:

A. ROWCIIFFE

Athena Rowcliffe BE MEAUST (PEng NER CLIENT REF SCALE 1.20 @A1

DETAILS

FOR APPROVAL ONLY

14163.07-C-03

APPENDIX F: TDL LANDSCAPING PLANS

LANDSCAPE PLAN DRAFT 15734-ANS-LS-200 C

PLANT MIX 03.

Sciencia reasolatio

Diegra antigra won.

Bereter period

BASIN PLAN MIX 02

Teres agreemen

Capital Symmetries

Earpoorefus organizes (Mathemore queerfilida)

Coretain long Falls Heldfacts hergald penal

PLANTING SCHEDULF

Trans.				1.115-115-7	of option to the Park
Ney	Species	Common Name	Plenting Centrals	Pot Size:	Meture size.
AF:	Agons Servina	Personner	this left count.	1004	3-6%
61.	Exception become in	Science	in phose	1100	3-364
EV:	Eurolysinus extres	Letter Street Styles	Addition	630%	2.00
1000	designation of the property of the control of the c	pointends	Pag physics	1000	5.00
\$400	Professiol presporter	Street Payerhark	EX ED INC.	\$100	2-5%
HIS	Previous Hardsoftste	Deers pigether	Augment	EXCH	391
MY	Professional annual Plants	Briad book Peletlah	JUL ST COUNT	1000	2-011

Shrubs	refs/Drosed Covers					
Ney.	Species	Common Name	Planting Denoity	Put Stee	Mature min	
ALC:	Printing Statistical prostrator	Weller	SevT.	9400000	810-100-	
100	Discount Innam	Critical Street	36/2	94 (31-00)	780 (000-	
7 10	Emmattide glatine	Yalkam Carpet	54/5	3402	NO TON	
108	Street first beautiful and the second	Constitute gravitual	36/2	1413	800-800-	
04	Complete assessment	Designation	345/5	SA Green	300400=	
0.6	Sherifus (8th (MIS))	the Sie Sare-	See/S	9400000	EE) 3000	
640	Margonum sprinkslum.	Yamana	3m/5	1612	10-300-	

PEARIT	MIX DZ					
Shrubs	Skrults/Skiaped Covers					
May	Species	Common Name.	Planting Detaily	Pot Due:	Madate son	
tie	Discrete cerriota	Denela	34/2	Skiphin	200400946	
he:	Limenta keptola	Calvinos	34/2	HOme	200400-	
Man	Philipping a respective	1, title News	30/2	William	100400mm	
Clair	Clearly solded river.	Coastal Dany South Hos-	5607	14.0	200-100-	
500	Diservite sympolytes	Promotor	3447	940000	300-500	
Wate	Westman francis	Sing Stat.	34/2	MOren	300-10001111	
Witte	Waterregus Protectus.	Mana.	844/5	MACROSON	200 tooms	

	LANT MIX DE					
Blruks/Sricand Covers						
Hery	Species	Common Name	Planting Dennity	Pot Side	Majore sole	
Ac	PPS/MILITHANA	TARE OF	36/1	HO	EDD-3000	
fin-	Sortina carrieron sanctina	Carbon In carolina	34/1	WOH	3001000000	
firm.	Rumbala Harriston	Frequency Number	3197	Miller	300-000-	
Det.	Elements to emulate	Test Springs	3447	William	300 900mm	
Car	Championous aurate arms	Physical Photo-	34/7	NA Continu	300 000mm	
Cit	Chameleucori uncatyro plice	Generalities Was White	249/2	MOnen	300-1000mm	
1.5	Leucophyly Sepana	Custom Sub-	2007	Million	300.000	

BASIN PLANT HIS IS

Shrubs/Dright Creens					
Nety	Species	Common Name	Planting Density	Pot Size	Mahyim beim
Fig.	delines serves	Services run	6m/2	90-	200.100
Car	Carrie and those	Tall Deliger	6m/2	Milleren	200400mm
Ke:	Cypnic gymropylite	Story Sedge	6m/2	MOnn	300-500mm
Fin	Fronta nvitoria	serve by 20-bins (b)	6m/2	16Onn	300 900mm
100	Saymone roddae	Club Roam	6m/2	Witness	300-300-
44	-innex perinter	Paid Front	6m/2	940000	200 900
184	habitati addition	Common Rode	6m/2	Tag Cityonia	WOO BOOMS

BASIN FLANT HIX 02

Rep .	Specime	Conmon Name	Planting Density	Post Side	Hetera site
the	Concress orbitality	(0.00 d all 10.00)	6m/2	14(3)	800 800
do	Basicina subspirosa	Tang Rush	6m/2	14000	300 400-
C+	Carpotectus reminera	Prof Series	6m/2	SEDNOTE.	101.109-
Ca	Calculations qualificial	One Gold Emileonal	6m/2	NAT PROPERTY.	300 900-
55%	Caryo barretar	PM-Seare	6m/2	MOnn	300-600nm
13	Committee Emphysia.	Plat Rush	6m/2	SECTION 1	300-90001111
986	Proteinuos horganis	Perch Previous	6m/2	Althorn	300-1000

APPENDIX G: COMPLETED	CHECKLIST I	FROM APPENDIX	1 of I	BETTER	Urban
WATER MANAGEMENT (WA	APC , 2008)				

Checklist for integrated water cycle management assessment of local structure plan or local planning scheme amendment

- 1. Tick the status column for items for which information is provided.
- 2. Enter N/A in the status column if the item is not appropriate and enter the reason in the comments column.
- 3. Provide brief comments on any relevant issues.
- 4. Provide brief description of any proposed best management practices, eg. multi-use corridors, community based-social marketing, water re-use proposals.

Local water management strategy item	Deliverable	Y	Comments
Executive summary			
Summary of the development design strategy, outlining how the design objectives are proposed to be met	Table 1: Design elements and requirements for BMPs and critical control points	\square	Executive Summary Provided
Introduction			
Total water cycle management – principles & objectives Planning background Previous studies		\square	Section 1.2 Section 1.1 Section 1.3
Proposed development			
Structure plan, zoning and land use. Key landscape features Previous land use	Site context plan Structure plan		Appendix D
Landscape - proposed POS areas, POS credits, water source, bore(s), lake details (if applicable), irrigation areas	Landscape Plan	\square	Appendix E
Design criteria			
Agreed design objectives and source of objective		\square	Section 1.2
Pre-development environment			
Existing information and more detailed assessments (monitoring). How do the site characteristics affect the design?		\square	
Site Conditions - existing topography/ contours, aerial photo underlay, major physical features	Site condition plan	☑′	Section 2.1
Geotechnical - topography, soils including acid sulfate soils and infiltration capacity, test pit locations	Geotechnical plan		Section 2.2
Environmental - areas of significant flora and fauna, wetlands and buffers, waterways and buffers, contaminated sites	Environmental Plan plus supporting data where appropriate	Ø	Section 2.3
Surface Water – topography, 100 year floodways and flood fringe areas, water quality of flows entering and leaving (if applicable)	Surface Water Plan		N/A
Groundwater – topography, pre development groundwater levels and water quality, test bore locations	Groundwater Plan plus details of groundwater monitoring and testing	\square	Section 2.4
Water use sustainability initiatives			
Water efficiency measures – private and public open spaces including method of enforcement		\square	Section 6.1, 6.2
Water supply (fit-for-purpose strategy), agreed actions and implementation. If non-potable supply, support with water balance		\square	Section 3.1
Wastewater management		\square	Section 3.1
Stormwater management strategy			
Flood protection - peak flow rates, volumes and top water levels at control points,100 year flow paths and 100 year detentions storage areas	100yr event Plan Long section of critical	✓	Section 4.4, T3 Appendix D
Manage serviceability - storage and retention required for the critical 5 year ARI storm events	points 5yr event Plan		Section 4.4, T2
Minor roads should be passable in the 5 year ARI event			Appendix D

Local water management strategy item	Deliverable	✓	Comments
Protect ecology – detention areas for the 1 yr 1 hr ARI event, areas for water quality treatment and types of (including indicative locations for) agreed structural and non-structural best management practices and treatment trains. Protection of waterways, wetlands (and their buffers), remnant vegetation and ecological linkages	1yr event plan Typical cross sections		Section 4.4, T1 Appendix D
Groundwater management strategy			
Post development groundwater levels, fill requirements (including existing and likely final surface levels), outlet controls, and subsoils areas/exclusion zones	Groundwater/subsoil Plan	\square	Section 2.4
Actions to address acid sulfate soils or contamination			N/A
The next stage – subdivision and urban water management plans			
Content and coverage of future urban water management plans to be completed at subdivision. Include areas where further investigations are required prior to detailed design.		✓	Sections 8.1, 8.2
Monitoring			
Recommended future monitoring plan including timing, frequency, locations and parameters, together with arrangements for ongoing actions		\square	Section 7.3
Implementation			
Developer commitments		\square	Section 7
Roles, responsibilities, funding for implementation		\square	Sections 7.1, 8.1
Review		\square	Section 8.2

Appendix B POS Concept Plan

LANDSCAPE PLAN DRAFT 15734-ANS-LS-200 C

PLANT MIX 03.

Sciencia reasolatio

Diegra antigra won.

Berest setter

BASIN PLAN MIX 02

Teres agreemen

Capital Symmetrical

Earpoorefus organizes (Mathemore queerfilida)

PLANTING SCHEDULF

Titles 12 Control of the Control of			1.115-115-1		
Ney .	Species	Common Name	Plenting Centrals	Pot Size:	Midure size:
AF:	Agons Servina	Perspecture	this left count.	1004	3-6%
61.	Exception become in	France	in phose	2300	3-364
EV:	Eurolysinus extres	Letter Show Show	Addition	. 6101	2.00
100	decarded a menuschibal control of the control of th	pointed	Parties	1000	5.65
9401	Professorial presignative	Street Payerharis	EST STORM	8300	1.65
HIS	Phalaleura thacksorts/le	Deens pigether	Augitowin.	6000	3.01
MY	Professional annual Plants	Drived Issued Paperhals	JUL ST COUNT	1000	2.00

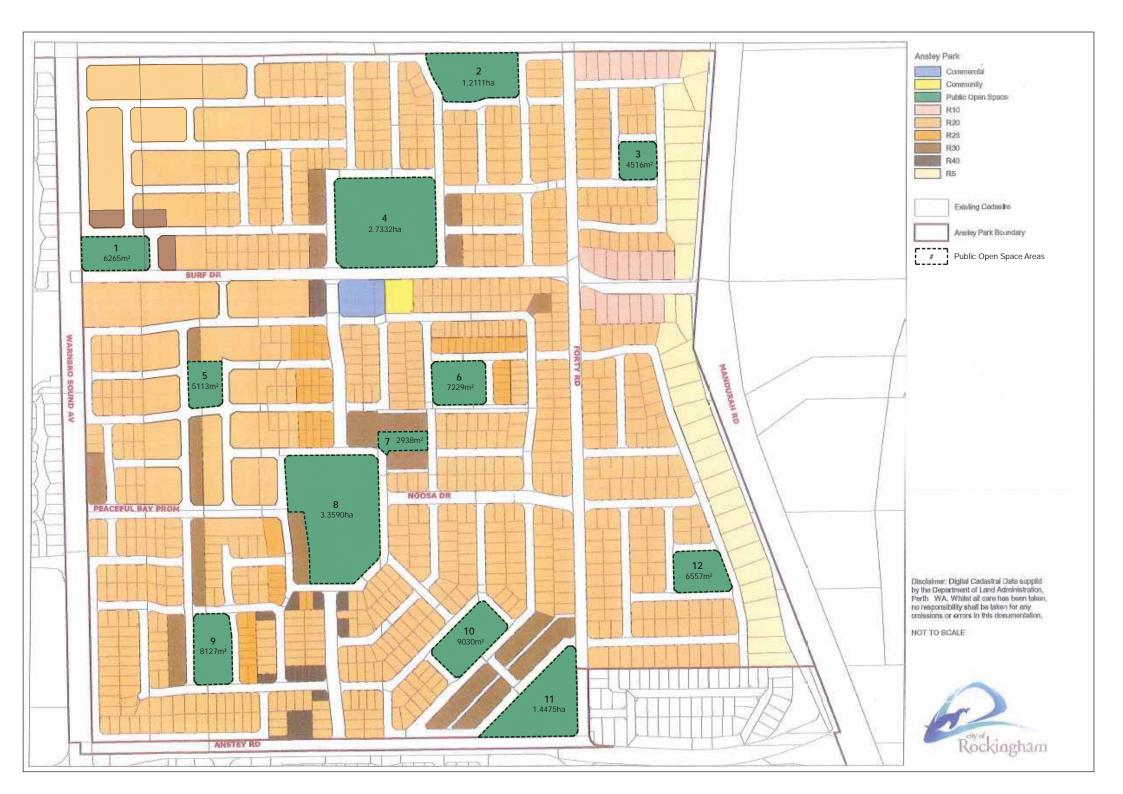
Shrubs	hrate/Dround Covers				
Ney.	Species	Common Name	Plunting Density	Pot Stee	Mature min
ALC:	Product State of the prostration	Weller	SevT:	SACO	810-100-
100	Denomia Insurà	Color Since	30/2	94 (3	780 (000-
10	Exercise to be glaime	Yalkam Carpet	50/2	HOme	NO DOWN
108	Street fine productions	Cavatrine perdag	34/2	1400	800 800-
04	Complete apparent	Designation	346/5	D4 Green	300 400 mm
0.6	Direction (8th ob/10)	the Six Save	See S	WOW	\$2)-300mm
140	Myoponum panishilam.	Yamana	Sev's	1617	10-300-

Skrybs/Skissed Covers					
day	Species	Common Name.	Planting Density	Pot Due:	Maded to page
tie	Diameta cercicida	Denela	34/2	340/100	200400946
be:	Limenta heptole	Calvinors	39/2	H10000	200400-
Man	Preference research to	1, 101th Princes	38/2	Milleon	300400mm
Cir	Clearly professioning	-Created Street Brush Hon-	54/7	140000	200-100-
Sec.	Diserving preparations:	Promoty	Jest T	9400000	300-500
Wyb	Westerspie Publishe	Sings State.	34/2	MOrenn	330-1000mm
Witte	Waterrapia Profestina.	Manda.	56/5	Mark Common	200 t00mm

MILA	MI	MEX. D.S.
_		
Title 41	diam'r.	Ministered Cowners

Shrults	Inshis/Sniged Covers					
Hery	Species -	Common Name	Planting Dennity	Politice.	Market sale	
Acc	Program columbs	TMID of 1	36/1	HO	EDD-3000	
fin-	Service connector sanctive	Cartes in car dies	34/1	le Comm	300 0000	
firm.	Rumbala Harriston	Committee thanks	2007	hitem	300 000-	
Det.	Electrical internalistic	Test Sprong	34/7	William	300 900mm	
Car	Champlescon exists area.	Physical Photo-	34/7	NA Continu	830-000mm	
Cit	Chamblescore should pile allia	Generalized Wash White	24/2	MOnen	300-1000mm	
6.9-	Leucophyla Browns	Custom Sub-	2007	Million	300.000	

BASIN PLANT HIS ST


Shriphi	/Original Country				
Hely	Species	Contract Name	Planting Departy	Pot Size	Mature tore
Fig.	deline arres	Mary York york	6m/2	90-	200.000
Car	Carrie encritore	Tall Serge	6m/2	Witness	200-b00mm
Ke:	Cyphia gymrosoulisi-	Story Sedge	6m/2	MOnym	300-500-h
Fin	Fronta nivitina	services continued to	6m/2	rationes	300 900mm
100	Serecis rodos	Child Room	6m/2	Witness	300-900-
- 44	- Particular profestion	Pain Front	6m/2	940000	200 900
the .	hand and substantial later	Common Rosin	6m/2	Tax Convers	\$20 300mm

BASIN FLANT HIX 02

-	/Conside Comers	1-11			
Cap .	Specime	Consise Name	Planting Density	Post State	Mature size:
the	Concrete articulate	(0.00 kg truth)	6m/2	14(3)	810-800-
do	Baseman Adoptions	Torig Rush	6m/2	(40)	300400-
Ce	Carpothin but introduces	Prof Sect	6m/2	14 Section	120-1009-mm
Ca	Calcharino quadritidos	Chia Gold Embleman	6m/2	NAT promi	300 900-
55%	Gayre barretor	Philipson	6m/2	MOnn	300-500nm
1.8	Complete Lingdoles	Plat Rush	6m/2	SECRET	300-000mm
985	Proteoco torgeli	Perch Newborn	6m/2	48 Circum	300-1000mm

Appendix C POS Areas Map

